-
Notifications
You must be signed in to change notification settings - Fork 11
/
test.py
556 lines (500 loc) · 23.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import json
import os
import torch
import random
from diffusers import AutoencoderKL, PNDMScheduler, UNet2DConditionModel
from third_party.unet_2d_condition import UNet2DConditionModel as UNet2DConditionModel_GLIGEN
from PIL import Image
from tqdm.auto import tqdm
from typing import List, Optional, Union
from torchvision.utils import save_image
import inspect
from transformers import CLIPTokenizer, CLIPTextModel
import numpy as np
from utils import numpy_to_pil
from replace_clip_embedding import replace_clip_embeddings
import cv2
from einops import rearrange
import open_clip
from torchvision import transforms
from segment_anything import build_sam, SamPredictor
from third_party.localization_loss import unet_store_cross_attention_scores
from modules import MLP, GroundingNet
import argparse
unet_config = {
"act_fn": 'silu',
"attention_head_dim": [
5,
10,
20,
20
],
"block_out_channels": [
320,
640,
1280,
1280
],
"center_input_sample": False,
"cross_attention_dim": 1024,
"down_block_types": [
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D"
],
"downsample_padding": 1,
"dual_cross_attention": False,
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 5,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_class_embeds": None,
"only_cross_attention": False,
"out_channels": 4,
"sample_size": 64,
"up_block_types": [
"UpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D"
],
"use_linear_projection": True}
MAX_NUMBER_OBJECTS = 2
class StableDiffusionTest():
def __init__(self, model_path, unet_path, clip_text_path, mlp_path, proj_path, open_clip_path, sam_path, device):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(
model_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(
os.path.join(model_path, "text_encoder")).to(device)
self.text_encoder.load_state_dict(
torch.load(clip_text_path), strict=True)
self.vae = AutoencoderKL.from_pretrained(
model_path, subfolder="vae").to(device)
self.unet = UNet2DConditionModel_GLIGEN(**unet_config).to(device)
self.unet.load_state_dict(torch.load(unet_path), strict=True)
self.mlp = MLP(1024, 1024, 1024, use_residual=False)
self.mlp.load_state_dict(torch.load(mlp_path), strict=True)
self.proj = GroundingNet(1280, 1024, 1024, use_bbox=False)
self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))
self.unet_ori = UNet2DConditionModel.from_pretrained(
model_path, subfolder="unet").to(device)
self.test_scheduler = PNDMScheduler.from_pretrained(
model_path, subfolder="scheduler")
self.vae.eval()
self.unet.eval()
self.unet_ori.eval()
self.model_clip, _, self.preprocess = open_clip.create_model_and_transforms(
"ViT-H-14", pretrained=open_clip_path)
self.model_clip.visual.output_tokens = True
self.image_transforms = transforms.Compose(
[
transforms.Resize(
64, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.RandomCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean=0.5, std=0.5)
]
)
self.sam_model = build_sam(checkpoint=sam_path)
self.sam_model.to(device=device)
self.predictor = SamPredictor(self.sam_model)
self.cross_attention_scores = {}
self.unet = unet_store_cross_attention_scores(
self.unet, self.cross_attention_scores, 5
)
self.image_infos = {}
replace_clip_embeddings(self.text_encoder, self.image_infos)
def encode_images_mask_old(self, device, images):
masks = []
bboxes = []
for image in images:
width_x = 512
width_y = 512
size = 350
mask_img = torch.ones((1, 1, width_x, width_y))
if isinstance(image, list):
mask_img[:, :, 100:400, 50:200] = 0
mask_img[:, :, 100:400, 300:500] = 0
bbox = torch.tensor(
([[50, 100, 200, 400], [300, 100, 500, 400]]))/512
bboxes.append(bbox)
else:
seed1 = random.uniform(0.6, 0.8)
seed2 = random.uniform(0.6, 0.8)
chars_w, chars_h = int(size*seed1), int(size*seed2)
chars_x = random.randint(10, 200)
chars_y = random.randint(10, 200)
mask_img[:, :, chars_y: chars_y + chars_h,
chars_x: chars_x + chars_w] = 0
bbox = torch.tensor(
([[chars_x, chars_y, chars_x + chars_w, chars_y + chars_h], [0, 0, 0, 0]]))/512
