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Abstract 
We address the problem of finding all the solutions 

of the direct kinematics for every possible architectures 
of planar fully parallel manipulators. We show that for 
this problem all the possible kinematic chains can be 
reduced to  a set of three basic chains and we explain 
how to calculate the solutions of the forward kinemat- 
ics for all the combinations of these basic chains and 
consequently for all the possible architectures of planar 
parallel robots. 

1 Introduction 
A planar fully parallel robot is constituted of a mov- 

ing platform connected to  the ground by three inde- 
pendent kinematic chains having three independent 
one d.0.f. joints, one of which is actuated. The ac- 
tuation scheme should provide the control of the three 
d.0.f. of the moving platform and the degree of mobil- 
ity of the moving platform should be 0 when the ac- 
tuators are locked. The joint will be denoted by R for 
a revolute joint and P for a prismatic joint. Conse- 
quently each of the independent kinematic chains will 
be denoted by a set of three letters indicating the suc- 
cession of joints starting from the ground. The possible 
combinations are therefore : RRR, RPR, RRP, RPP, 
PRR, PPR, PRP, PPP, this last combination being 
excluded as the three joints are not independent. If we 
assume that the three kinematics chains are identical 
all the possible manipulators are presented in figure 1. 
In this paper the planar parallel manipulators will be 
defined by the sequence describing the three kinematic 
chains (e.g. 3-RRR will be the name of the robot with 
three RRR kinematic chains). The centers of the joints 
attached to  the ground will be denoted by Ai and the 
centers of the joints attached to  the moving platform 
will be denoted Bi. 

At this time we have not defined the actuated joint: 
in fact each joint of a chain may be actuated as soon 
as the following rule is satisfied: 

t h e  c h a i n  obtained w h e n  locking t h e  actuated j o i n t  is 
not of t h e  PP type 

Indeed in the opposite case when the actuator is locked 
point Bi of the chain may be located at any position in 
the plane. As this is true for each of the three chains 
the moving platform may translate in the plane and 
its degree of mobility is no more 0. Using this rule we 
may now determine all the 18 possible chains and we 
will underline the actuated joint (table 1). 

I Y I 

Figure 1: The possible planar fully parallel manipula- 
tors with three identical kinematic chains 

Note that to  get independence in the kinematic 
chain with two prismatic joints it is necessary that 
the joints axis should not be parallel. The kinematic 
chains of any planar fully parallel robots should be one 
of the chains listed in the table. 

Table 1: All the possible chains for a planar parallel 
robot 

2 Direct kinematics 
2.1 Equivalent chains 

The direct kinematics problem consists in finding 
all the possible postures of the moving platform when 
all the actuators of the robot are locked. Our purpose 
is to  show that the direct kinematics of all fully par- 
allel robots may be solved. We will first study all the 
possible kinematic chains and show that when their ac- 
tuator is locked they are equivalent to a chain among 
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the set of three basic chains presented in figure 2. Let 

Figure 2: The three equivalent chains for all the pos- 
sible kinematics chains 

us examine for example the ERR chikin. When the 
first revolute joint is locked, clearly thie extremit,y M 
of the link attached to  this joint is fixed. Hence the re- 
maining link (attached at M and a t  the revolute joint 
of the moving platform) can only turn around the rev- 
olute joint at M .  Therefore this chain can be sub- 
stituted by the chain of type 1. Clearly every chain 
whose free joints (the joints which are not actuated) 
are of the revolute type can be substit,uted by a type 
1 chain. 

Consider now the chain BPR: when the first :revo- 
lute joint is locked point B can only trainslate alon,g the 
line D parallel to  the prismatic actuator axis while the 
moving platform can rotate around the joint at B (fig- 
ure 3). Consequently this chain can be substituted by 

Figure 3: The equivalent chain for a. BPR chain 

a type 2 kinematic chain. Clearly every chain whose 
free joints are prismatic and revolute (in this order, 
starting from the ground) can be substituted by a type 
2 chain. 

Finally consider the chain REP: .when the pris- 
matic joint is locked point B can rotate around A and 
translate along the prismatic joint axis, but the angle 
between this axis and the platform should remain con- 
stant (figure 4). Hence this chain can be substituted 
by a type 3 chain. Clearly every chain whose free joints 
are revolute and prismatic (in this order, starting from 
the ground) can be substituted by a type 3 chain. 

