-
Notifications
You must be signed in to change notification settings - Fork 2
/
bert.py
298 lines (239 loc) · 10.7 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import csv
import os
import logging
import argparse
import random
import datetime
from tqdm import tqdm, trange
from pathlib import Path
import math
from sklearn.metrics import precision_recall_fscore_support, matthews_corrcoef, confusion_matrix
import subprocess
import json
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
from pytorch_pretrained_bert.optimization import BertAdam
logging.basicConfig(filename = '{}_log.txt'.format(datetime.datetime.now()),
format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
Path.home() / '.pytorch_pretrained_bert'))
logger.info(PYTORCH_PRETRAINED_BERT_CACHE)
max_seq_length = 512
batch_size = 32
learning_rate = 2e-5
unlabel_rate = 0.05
label_list = ["0", "1"]
tokenizer = BertTokenizer.from_pretrained("/home/omutlu/.pytorch_pretrained_bert/bert-base-uncased-vocab.txt")
bert_model = "/home/omutlu/.pytorch_pretrained_bert/bert-base-uncased.tar.gz"
repo_path = "/home/omutlu/domain_adaptation/"
# train_filename = "/home/omutlu/domain_adaptation/data/sorted_data/books/train.json"
# val_filename = "/home/omutlu/domain_adaptation/data/sorted_data/books/val.json"
# test_filename = "/home/omutlu/domain_adaptation/data/sorted_data/electronics/test.json"
train_filename = repo_path + "data/domain_corpus_data/clef/balanced_india_train.json"
val_filename = repo_path + "data/domain_corpus_data/clef/india_dev.json"
test_filename = repo_path + "data/domain_corpus_data/clef/india_test.json"
output_file = repo_path + "models/doc_gan/base-bert_512_32_0,05.pt"
total_epoch_num = 15
warmup_proportion = 0.1
train = True
multi_gpu = True
device = torch.device("cuda:4")
# device = "cpu"
device_ids = [4,5,6,7]
dev_metric = "f1"
seed = 42
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Hyper-params
print("Maximum sequence length : %d" %max_seq_length)
print("Batch size : %d" %batch_size)
print("Learning rate : %.8f" %learning_rate)
class DomainData(Dataset):
def __init__(self, examples, label_list, max_seq_length, tokenizer):
self.examples = examples
self.label_list = label_list
# label_map = {}
label_map = {"-1":-1}
for (i, label) in enumerate(label_list):
label_map[label] = i
self.label_map = label_map
self.max_seq_length = max_seq_length
self.tokenizer = tokenizer
def __len__(self):
return len(self.examples)
def convert_examples_to_features(self, text, label=None):
"""Loads a data file into a list of `InputBatch`s."""
features = []
tokens_a = self.tokenizer.tokenize(text)
if len(tokens_a) > self.max_seq_length - 2:
tokens_a = tokens_a[0:(self.max_seq_length - 2)]
tokens = []
tokens.append("[CLS]")
for token in tokens_a:
tokens.append(token)
tokens.append("[SEP]")
# tokens = [token for token in tokens if token in self.tokenizer.vocab.keys() else "[UNK]"]
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < self.max_seq_length:
input_ids.append(0)
input_mask.append(0)
assert len(input_ids) == self.max_seq_length
assert len(input_mask) == self.max_seq_length
if label:
label_id = self.label_map[label]
return input_ids, input_mask, label_id
else:
return input_ids, input_mask
def __getitem__(self, idx):
ex = self.examples[idx]
input_ids, input_mask, label_id = self.convert_examples_to_features(ex[0], label=ex[1]) # input is -> text, label
input_ids = torch.tensor(input_ids, dtype=torch.long)
input_mask = torch.tensor(input_mask, dtype=torch.long)
label_ids = torch.tensor(label_id, dtype=torch.long)
return input_ids, input_mask, label_ids
def get_examples(filename, train=False):
lines = pd.read_json(filename, orient="records", lines=True)
examples = []
for (i, line) in lines.iterrows():
guid = i
text = str(line.text)
label = str(int(line.label))
if train and np.random.rand() > unlabel_rate:
label = "-1" # make the sample unlabeled
examples.append((text, label))
return examples
if train:
train_examples = get_examples(train_filename, train=True)
val_examples = get_examples(val_filename)
random.shuffle(train_examples)
random.shuffle(val_examples)