bboxes.append(bbox)
mask_img_resize = transforms.Resize(
(64, 64), interpolation=transforms.InterpolationMode.NEAREST)(mask_img)
masks.append(mask_img_resize)
return torch.cat(masks).to(device), torch.stack(bboxes).to(device)
def encode_images_test(self, images, bboxes, device):
image_tensor = torch.empty(
len(images), MAX_NUMBER_OBJECTS, 3, 224, 224, device=device)
image_token_idx_mask = torch.zeros(
len(images), MAX_NUMBER_OBJECTS, 1, 1, dtype=bool, device=device)
for i in range(len(images)):
if isinstance(images[i], list):
image_token_idx_mask[i] = True
for j in range(len(images[i])):
image_tensor[i][j] = self.preprocess(images[i][j])
else:
image_token_idx_mask[i, 0] = True
image_tensor[i][0] = self.preprocess(images[i])
image_embeddings_cls, image_embeddings = self.model_clip.to(
device).encode_image(image_tensor.view(len(images)*MAX_NUMBER_OBJECTS, 3, 224, 224))
image_embeddings_cls = self.mlp.to(device)(image_embeddings_cls)
image_embeddings = rearrange(
image_embeddings, "(b n) h d -> b n h d", n=MAX_NUMBER_OBJECTS)
image_embeddings = self.proj.to(device)(
image_embeddings, image_token_idx_mask, bboxes)
return image_embeddings_cls.view(len(images), MAX_NUMBER_OBJECTS, -1), image_embeddings
def generate_text_inputs(self, prompts, entities, device):
image_token_mask = torch.zeros(
(len(prompts), self.tokenizer.model_max_length), dtype=bool, device=device)
image_token_idx_mask = torch.zeros(
(len(prompts), MAX_NUMBER_OBJECTS), dtype=bool, device=device)
batch_text_input = []
for i, (prompt, entity) in enumerate(zip(prompts, entities)):
if isinstance(entity, list):
prompt = f"{prompt}, the {entity[0]} is sks, the {entity[1]} is sks"
image_token_idx_mask[i] = True
else:
prompt = f"{prompt}, the {entity} is sks"
image_token_idx_mask[i][0] = True
text_input_ids = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
image_token_mask[i] = (text_input_ids == 48136)
batch_text_input.append(prompt)
return batch_text_input, image_token_mask, image_token_idx_mask
@torch.no_grad()
def encode_prompt(self, prompt, entities, images, bboxes, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, token=True):
batch_size = len(prompt) if isinstance(prompt, list) else 1
prompts, image_token_mask, image_token_idx_mask = self.generate_text_inputs(
prompt, entities, device)
# self.tokenizer.pad_token_id = 49407
text_inputs = self.tokenizer(
prompts,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
# if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
# attention_mask = text_inputs.attention_mask.to(device)
# else:
# attention_mask = None
image_embeddings_cls, image_embeddings = self.encode_images_test(
images, bboxes, device)
self.image_infos["image_embedding"] = image_embeddings_cls[image_token_idx_mask]
self.image_infos["image_token_mask"] = image_token_mask
encoder_hidden_states = self.text_encoder(
text_inputs.to(device).input_ids)[0]
self.image_infos["image_embedding"] = None
self.image_infos["image_token_mask"] = None
ori_text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
# text_embeddings = self.text_encoder(
# **ori_text_input.to(device))[0]
text_embeddings = self.text_encoder(
ori_text_input.to(device).input_ids)[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.repeat(
1, num_images_per_prompt, 1)
encoder_hidden_states = encoder_hidden_states.view(
bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
self.image_infos["image_embedding"] = None
self.image_infos["image_token_mask"] = None
# uncond_embeddings = self.text_encoder(
# **uncond_input.to(device))[0]
uncond_embeddings = self.text_encoder(
uncond_input.to(device).input_ids)[0]
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(
1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(
batch_size * num_images_per_prompt, seq_len, -1)
text_embeddings = torch.cat(
[uncond_embeddings, text_embeddings])
encoder_hidden_states = torch.cat(
[encoder_hidden_states, uncond_embeddings, uncond_embeddings])
return encoder_hidden_states, text_embeddings, image_embeddings, image_embeddings_cls
def prepare_extra_step_kwargs(self, generator, eta):
accepts_eta = "eta" in set(inspect.signature(
