-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
84 lines (62 loc) · 2.68 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import ast
import time # Add time module
import uuid # Add uuid module
from PIL import Image
import torch
import torchvision.transforms as transforms
import torchvision.models as models
from flask import Flask, render_template, request, jsonify
app = Flask(__name__)
# Configure a folder where uploaded files will be stored
app.config['UPLOAD_FOLDER'] = 'uploads'
models_dict = {'resnet': models.resnet18(pretrained=True), 'alexnet': models.alexnet(pretrained=True),
'vgg': models.vgg16(pretrained=True)}
with open('imagenet-dictionary/imagenet1000_clsid_to_human.txt') as imagenet_classes_file:
imagenet_classes_dict = ast.literal_eval(imagenet_classes_file.read())
def classify_image(img_path, model_name):
img_pil = Image.open(img_path)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
img_tensor = preprocess(img_pil)
img_tensor.unsqueeze_(0)
model = models_dict[model_name]
model = model.eval()
with torch.no_grad():
output = model(img_tensor)
pred_idx = output.data.numpy().argmax()
return imagenet_classes_dict[pred_idx]
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'jpg', 'jpeg', 'png'}
@app.route('/', methods=['GET', 'POST'])
def classify_dog_image():
if request.method == 'POST':
if 'clear' in request.form and request.form['clear'] == 'true':
# Clear the uploaded image and result
return jsonify({'cleared': True})
# Check if a file was submitted
if 'file' not in request.files:
return jsonify({'error': 'No file part'})
file = request.files['file']
# Check if the file is empty
if file.filename == '':
return jsonify({'error': 'No selected file'})
# Check if the file is allowed
if not allowed_file(file.filename):
return jsonify({'error': 'Invalid file type'})
# Generate a unique filename based on timestamp and uuid
unique_filename = f"{int(time.time())}_{str(uuid.uuid4())[:8]}_{file.filename}"
file_path = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
file.save(file_path)
# Get the selected model
model_name = request.form['model']
# Classify the uploaded image
result = classify_image(file_path, model_name)
return jsonify({'result': result})
return render_template('index.html', result=None)
if __name__ == "__main__":
app.run(host='0.0.0.0', port=8080, debug=True)