This analysis can be performed for all the 18 pos- 
sible chains and it is found that for all the chains the 

Figure 4: The equivalent chain for a REP chain 

iequivalent chain is of type 1, 2 or 3. The equivalence 
(are summarized in table 2. If we are able to compute 

‘Table 2: The equivalent chain for all the 18 possible 
kinematic chains 

i;he direct kinematics for the robots having all the pos- 
sible combinations of the three basic equivalent chains 
we will be able to  compute the direct kinematics for 
all the planar p<arallel robots. 
:2.2 Illanipulator with identical chains 

In this section we will as:sume that the robot has 
1,hree identical k.inematics chain whose equivalent type 
is either 1, 2 or 3. 

2.2.1 3-type 1 mechanism 

The direct kinematics of this mechanism has been well 
studied under the name of <3-&RR robot (which is 
equivalently froim the direct kinematics point of view 
t,o the 3 - RER robot). T,his mechanism has been 
studied in [4], [:I], 6],[7],  [8],[91] but Gosselin [1],[2] was 
t,he first to compete I the analysis of this mechanism 
by showing that, it is possible to  compute an univari- 
ate polynomial of order 6 enabling to  determine all 
the postures of the platform. It was shown that the 
possible postures are defined by the intersection of the 
coupler curve of the four bar mechanism A1 B1 B3 B2A2 
with the circle described by €t3 when it rotates around 
A x .  As the coupler curve has (degree 6 and full circular- 
ity the number of real intersection points with a circle 
is at most 6. The polynomial of Gosselin is therefore 
optimal. 
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2.2.2 3-type 2 mechanism 

This mechanism is described in figure 5: point B1 may 
slide along the x axis and we denote by X the amplitude 
of the translation, point Bz slide on a line with unit 
vector u(u,, uY),  going through point Az(zb, yb) while 
point B3 slide on a line with unit vector v(w,,wy), 
going through point A3(x,, y,). A posture of the robot 
may be defined by the value of X and the orientation 
angle 8. We may write two equations that indicate 

A 

Figure 5:  The 3-type 2 mechanism 

that points Bz, B3 slide along the given lines: 

(A + r cos(8) - x,)wY - ( ~ s i n ( 8 )  - ya)wU, = 0 (1) 
(A + s cos(8 + a )  - xb)uy - 

(2) (s sin(8 + a )  - y b ) u ,  = 0 

Any of these two equations can be used to calcu- 
late X which is then substituted into the remain- 
ing equation. This leads to  an equation of the type 
A cos(B)+B sin(8) = C which admit two solutions in 6. 
As there is an unique value of X for a given 8 the direct 
kinematics of this mechanism may have two solutions. 
The geometrical interpretation is that as Bz, B3 move 
on their lines point B1 lie on an ellipse: the possible 
locations of B1 are therefore the intersection of a line 
and an ellipse. 

2.2.3 3-type 3 mechanism 

This mechanism is described in figure 6: the posture of 
the robot can be computed using the length r of link 
AIBl  and 8 the angle between link AlBl and the x 
axis. The angles ai denote constant angles between the 
platform and the prismatic joint axis. The coordinates 
of Bz and the components of the unit vector v2 of the 
axis of the prismatic joint (link 2) are: 

B2 = { rs inO+csin(O+a1) v 2 = {  sin(8 + crz )  

Similarly the coordinates of B3 and the components 
of the unit vector v3 of the axis of the prismatic joint 
(link 3) are: 

cos(e + cr2 )  rcos8  + C C O S ( ~  + cy1) 

cos e + a cos(o + c y 3 )  cos(8 + a3) 
sin(8 + a3) 

J \ 

Figure 6:  The 3-type 3 mechanism 

We may now write two equations which indicate that 
the vectors ( A 3 B 3 , ~ 3 )  have the same direction as 
have the vectors (A2B2, v2): 

( r  cos 6 + c cos(8 + cy1) - U) sin(8 + a ~ )  - 

( r  sin 8 + csin(8 + a1)) cos(8 + 0 2 )  = 0 (3) 
(T  cos8 + ccos(8 + a3) - ul )  sin(8 + aq) - 
( r  sin 8 + c sin(8 + a1) - w1) cos(8 + aq) = 0 (4) 

Using the first equation we can compute r as a func- 
tion of 6 and substitute its value in the second equa- 
tion. This leads to  an equation of the type A cos(8) + 
B sin(8) = C which admit two solutions in 8. As there 
is an unique value of r for a given 8 the direct kine- 
matics of this mechanism may have two solutions. 
2.3 Manipulator with two identical chains 

In this section we will assume that the robot has 
only two identical kinematics chains whose equivalent 
type is either 1, 2 or 3. 

