-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy patheye_detection_3.py
125 lines (74 loc) · 2.81 KB
/
eye_detection_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import cv2
import numpy as np
import glob
import pickle
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
eye_num_2=0
def transform_image(img,threshold):
retval, threshold = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)
opening = cv2.morphologyEx(threshold, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, kernel)
open_close = cv2.bitwise_or(opening, closing, mask = None)
return open_close,opening,closing
imgs = []
label=0
final_output = []
lables = []
'''
for filepath in glob.iglob('test/*'):
if filepath[-1] == 'g':
img = cv2.imread(filepath)
img=cv2.resize(img,(200,150))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgs.append([img,filepath])
print(filepath)
'''
#'''
for filepath in glob.iglob('casia_interval/*'):
num_in_folder=0
if label>=500:
for filefilepath in glob.iglob(filepath+'/L/*'):
if filefilepath[-1] == 'g':
img = cv2.imread(filefilepath)
img=cv2.resize(img,(400,300))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgs.append([img,num_in_folder,label,img])
print(filefilepath)
num_in_folder = num_in_folder+1
#'''
for filefilepath in glob.iglob(filepath+'/R/*'):
if filefilepath[-1] == 'g':
img = cv2.imread(filefilepath)
img=cv2.resize(img,(400,300))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgs.append([img,num_in_folder,label,img])
print(filefilepath)
num_in_folder = num_in_folder+1
#'''
label=label+1
#print(filefilepath)
#'''
eyes_num=0
for i,j,L,c in imgs:
# cv2.imshow('dd',i)
eyes = eye_cascade.detectMultiScale(i, 1.01, 0)
if len(eyes)>1:
eyes_num = eyes_num+1
maxium_area = -3
for (ex,ey,ew,eh) in eyes:
area = ew*eh
if area>maxium_area:
maxium_area = area
maxium_width=ew
point_x=ex
point_y=ey
maxium_height = eh
cv2.rectangle(i,(point_x,point_y),(point_x+maxium_width,+maxium_height),(255,0,0),2)
cv2.imwrite('paper_2/eyes/'+str(L)+'.'+str(j)+'.jpg',i)
#cv2.imwrite('paper/threshold/'+str(L)+'.'+str(j)+'.jpg',working_img)
#roi_gray = gray[y:y+h, x:x+w]
#roi_gray = gray[ey:ey+eh, ex:ex+ew]
#roi_color = img[ey:ey+eh, ex:ex+ew]
print("total_eyes_found = ",eyes_num)
print("total_eyes_found 2 = ",eye_num_2)
print("total images number ",len(imgs))