-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathvideo_processing_head_pose.py
157 lines (123 loc) · 4.75 KB
/
video_processing_head_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import traceback
import cv2
import numpy as np
import sys
import argparse
from datetime import datetime
import os
# Head pose estimation
# https://github.com/yinguobing/head-pose-estimation
# Install steps:
# cd ..
# git clone https://github.com/yinguobing/head-pose-estimation
# Status: working
pathToProject='../head-pose-estimation/'
sys.path.insert(0, pathToProject)
os.chdir(pathToProject)
from multiprocessing import Process, Queue
from mark_detector import MarkDetector
from os_detector import detect_os
from pose_estimator import PoseEstimator
from stabilizer import Stabilizer
# print("OpenCV version: {}".format(cv2.__version__))
# multiprocessing may not work on Windows and macOS, check OS for safety.
detect_os()
CNN_INPUT_SIZE = 128
mark_detector = None
box_process = None
img_queue = None
box_queue = None
pose_estimator = None
pose_stabilizers = None
tm = None
width=-1
height=-1
def init_model(transform):
global mark_detector,box_process,img_queue,box_queue,pose_estimator,pose_stabilizers, tm
# Introduce mark_detector to detect landmarks.
mark_detector = MarkDetector()
# Setup process and queues for multiprocessing.
img_queue = Queue()
box_queue = Queue()
# img_queue.put(sample_frame)
box_process = Process(target=get_face, args=(
mark_detector, img_queue, box_queue,))
box_process.start()
# Introduce scalar stabilizers for pose.
pose_stabilizers = [Stabilizer(
state_num=2,
measure_num=1,
cov_process=0.1,
cov_measure=0.1) for _ in range(6)]
tm = cv2.TickMeter()
return None, None
def process_image(transform,processing_model,img):
global mark_detector,box_process,img_queue,box_queue,pose_estimator,pose_stabilizers,tm, width, height
tracks = []
try:
frame = img
h,w,d = frame.shape
if pose_estimator is None or w!=width or h!=height:
# sample_frame = frame
# img_queue.put(sample_frame)
# Introduce pose estimator to solve pose. Get one frame to setup the
# estimator according to the image size.
height, width = h, w
# (height, width) = (1062 , 485)
# (height, width) = (720 , 1280)
pose_estimator = PoseEstimator(img_size=(height, width))
# Feed frame to image queue.
img_queue.put(frame)
# Get face from box queue.
facebox = box_queue.get()
if facebox is not None:
# Detect landmarks from image of 128x128.
face_img = frame[facebox[1]: facebox[3],
facebox[0]: facebox[2]]
face_img = cv2.resize(face_img, (CNN_INPUT_SIZE, CNN_INPUT_SIZE))
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
tm.start()
marks = mark_detector.detect_marks(face_img)
tm.stop()
# Convert the marks locations from local CNN to global image.
marks *= (facebox[2] - facebox[0])
marks[:, 0] += facebox[0]
marks[:, 1] += facebox[1]
# Uncomment following line to show raw marks.
# mark_detector.draw_marks(frame, marks, color=(0, 255, 0))
# Uncomment following line to show facebox.
# mark_detector.draw_box(frame, [facebox])
# Try pose estimation with 68 points.
pose = pose_estimator.solve_pose_by_68_points(marks)
# Stabilize the pose.
steady_pose = []
pose_np = np.array(pose).flatten()
for value, ps_stb in zip(pose_np, pose_stabilizers):
ps_stb.update([value])
steady_pose.append(ps_stb.state[0])
steady_pose = np.reshape(steady_pose, (-1, 3))
# Uncomment following line to draw pose annotation on frame.
# pose_estimator.draw_annotation_box(
# frame, pose[0], pose[1], color=(255, 128, 128))
# Uncomment following line to draw stabile pose annotation on frame.
pose_estimator.draw_annotation_box(
frame, steady_pose[0], steady_pose[1], color=(128, 255, 128))
# Uncomment following line to draw head axes on frame.
# pose_estimator.draw_axes(frame, steady_pose[0], steady_pose[1])
img = frame
except Exception as e:
track = traceback.format_exc()
print(track)
print("HandPose Exception",e)
pass
return tracks,img
def onClose():
global box_process
box_process.terminate()
box_process.join()
def get_face(detector, img_queue, box_queue):
"""Get face from image queue. This function is used for multiprocessing"""
while True:
image = img_queue.get()
box = detector.extract_cnn_facebox(image)
box_queue.put(box)