2.3.1 

We assume that link 1, 2 are of type 1 and link 3 of type 
2. Point B3 lie therefore both on the coupler curve of 
the four bar mechanism A ~ B ~ B S B ~ A ~  and on the line 
of the type 2 chain. Consequently there may be up to  
6 real intersection points and the direct kinematics will 
have at most 6 solutions. The mechanism is described 
in figure 7. Using the notation of the figure we may 
write two equations stating that points B1, Bz are at 
distance T I ,  rz from A I ,  Az: 

2-type 1 and 1 type 2 

z2 + y 2  = r: (5) 
(z + ccos4 - u ) ~  + (y + csin4)' = ri  (6) 

Then we write that point Bg should be on the line 
going through As(u1, w1)  with unit vector v('uz, wy): 

(z + a cos(4 + a )  - ul)wY - (y + a sin(++ a )  - q ) w Z  = O 
(7)  
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crank A I B ~ B ~ B z I A ~ .  The coupler curve described by 
B2 is a sextic with full circularity [3] meaning that the 
number of real intersection points of the coupler curve 
with the circle described by B:! when it rotates around 
A2 is at most 6. Every intersection point defines a 
solution for the (direct kinematics of the mechanism. 
Therefore we have effectively computed a minimal or- 
der polynomial. 

2.3.3 

This mechanism is presented in figure 9. Here we as- 
%type 21 and 1 type 1 

Figure 7: The 2-type 1-1-type 2 mechanism 

Equations (6)-(5) and (7) are linear in z ,y .  Their 
values are computed and substituted in equation ( 5 ) ,  
leading to an equation in cos 4, sin 4. A.fter substitu- 
tion of the sine and cosine by their values as function 
of T = tan(4/2) we get a 6-order polynomial in T ,  
which enables to compute the solution of the direct 
kinematics. 

2.3.2 

This mechanism is presented in figure 8. In that c,ase 

2-type 1 and 1 type 3 

AI o i  

Figure 8: The 2-type 1-1-type 3 mechanism 

equations (5),(6) are still valid but the third equation 
is obtained by writing that for given x,y,+ the line 
going through Bs, whose axis is the prismatic joint 
axis, meet As: 

(x + acos(q5 + a )  - U I )  sin(4 + a + a3) - 
(y + asin($ + a )  - VI) cos(4 + a  + ~ 3 )  = O(8)  

where a3 is the angle between B1 Bs and the prismatic 
joint axis. Equations (6)-(5) and (8) are still linear in 
2, y. Using the same process as in the previous section 
we get a 6-order polynomial in T ,  which enables to 
compute the solution of the direct kinematics. A geo- 
metric interpretation is to consider the inverted slider 

t Y  

Figure 9: The 2-type 2-1-type 1 mechanism 

sume that the chains 1 and 2 are of type 2 and the 
chain 3 of type 1. We have seen that B3 as part of the 
mechanism A1B1.B3 B2A2 desciribes an ellipse. The di- 
rect kinematics solution are obtained when B3 belongs 
also to  the circle centered in AB.  Consequently the 
maximum number of solution is 4. 

Using the notation of figure 5 we will write first 
that B2 should belong to the line going through A2 
with unit vector v(vC, vy): 

(9) (A i- rcos(8) -- z,)vY - (rsin(8) - ya)vz = 0 

Then we write thizt point B3 should be at distance 7-3 
from As: 

(A + s +a) -- z b ) 2  + (s sin(8 +a) - = T$ (10) 

Using equation (!J) we compute the value of X and 
sulbstitute this value in equation (10) which become 
an equation in sine and cosine of 8. Using the classical 
half-angle transformation we get a 4-order polynomial 
in T = tan(8/2).  