self.test_scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.test_scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def find_main_entity(self, masks):
center = masks.shape[1]/2, masks.shape[2]/2
threshold = masks.shape[1]*masks.shape[2]*0.01
dists = np.empty(len(masks), dtype=np.float32)
for idx, mask in enumerate(masks):
coords = np.where(mask)
if len(coords[0]) < threshold:
dists[idx] = np.Inf
else:
dist = ((coords[0]-center[0])**2).mean() + \
((coords[1]-center[1])**2).mean()
dists[idx] = dist
min_channel = dists.argmin()
return min_channel
def fill_cavity_2(self, input_mask):
# slow but accurate
ret_mask = input_mask.astype("uint8")*255
contour, hier = cv2.findContours(
ret_mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
cv2.drawContours(ret_mask, [cnt], 0, 255, -1)
return ret_mask.astype("bool")
@torch.no_grad()
def log_imgs(
self,
device,
inputs,
dataset_path,
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
image_guidance_scale: float = 1.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
num_images_per_prompt: Optional[int] = 1,
**kwargs,
):
prompts = []
images = []
entitys = []
phrases = []
for t in inputs:
prompts.append(t["prompt"])
entitys.append(t["entities"])
phrases.append(t["phrases"])
if isinstance(t["phrases"], list):
tmp_images = []
for phrase in t["phrases"]:
subject_path = os.path.join(
dataset_path, phrase)
tmp_images.append(Image.open(os.path.join(
subject_path, sorted(os.listdir(subject_path))[0])))
images.append(tmp_images)
else:
subject_path = os.path.join(
dataset_path, t["phrases"])
images.append(Image.open(os.path.join(
subject_path, sorted(os.listdir(subject_path))[0])))
# latents_c2 = torch.zeros(len(images),1,64,64,device=device)
# sam
def sam(image, entity):
numpy_image = np.array(image)
self.predictor.set_image(numpy_image)
# transformed_boxes = self.predictor.transform.apply_boxes(np.asarray(bbox).reshape(1,-1), image.size)
# masks, iou_predictions, low_res_masks = self.predictor.predict(point_coords = None,point_labels = None,box = transformed_boxes,multimask_output = False,)
coord = np.array(image.size).reshape(1, 2)//2
masks, iou_predictions, low_res_masks = self.predictor.predict(
point_coords=coord, point_labels=np.array([1]))
# masks,iou_predictions, low_res_masks = self.predictor.predict()
channel = self.find_main_entity(masks)
mask = masks[channel]
mask = self.fill_cavity_2(mask)
# channel = iou_predictions.argmax()
# channel = masks.sum((-1,-2)).argmax()
# set 0
# numpy_image = mask[:, :, np.newaxis].repeat(3, axis=2)*numpy_image
# set 1
numpy_image = np.where(
mask[:, :, np.newaxis].repeat(3, axis=2), numpy_image, 255)
y, x = np.where(mask)
ret_image = Image.fromarray(
numpy_image[y.min():y.max(), x.min():x.max(), :])
return ret_image
for idx in range(len(images)):
if isinstance(images[idx], list):
for i in range(len(images[idx])):
images[idx][i] = sam(images[idx][i], phrases[idx][i])
else:
if phrases[idx] == 'coat' or phrases[idx] == 'overcoat':
continue
images[idx] = sam(images[idx], phrases[idx])
# Image.fromarray(masks.transpose(1,2,0).astype(np.uint8)).save(f"masks/{entitys[idx]}-00_mask.png")
batch_size = 1 if isinstance(prompts, str) else len(prompts)
do_classifier_free_guidance = guidance_scale > 0.5
latents_c2, bboxes = self.encode_images_mask_old(device, images)
text_embeddings, text_embeddings_ori, image_embeddings, image_embeddings_cls = self.encode_prompt(
prompts, entitys, images, bboxes, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt)
# text_embeddings_ori = self.encode_prompt(
# prompts, entitys, images, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, token=False)
self.test_scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.test_scheduler.timesteps
shape = (batch_size * num_images_per_prompt,
4, height // 8, width // 8)
latents = torch.randn(shape, generator=generator,
device=device, dtype=text_embeddings.dtype)
latents = latents * self.test_scheduler.init_noise_sigma
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
font_latents = latents_c2
uncond_image_latents = torch.zeros_like(font_latents).to(device)
font_latents = torch.cat(
[font_latents, font_latents, uncond_image_latents], dim=0).to(device).half()
