R Package to Interact and Trade with Uniswap Platform and Exploration of Uniswap data from GraphQL.
Install Using
devtools::install_github("OmniacsDAO/uniswappeR")
The package has 3 Functionalities
- Trade : To query prices and make trades on Uniswap from R console
- Pull Data : To pull all types of data from Uniswap GraphQL to explore yourself
- Explore Data : To Analyse and explore the uniswap data
Our uniswappeR
R package includes the functionality to trade and query prices from the Uniswap Platform. To interact with the Uniswap Platform
we need to configure the environment and then we can use the functions to make trades on the uniswap platform and query prices.
View the video walkthrough on how to conduct trades through UniswappeR here.
- Install the reticulate package using
library(reticulate)
- Use python3, You can use
py_discover_config()
to figure the path for python3use_python("/usr/local/bin/python3")
- Create a Virtual Environment to keep the backend sandboxed using
virtualenv_create("uniswappeR-env")
- Install uniswap-python package using
virtualenv_install(envname="uniswappeR-env",packages=c("uniswap-python"))
- Use the Virtual Environment using
use_virtualenv("uniswappeR-env",required=TRUE)
- Extract checksum function from Web3 module
Web3_checksum <- import("web3",convert=FALSE)$Web3$to_checksum_address
library(reticulate)
library(uniswappeR)
use_virtualenv("uniswappeR-env",required=TRUE)
Web3_checksum <- import("web3",convert=FALSE)$Web3$to_checksum_address
set_infura_node("https://mainnet.infura.io/v3/XXXXXXXXXXXXXXXXXXX")
3. Setup a uniswap session using your address and private key. Choose UniswapV2 or UniswapV3 by supplying the version as 2 or 3 respectively.
u_w <- uniswap_session(user_add = "**", pvt_key = "***", version = 3)
-
We would use Uniswap(UNI)/ETH pair to query on
- UNI Token Address
t_a <- Web3_checksum("0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
- UNI Token Decimals
t_d <- 18
- UNI Token Address
-
We would use Uniswap(UNI)/ DAI Stablecoin pair to query for Token to Token swap
- UNI Token Address
t1_a <- Web3_checksum("0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
- UNI Token Decimals
t1_d <- 18
- DAI Token Address
t2_a <- Web3_checksum("0x6b175474e89094c44da98b954eedeac495271d0f")
- DAI Token Decimals
t2_d <- 18
- UNI Token Address
-
Check Your ETH Balance
check_eth_balance(u_w)
-
Check Your Uniswap (UNI) Token Balance
check_tok_balance(t_a,t_d,u_w)
-
How much UNI Token you would get for .5 ETH, When you Swap ETH for UNI
- Ethereum Quantity
e_q <- .5
check_eth.to.tok_eth.fix(t_a,t_d,e_q,u_w)
- Ethereum Quantity
-
How much ETH you need to get 2 UNI Tokens, When you Swap ETH for UNI
- UNI Tokens Quantity
t_q <- 2
check_eth.to.tok_tok.fix(t_a,t_d,t_q,u_w)
- UNI Tokens Quantity
-
How much ETH you would get for 2 UNI Tokens, When you Swap UNI for ETH
- Ethereum Quantity
t_q <- 2
check_tok.to.eth_tok.fix(t_a,t_d,t_q,u_w)
- Ethereum Quantity
-
How much UNI Token you need to get .5 ETH Tokens, When you Swap UNI for ETH
- Ethereum Quantity
e_q <- .5
check_tok.to.eth_eth.fix(t_a,t_d,e_q,u_w)
- Ethereum Quantity
-
How much DAI Token you would get for 2 UNI, When you Swap UNI for DAI (Uses UNI->ETH->DAI Route)
- UNI Quantity
t1_q <- 2
check_tok1.to.tok2_tok1.fix(t1_a,t1_d,t2_a,t2_d,t1_q,u_w)
- UNI Quantity
-
How much UNI Token you would need to get 50 DAI, When you Swap UNI for DAI (Uses UNI->ETH->DAI Route)
- UNI Quantity
t2_q <- 50
check_tok1.to.tok2_tok2.fix(t1_a,t1_d,t2_a,t2_d,t2_q,u_w)
- UNI Quantity
-
We would use Uniswap(UNI)/ETH pair to make swaps
- UNI Token Address
t_a <- Web3_checksum("0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
- UNI Token Decimals
t_d <- 18
- UNI Token Address
-
We would use Uniswap(UNI)/ DAI Stablecoin pair for Token to Token swap
- UNI Token Address
t1_a <- Web3_checksum("0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
- UNI Token Decimals
t1_d <- 18
- DAI Token Address
t2_a <- Web3_checksum("0x6b175474e89094c44da98b954eedeac495271d0f")
- DAI Token Decimals
t2_d <- 18
- UNI Token Address
-