2.3.4 

This mechanism is presented in figure 10. Equation (9) 
is still valid. A second equation is obtained by writing 
that the line going through A3 with direction defined 
by the axis of the prismatic joint of chain 3 has to meet 
As: 

2-type 2 and 1 type 3 

(A + s cos(8 + a )  - zb) sin(8 + a + ag) - 
(s sin(0 + a )  - yb) cos(r9 + a + a s )  = 0 (11) 
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Figure 10: The 2-type 2-1-type 3 mechanism 

where a3 is the angle between BIB3 and the pris- 
matic joint axis. Using equation (9) we compute the 
value of A and substitute the result in equation (11) 
which become an equation in sine and cosine of 8. Us- 
ing the classical half-angle transformation we get a 
4-order polynomial in T = tan(O/2). A geometrical 
interpretation can be given if we consider the mech- 
anism A ~ B I B ~ B ~ A ~ :  the coupler curve described by 
this mechanism is of degree 4. The solution of the di- 
rect kinematics are obtained by intersecting the cou- 
pler curve with the line described by B2 as member of 
chain 2: consequently there is at most 4 intersection 
points. 

2.3.5 

This mechanism is presented in figure 11. If we con- 

2-type 3 and 1 type 1 

Figure 11: The 2-type 3-1-type 1 mechanism 

sider the mechanism A I B ~ B ~ B ~ A ~  it can be shown 
that B3 describes a coupler curve of order 4 with full 
circularity (i.e. 2). Consequently as the solutions of 
the direct kinematics problem for B3 are obtained by 
intersection this curve with the circle centered at A3 
the number of real intersection points will be at  most 
4. 

Using the notation of figure 6 we write first that A2 
belongs to the line coming from the platform: 

( rcose  + ccos(8 + al) - u)sin(8 + a2)  - 

( r s in6  + csin(8 + al)) cos(@ + ag) = 0 (12) 

Then we write that point B3 should be at distance 1-3 
from A3: 

(Tcos8 + acos(8 + a3)  - + 
(T sin 8 + a sin(8 + a3) - = ri (13) 

We use the linear equation (12) to compute r which is 
then back substituted in equation (13), now an equa- 
tion in the sine and cosine of 8. We get then a fourth- 
order polynomial in T = tan(f?/2). 

2.3.6 

This mechanism is presented in figure 12. As the pos- 

2-type 3 and 1 type 2 

Figure 12: The 2-type 3-1-type 2 mechanism 

sible positions for B3 are obtained as the intersection 
of the coupler curve of A1 B1 B3BgA2 with the line go- 
ing through A3 from chain 3 we will clearly get at most 
four intersection points. 

Equation (12) is still valid. We write now that point 
B3 belongs to the line: 

( r  cos8 + acos(8 + a3)  - ul)uy - 
( r s in8  + asin(0 + a3)  - w1)2r, = 0 (14) 

We use the linear equation (12) to  compute r which is 
then back substituted in equation (13), now an equa- 
tion in the sine and cosine of 8. We get then a fourth- 
order polynomial in T = tan(e/2) .  
2.4 Type 1-2-3 

The last case is obtained when all three chains are 
of different, type (figure 13). The coupler curve of the 
A I B ~ B ~ B ~ A ~  mechanism is a sextic with full circu- 
larity. The possible positions for B3 are obtained as 
the intersection of the coupler curve with the line from 
chain 3 going through As:  we will clearly get at most 
six intersection points. 

To compute the solutions we write first that B1 is 
at  distance 7-1 from AI: 

z2 + y2 = rt (15) 
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Figure 13: The type 1-2-3 mechanism 

Then we write that point B3 should he on the line 
going through A 3 ( ~ 1 ,  q) with unit vect,or v(v2, vy,): 

(x + a cos(4+ a )  - u1)vY - (y + a sin(4+ a )  - v1)vz = 0 

Finally we write that the vectors (AzB;), v2) have the 
same direction: 

(x+ccos+-u) sin(++al)-(y+csin +) cos(++a1) = 0 

Equations (16),(17) are linear in z,y, after solving 
this system their values are back substituted in equa- 
tion (15). This equation is now in the sine and co- 
sine of 4. We get then a sixth-order polynomial in 
T = tan(+/2). 

3 Summary 
Table 3 summarizes the results by giving the num- 

ber of solution of the forward kinematics for all the 
possible combinations of the three basic chains. 

l(16) 

p 7 )  

Table 3: Summary of the maximum number of solu- 
tions for all the possible combinations 

4 Conclusion 
We have examined all the possible planar fully par- 

allel robots and have shown that from the direct kiine- 
matics view point all the possible kinematics chains 
can be reduced to  a member of a set of three bizsic 
chains. Then the direct kinematics has been solved 
for all the possible combinations of these basic chains. 
Consequently we have obtained the solution of the for- 
ward kinematics for all possible planar parallel robots. 
With this approach it will be possible to  study m.ore 
in details all the other features of this type of robots. 
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