self_timesteps = 50
attention_store = {}
objects = image_embeddings
uncond_objects = torch.zeros_like(objects)
input_objects = torch.cat([objects, objects, uncond_objects])
for i, t in enumerate(tqdm(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat(
[latents] * 3) if do_classifier_free_guidance else latents
latent_model_input = self.test_scheduler.scale_model_input(
latent_model_input, t)
latent_model_input = torch.cat(
[latent_model_input, font_latents], dim=1)
if i < self_timesteps:
noise_pred = self.unet.half()(latent_model_input.half(), t,
encoder_hidden_states=text_embeddings.half(), objs=input_objects.half()).sample
if do_classifier_free_guidance:
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(
3)
noise_pred = (
noise_pred_uncond
+ guidance_scale * (noise_pred_text - noise_pred_image)
+ image_guidance_scale *
(noise_pred_image - noise_pred_uncond)
)
for key, value in self.cross_attention_scores.items():
if key in attention_store:
attention_store[key] += value
else:
attention_store[key] = value
else:
latent_model_input = torch.cat(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.test_scheduler.scale_model_input(
latent_model_input, t)
noise_pred = self.unet_ori.half()(latent_model_input.half(
), t, encoder_hidden_states=text_embeddings_ori.half()).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.test_scheduler.step(
noise_pred, t, latents, **extra_step_kwargs).prev_sample
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = numpy_to_pil(image)
resolution = 32
out_map = []
for key, value in attention_store.items():
num_heads, size, num_tokens = value.size()
value = value.view(num_heads, int(size**0.5), int(size**0.5),
num_tokens).mean(0).permute(2, 0, 1).unsqueeze(1)/self_timesteps
if size != resolution**2:
value = transforms.Resize((resolution, resolution))(value)
out_map.append(value)
return image, torch.cat(out_map, dim=1).mean(1, keepdim=True)
if __name__ == "__main__":
args_parser = argparse.ArgumentParser()
args_parser.add_argument(
'--prompts_path', default="./test_prompts/test_glyphdraw_multi2.json", type=str)
args_parser.add_argument('--model_idx', default="449999", type=int)
args_parser.add_argument('--model_path', default="./checkpoints", type=str)
args_parser.add_argument(
'--base_model_path', default="./model_base", type=str)
args_parser.add_argument(
'--sam_path', default="./sam_vit_h_4b8939.pth", type=str)
args_parser.add_argument(
'--open_clip_path', default="./ViT-H-14.pt", type=str)
args_parser.add_argument('--output_path', default="./output", type=str)
args_parser.add_argument('--guidance_scale', default=7.5, type=float)
args_parser.add_argument('--image_guidance_scale', default=1.5, type=float)
args_parser.add_argument('--batch_size', default=1, type=int)
args_parser.add_argument('--dataset_path', default="./dreambooth", type=str)
args = args_parser.parse_args()
with open(args.prompts_path, "r", encoding='utf-8') as f:
inputs = json.load(f)
unet_path = os.path.join(
args.model_path, f"unet_0_{args.model_idx}/pytorch_model.bin")
clip_text_path = os.path.join(
args.model_path, f"clip_text_0_{args.model_idx}/pytorch_model.bin")
mlp_path = os.path.join(
args.model_path, f"mlp_0_{args.model_idx}/pytorch_model.bin")
proj_path = os.path.join(
args.model_path, f"proj_0_{args.model_idx}/pytorch_model.bin")
print("out_path:", args.output_path)
os.makedirs(args.output_path, exist_ok=True)
device = torch.device("cuda")
lgp_test = StableDiffusionTest(
args.base_model_path, unet_path, clip_text_path, mlp_path, proj_path, args.open_clip_path, args.sam_path, device)
batch = args.batch_size
inputs = inputs*batch
raw_name = [t["prompt"] for t in inputs]
for i in range(0, len(raw_name), batch):
text_batch = inputs[i:(i + batch)]
images, attention_map = lgp_test.log_imgs(
device, text_batch,args.dataset_path, guidance_scale=args.guidance_scale, image_guidance_scale=args.image_guidance_scale)
for j in range(batch):
if j > len(images)-1:
continue
images[j].save(os.path.join(args.output_path, "{}-00_{}.jpg".format(text_batch[j]["phrases"],
raw_name[i + j].replace(" ", "-")+str(i+j))), normalize=True)