Swap .5 ETH for UNI Tokens
- Ethereum Quantity
e_q <- .5
trade_eth.to.tok_eth.fix(t_a,t_d,e_q,u_w)
- Ethereum Quantity
-
Swap as much ETH required to get 2 UNI Tokens
- UNI Quantity
t_q <- .5
trade_eth.to.tok_tok.fix(t_a,t_d,t_q,u_w)
- UNI Quantity
-
Swap 2 UNI Tokens for ETH
- UNI Quantity
t_q <- 2
trade_tok.to.eth_tok.fix(t_a,t_d,t_q,u_w)
- UNI Quantity
-
Swap as much UNI Tokens required to get .5 ETH
- Ethereum Quantity
e_q <- .5
trade_tok.to.eth_eth.fix(t_a,t_d,e_q,u_w)
- Ethereum Quantity
-
Swap 2 UNI Tokens for DAI Tokens
- UNI Quantity
t1_q <- 2
trade_tok1.to.tok2_tok1.fix(t1_a,t1_d,t2_a,t2_d,t1_q,u_w)
- UNI Quantity
-
Swap as much UNI Tokens required to get 20 DAI Tokens
- DAI Quantity
t2_q <- 20
trade_tok1.to.tok2_tok2.fix(t1_a,t1_d,t2_a,t2_d,t2_q,u_w)
- DAI Quantity
Our uniswappeR
R package contains the codebase that abstracts away the GraphQL layer of querying for uniswap data into a user-friendly R package.
View the video walkthrough on how to pull data into R using UniswappeR.
library(uniswappeR)
factory_stats_v2()
factory_stats_v3()
uniswap_stats_hist_v2()
uniswap_stats_hist_v3()
token_stats_v2(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
token_stats_v3(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
token_stats_hist_v2(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
token_stats_hist_v3(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
token_pair_map_v2(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
token_pair_map_v3(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
pairs_all_v2()
pairs_all_v3()
pair_stats_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
pair_stats_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
pair_stats_hist_hourly_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
pair_stats_hist_hourly_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
pair_stats_hist_daily_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
pair_stats_hist_daily_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
pair_liq_positions_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
pair_liq_positions_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
pair_liq_positions_hist_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
pair_liq_positions_hist_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
pair_mint_txs_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
pair_mint_txs_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
pair_burn_txs_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
pair_burn_txs_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
pair_swap_txs_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
pair_swap_txs_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
user_lps_v2(user_address = "0x2502f65d77ca13f183850b5f9272270454094a08")
user_lps_v3(user_address = "0xF1c206dd83ee2b8E6Ea675Cf827C93c58486B972")
user_hist_lps_v2(user_address = "0x2502f65d77ca13f183850b5f9272270454094a08")
user_hist_lps_v3(user_address = "0xF1c206dd83ee2b8E6Ea675Cf827C93c58486B972")
user_swaps_v2(user_address = "0xcd8aa390e6eabbd2169b3580c1f7ce854675fd03")
user_swaps_v3(user_address = "0x431B5A84aCC1297Eda88259f300262F1bc3A74f3")
user_mints_v2(user_address = "0xcd8aa390e6eabbd2169b3580c1f7ce854675fd03")
user_mints_v3(user_address = "0x431B5A84aCC1297Eda88259f300262F1bc3A74f3")
user_burns_v2(user_address = "0xcd8aa390e6eabbd2169b3580c1f7ce854675fd03")
user_burns_v3(user_address = "0x431B5A84aCC1297Eda88259f300262F1bc3A74f3")
data_to_export <- token_stats_hist_v2(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
path_to_export <- "~/Desktop/uniswappeR_export.csv"
export_data(data_to_export,path_to_export)
Our uniswappeR
R package includes a number of high level functions for interacting and visualising the data from uniswap:
The below code snippet provides a forecast using geometric Brownian motion its tunable parameters are the Pair's Address, forecast window, max % increase that can occur in a single day, and number of simulations, respectively. The resulting output is a data frame with the liquidity range forecast.
