-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_MyNet.py
59 lines (47 loc) · 1.72 KB
/
test_MyNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn.functional as F
import numpy as np
import argparse
import imageio
import time
from PIL import Image
from model.DCPNet import DCPNet
from data import test_dataset
import os
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=352, help='testing size')
opt = parser.parse_args()
dataset_path = r'D:\DataSets\SOD'
model = DCPNet()
model.load_state_dict(torch.load('EORSSD.pth'))
model.cuda()
model.eval()
test_datasets = ['EORSSD_aug']
# test_datasets = ['ORS-4199_aug']
for dataset in test_datasets:
save_path = 'result/predict_img/' + dataset + '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
print(dataset)
image_root = dataset_path + '/' + dataset + '/' + 'test/image/'
gt_root = dataset_path + '/' + dataset + '/' + 'test/GT/'
test_loader = test_dataset(image_root, gt_root, opt.testsize)
time_sum = 0
for i in range(test_loader.size):
image, gt, name = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
time_start = time.time()
res, _ = model(image)
time_end = time.time()
time_sum = time_sum + (time_end - time_start)
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
res = res * 255
res = res.astype(np.uint8)
imageio.imsave(save_path + name, res)
if i == test_loader.size - 1:
print('Running time {:.5f}'.format(time_sum / test_loader.size))
print('FPS {:.5f}'.format(test_loader.size / time_sum))