-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathloss.py
71 lines (61 loc) · 2.37 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import tensorflow as tf
from tensorflow.keras.losses import BinaryCrossentropy,\
SparseCategoricalCrossentropy
def fb_loss(trues, preds, beta, channel_axis):
smooth = 1e-4
beta2 = beta*beta
batch = preds.shape[0]
classes = preds.shape[channel_axis]
preds = tf.reshape(preds, [batch, classes, -1])
trues = tf.reshape(trues, [batch, classes, -1])
trues_raw = tf.reduce_sum(trues, axis=-1)
weights = tf.clip_by_value(trues_raw, 0., 1.)
TP_raw = preds * trues
TP = tf.reduce_sum(TP_raw, axis=2)
FP_raw = preds * (1-trues)
FP = tf.reduce_sum(FP_raw, axis=2)
FN_raw = (1-preds) * trues
FN = tf.reduce_sum(FN_raw, axis=2)
Fb = ((1+beta2) * TP + smooth)/((1+beta2) * TP + beta2 * FN + FP + smooth)
Fb = Fb * weights
score = tf.reduce_sum(Fb) / (tf.reduce_sum(weights) + smooth)
return tf.clip_by_value(score, 0., 1.)
def make_cross_entropy_target(target):
# target = target.byte()
b, c, w, h = target.shape
ce_target = tf.zeros((b, w, h))
for channel in range(c):
ce_target = tf.where(target[:, channel, :, :], channel, ce_target)
return ce_target
class FBLoss:
def __init__(self, beta=1, channel_axis=-1):
self.beta = beta
self.channel_axis = channel_axis
def __call__(self, target, output):
return 1 - fb_loss(target, output, self.beta, self.channel_axis)
class FbCombinedLoss:
def __init__(self, channel_axis=-1, fb_weight=0.5, fb_beta=1,
entropy_weight=0.5, use_bce=True, normalize=False):
self.fb_weight = fb_weight
self.entropy_weight = entropy_weight
self.fb_loss = FBLoss(beta=fb_beta, channel_axis=channel_axis)
self.use_bce = use_bce
self.normalize = normalize
if use_bce:
self.entropy_loss = BinaryCrossentropy()
else:
self.entropy_loss = SparseCategoricalCrossentropy()
def __call__(self, target, output):
if self.normalize:
output = F.softmax(output, dim=1)
if self.fb_weight > 0:
fb = self.fb_loss(target, output) * self.fb_weight
else:
fb = 0
if self.entropy_weight > 0:
if self.use_bce is False:
target = make_cross_entropy_target(target)
ce = self.entropy_loss(target, output) * self.entropy_weight
else:
ce = 0
return fb + ce