liquidity_range_all_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801",days=30,cap=10,sims=1000)
This provides the suggested range for the liquidity.
liquidity_range_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
Allows for the visualisation of the GBM process for a Pair's address. Additionally ggplot
pipelines can be added to modify the visualisation.
liquidity_range_visualization("0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
This section introduces various visualisations within uniswappeR
.
This allows the user to visualise various growth metrics of the UniswapV2 Platform. From this, insights about daily volume, liquidity, and transaction counts can be analyzed. For example, we can infer that the amount of transactions overtime is steadily increasing, and that there is not a clear, discernible pattern for the daily volume nor liquidity.
vis_uniswap_stats_hist_v2()
This allows the user to visualise various growth metrics of the UniswapV3 Platform. From this, insights about daily volume, liquidity, and transaction counts can be analyzed. This visual quickly allows us to see that sometime around March 2022, a large spike occured for the daily volume. This this enables the curious user to explore in further detail the events that occurred that day.
vis_uniswap_stats_hist_v3()
This allows the user to visualise various growth metrics of a given token in UniswapV2. Similar to the other historical stats functions, this allows the user to see past trends for a specific token on UniswapV2. From this we can quickly notice a downward trend in token liquidity signaling a rush on that token.
vis_token_stats_hist_v2(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
This allows the user to visualise various growth metrics of a given token in UniswapV3. Similar to the other historical stats functions, this allows the user to see past trends for a specific token on UniswapV3. One quick insight we can gather is that there appears to be a progressively less popularity in this token's trade volume which is allow, perhaps, correlating with the token's price.
vis_token_stats_hist_v3(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
The below visual provides an indication of how often a given token is in a pair where token0 and token1 are given by the sorting order.
vis_token_pair_map_v2(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
The below visual provides an indication of how often a given token is in a pair where token0 and token1 are given by the sorting order.
vis_token_pair_map_v3(token_address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984")
The following provides a vasual of various growth metrics of a given pair in UniswapV2. In this example the pair_address is UNI to DAI.
vis_pair_stats_hist_daily_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
The following provides a vasual of various growth metrics of a given pair in UniswapV3.
vis_pair_stats_hist_daily_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
Allows for a user to visualise liquidity positions spread in a given pair via a histogram. One insight we can gather from this is that one address is providing about 1450 tokens to the LP whereas most others are contributing substaintially less.
vis_pair_liq_positions_v2(pair_address = "0xf00e80f0de9aea0b33aa229a4014572777e422ee")
vis_pair_liq_positions_v3(pair_address = "0x1d42064fc4beb5f8aaf85f4617ae8b3b5b8bd801")
Allows a user to retrieve all the swaps data for a given address or addresses. This allows a user to readily recognize their level of activity.
addresses <- c("0x2e3381202988d535e8185e7089f633f7c9998e83", "0x4d9c274ADF71e4201B4aB1f28BF05D44eE4bA261")
swap_data <- swaps(addresses)
swap_visualizations(swap_data)
plot_to_export <- vis_uniswap_stats_hist_v2()
path_to_export <- "~/Desktop/uniswappeR_plot_export.png"
export_plot(plot_to_export,path_to_export)
- Added UniswapV3 data pull support for pending 'Liquidity Positions'
- Added UniswapV3 data pull support for all stats, except 'Liquidity Positions'
- Added trading functionality for V3
- Updated the ReadMe to reflect the most recent changes
Omni Analytics Group is an incorporated group of passionate technologists who help others use data science to change the world. Our practice of data science leads us into many exciting areas where we enthusiastically apply our machine learning, artificial intelligence and analysis skills. Our flavor for this month, the blockchain! To learn more about what we do or just to have fun, join us over on Twitter.