@@ -31,7 +31,7 @@ a fasta database of protein sequences:
31
31
urlretrieve(gh + " /src/data/SimpleSearchEngine_1.mzML" , " searchfile.mzML" )
32
32
urlretrieve(gh + " /src/data/SimpleSearchEngine_1.fasta" , " search.fasta" )
33
33
protein_ids = []
34
- peptide_ids = []
34
+ peptide_ids = oms.PeptideIdentificationList()
35
35
oms.SimpleSearchEngineAlgorithm().search(
36
36
" searchfile.mzML" , " search.fasta" , protein_ids, peptide_ids
37
37
)
@@ -143,9 +143,9 @@ ppm\ (\pm 2\ ppm)`, we expect that we will not find the hit at :math:`775.38` m/
143
143
salgo.setParameters(p)
144
144
145
145
protein_ids = []
146
- peptide_ids = []
146
+ peptide_ids = oms.PeptideIdentificationList()
147
147
salgo.search(" searchfile.mzML" , " search.fasta" , protein_ids, peptide_ids)
148
- print (" Found" , len ( peptide_ids), " peptides" )
148
+ print (" Found" , peptide_ids.size( ), " peptides" )
149
149
150
150
As we can see, using a smaller precursor mass tolerance leads the algorithm to
151
151
find only one hit instead of two. Similarly, if we use the wrong enzyme for
@@ -189,7 +189,7 @@ Now include some additional decoy database generation step as well as subsequent
189
189
190
190
# Run SimpleSearchAlgorithm, store protein and peptide ids
191
191
protein_ids = []
192
- peptide_ids = []
192
+ peptide_ids = oms.PeptideIdentificationList()
193
193
194
194
# set some custom search parameters
195
195
simplesearch = oms.SimpleSearchEngineAlgorithm()
@@ -224,7 +224,7 @@ This is done by applying one of the available protein inference algorithms on th
224
224
:linenos:
225
225
226
226
protein_ids = []
227
- peptide_ids = []
227
+ peptide_ids = oms.PeptideIdentificationList()
228
228
229
229
# Re-run search since we need to keep decoy hits for inference
230
230
simplesearch.search(searchfile, target_decoy_database, protein_ids, peptide_ids)
0 commit comments