train_dataloader = DataLoader(dataset=DomainData(train_examples, label_list, max_seq_length, tokenizer), batch_size=batch_size, shuffle=True, drop_last=False)
val_dataset = DomainData(val_examples, label_list, max_seq_length, tokenizer)
val_dataloader = DataLoader(dataset=val_dataset, batch_size=batch_size)
num_train_steps = int(len(train_examples) / batch_size * total_epoch_num)
model = BertForSequenceClassification.from_pretrained(bert_model, PYTORCH_PRETRAINED_BERT_CACHE, num_labels=len(label_list))
model.to(device)
if multi_gpu:
model = torch.nn.DataParallel(model, device_ids=device_ids)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=learning_rate,
warmup=warmup_proportion,
t_total=num_train_steps)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", batch_size)
logger.info(" Num steps = %d", num_train_steps)
global_step = 0
best_score = 0.0
model.train()
for epoch_num in trange(int(total_epoch_num), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
src_input_ids, src_input_mask, label_ids = batch
loss, _ = model(src_input_ids, attention_mask=src_input_mask, labels=label_ids)
if multi_gpu:
loss = loss.mean()
loss.backward()
tr_loss += loss.item()
nb_tr_examples += src_input_ids.size(0)
nb_tr_steps += 1
optimizer.step()
model.zero_grad()
global_step += 1
# VALIDATION
model.eval()
all_preds = np.array([])
all_label_ids = np.array([])
eval_loss = 0
nb_eval_steps = 0
for src_input_ids, src_input_mask, label_ids in val_dataloader:
src_input_ids = src_input_ids.to(device)
src_input_mask = src_input_mask.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss, logits = model(src_input_ids, attention_mask=src_input_mask, labels=label_ids)
eval_loss += tmp_eval_loss.mean().item()
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
all_preds = np.append(all_preds, np.argmax(logits, axis=1))
all_label_ids = np.append(all_label_ids, label_ids)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
precision, recall, f1, _ = precision_recall_fscore_support(all_label_ids, all_preds, average="micro", labels=list(range(0,len(label_list))))
mcc = matthews_corrcoef(all_preds, all_label_ids)
result = {"eval_loss": eval_loss,
"precision_micro": precision,
"recall_micro": recall,
"f1_micro": f1,
"mcc": mcc}
if dev_metric == "f1":
score = f1
elif dev_metric == "recall":
score = recall
elif dev_metric == "precision":
score = precision
if best_score < score:
best_score = score
logger.info("Saving model...")
model_to_save = model.module if hasattr(model, 'module') else model # To handle multi gpu
torch.save(model_to_save.state_dict(), output_file)
logger.info("***** Epoch " + str(epoch_num + 1) + " *****")
for key in sorted(result.keys()):
logger.info(" %s = %.4f", key, result[key])
model.train() # back to training
test_examples = get_examples(test_filename)
test_dataloader = DataLoader(dataset=DomainData(test_examples, label_list, max_seq_length, tokenizer), batch_size=batch_size)
model = BertForSequenceClassification.from_pretrained(bert_model, PYTORCH_PRETRAINED_BERT_CACHE, num_labels=len(label_list))
model.load_state_dict(torch.load(output_file))
model.to(device)
if multi_gpu:
model = torch.nn.DataParallel(model, device_ids=device_ids)
all_preds = np.array([])
all_label_ids = np.array([])
test_loss = 0.0
nb_test_steps = 0
model.eval()
for src_input_ids, src_input_mask, label_ids in test_dataloader:
src_input_ids = src_input_ids.to(device)
src_input_mask = src_input_mask.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_test_loss, logits = model(src_input_ids, attention_mask=src_input_mask, labels=label_ids)
test_loss += tmp_test_loss.mean().item()
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
all_preds = np.append(all_preds, np.argmax(logits, axis=1))
all_label_ids = np.append(all_label_ids, label_ids)
nb_test_steps += 1
test_loss = test_loss / nb_test_steps
precision, recall, f1, _ = precision_recall_fscore_support(all_label_ids, all_preds, average="micro", labels=list(range(0,len(label_list))))
mcc = matthews_corrcoef(all_preds, all_label_ids)
result = {"test_loss": test_loss,
"precision_micro": precision,
"recall_micro": recall,
"f1_micro": f1,
"mcc": mcc}
logger.info("***** TEST RESULTS *****")
for key in sorted(result.keys()):
logger.info(" %s = %.4f", key, result[key])