-
Notifications
You must be signed in to change notification settings - Fork 601
/
Copy pathP01_Introduction.py
83 lines (62 loc) · 2.22 KB
/
P01_Introduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Author: OMKAR PATHAK
# NumPy (Numeric Python) is a Python package used for building multi dimensional arrays and performing
# various operations
# In this program we will walk through various concepts and see available functions in the NumPy package.
# For installing: pip3 install numpy
import numpy as np
# we have a function arange() which makes an array of the specified dimension. Example:
myArray = np.arange(20)
print(myArray) # [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
# an array from 10 to 20
myArray = np.arange(10, 20) # [10 11 12 13 14 15 16 17 18 19]
print(myArray)
# an array from 10 to 20 with 2 steps
myArray = np.arange(10, 20, 2)
print(myArray) # [10 12 14 16 18]
# reshape() helps to reshape our NumPy array
myArray = np.arange(20)
# syntax: reshape(number_of_rows, number_of_columns)
myArray = myArray.reshape(4, 5)
print(myArray)
# [[ 0 1 2 3 4]
# [ 5 6 7 8 9]
# [10 11 12 13 14]
# [15 16 17 18 19]]
myArray = myArray.reshape(10, 2)
print(myArray)
# [[ 0 1]
# [ 2 3]
# [ 4 5]
# [ 6 7]
# [ 8 9]
# [10 11]
# [12 13]
# [14 15]
# [16 17]
# [18 19]]
# shape returns the shape of the array. The length of shape tuple is called as rank (or dimension)
print(myArray.shape) # (10, 2)
# ndim returns the dimension (rank) of the array
print(myArray.ndim) # 2
# size returns the total number of elements in the array
print(myArray.size) # 20
# to check the data we have dtype.
print(myArray.dtype) # int64
# zeros creates an array will all zeros
myArray = np.zeros((3, 4))
print(myArray)
# [[ 0. 0. 0. 0.]
# [ 0. 0. 0. 0.]
# [ 0. 0. 0. 0.]]
# ones creates an array with all ones
myArray = np.ones((3, 4))
print(myArray)
# [[ 1. 1. 1. 1.]
# [ 1. 1. 1. 1.]
# [ 1. 1. 1. 1.]]
# numpy random module helps to initialize array with random values
myArray = np.random.rand(3, 4)
print(myArray)
# [[ 0.54808903 0.08750717 0.23886267 0.93589283]
# [ 0.90750146 0.31197039 0.54013725 0.91092763]
# [ 0.38827674 0.04647878 0.15997665 0.94909537]]