-
Notifications
You must be signed in to change notification settings - Fork 11
/
data_process.py
363 lines (307 loc) · 14.5 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os,sys
import json
from time import time
from tqdm import tqdm
import webdataset as wds
import torch
from PIL import Image
from torchvision.utils import save_image
import torchvision
from PIL import Image
from torchvision import transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor
import cv2
# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration,Blip2Processor, Blip2ForConditionalGeneration
import spacy
nlp = spacy.load("en_core_web_sm")
import imgviz
colormap = imgviz.label_colormap(80)
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path)
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
# print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold,device):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"][0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def check_caption_spacy(caption, pred_phrases,caption_lemma):
num2en = {2: "two",3: "three",4: "four",5: "five",6: "six"}
object_list = [obj.split('(')[0] for obj in pred_phrases]
caption_list = caption.split(" ")
for obj in set(object_list):
nums = object_list.count(obj)
if 1<nums<7:
nums_en = num2en[nums]
word = nlp(obj)[0].lemma_
if word not in caption_lemma:continue
index = caption_lemma.index(word)
caption_list.insert(index,nums_en)
return " ".join(caption_list)
def image_tensor2cv2(input_tensor: torch.Tensor):
assert (len(input_tensor.shape) == 4 and input_tensor.shape[0] == 1)
# 复制一份
input_tensor = input_tensor.clone().detach()
# 到cpu
input_tensor = input_tensor.to(torch.device('cpu'))
# 反归一化
# input_tensor = unnormalize(input_tensor)
# 去掉批次维度
input_tensor = input_tensor.squeeze()
# 从[0,1]转化为[0,255],再从CHW转为HWC,最后转为cv2
input_tensor = input_tensor.mul_(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).type(torch.uint8).numpy()
# RGB转BRG
image_cv = cv2.cvtColor(input_tensor, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(input_tensor)
return input_tensor
def image_tensor2pillow(input_tensor: torch.Tensor):
input_tensor = input_tensor.clone().detach()
# 到cpu
input_tensor = input_tensor.to(torch.device('cpu'))
# input_tensor = input_tensor
# 从[0,1]转化为[0,255],再从CHW转为HWC,最后转为numpy
# input_tensor = input_tensor.mul_(255).add_(0.5).clamp_(0, 255).type(torch.uint8).numpy()
# 转成pillow
lbl_pil = Image.fromarray(input_tensor.type(torch.uint8).numpy(),mode='P')
lbl_pil.putpalette(colormap.flatten())
return lbl_pil
class BLIP:
def __init__(self,device):
# self.processor = Blip2Processor.from_pretrained("/data_share/zhaomingjun/data_cleaning/blip2-opt-2.7b")
# self.model = Blip2ForConditionalGeneration.from_pretrained("/data_share/zhaomingjun/data_cleaning/blip2-opt-2.7b", torch_dtype=torch.float16)
self.processor = BlipProcessor.from_pretrained("/public_data/ma/models/blip-image-captioning-large")
self.model = BlipForConditionalGeneration.from_pretrained("/public_data/ma/models/blip-image-captioning-large", torch_dtype=torch.float16)
self.model.to(device)
self.model.eval()
def get_caption(self, image):
with torch.no_grad():
inputs = self.processor(images=image, return_tensors="pt").to(self.model.device, torch.float16)
generated_ids = self.model.generate(**inputs)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
return generated_text
class Data_pro:
def __init__(self,device):
# blip
self.blip = BLIP(device)
# grounding dino model
grounded_checkpoint = "groundingdino_swint_ogc.pth"
self.config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
self.grounding_model = load_model(self.config_file, grounded_checkpoint, device=device)
self.grounding_model.to(device=device)
# sam model
sam_checkpoint = "/public_data/ma/models/sam/sam_vit_h_4b8939.pth"
self.sam_model = build_sam(checkpoint=sam_checkpoint)
self.sam_model.to(device=device)
self.predictor = SamPredictor(self.sam_model)
self.box_threshold = 0.25
self.text_threshold = 0.2
self.iou_threshold = 0.5
self.image_transforms = T.Compose([
T.RandomResize([800], max_size=3000),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
self.image_transforms_save = T.Compose([
T.RandomResize([800], max_size=3000)])
self.key_verifier = wds.filters.pipelinefilter(self.verify_keys)
self.device = device
def normalized(self,a, axis=-1, order=2):
import numpy as np # pylint: disable=import-outside-toplevel
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis)
def get_count(self,input_file):
stats_file = input_file[:-4] + "_stats.json"
f = open(stats_file)
stats = json.load(f)
f.close()
count = stats["successes"]
return count
def preproc(self, sample):
instance_image = sample["jpg"]
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
# instance_image.save("1.png")
sample["image"] = instance_image
# sample["image"],_ = self.image_transforms(instance_image,None)
return sample
def verify_keys(self,samples,required_keys,hr_size=600):
"""
Requires that both the image and embedding are present in the sample
This is important to do as a user may forget they do not have embeddings in their webdataset and neglect to add them using the embedding_folder_url parameter.
"""
for sample in samples:
for key in required_keys:
assert key in sample, f"Sample {sample['__key__']} missing {key}. Has keys {sample.keys()}"
if sample['json']['original_width'] >= hr_size or sample['json']['original_height'] >= hr_size:
yield {key:sample[key] for key in required_keys}
def filter_dataset(self,item):
meta = item["json"]
# meta['caption']=zhconv.convert(re.sub(r'[^\u4E00-\u9FA5,.!?:;,。!?:;1234567890]', '', meta['caption'][:64]), 'zh-hans')
if meta['original_width'] < 224 or meta['original_height'] < 224:
return False
# if len(meta['caption']) < 5:
# return False
return True
def shuffle_augment_wds(self,input, output):
start = time()
# count = get_count(input)
input = "file:"+input
pre_name = os.path.split(input)[-1][:2]
src = wds.DataPipeline(
wds.SimpleShardList(input),
wds.tarfile_to_samples(),
wds.decode("pil"),
self.key_verifier(required_keys=["__key__", "jpg", "txt","json"]),
# wds.select(self.filter_dataset),
wds.map(self.preproc),
wds.to_tuple("__key__", "jpg", "txt","json","image"),
wds.batched(200)
)
samples = []
# 考虑两个边界:1 分辨率全部过滤 2 美学评分全部过滤
for i,(keys, _, cap_oris,json,images) in enumerate(tqdm(src, desc=f"Extracting {input}")):
# if i>20:continue
# 生成描述
captions = self.blip.get_caption(images)
caption_lemmas = []
tag_prompts = []
text_prompt_list = []
caption_lemma = []
doc = nlp("! ".join(captions)+"!")
for token in doc:
if token.text!="!":
caption_lemma.append(token.lemma_)
if token.pos_=="NOUN":
text_prompt_list.append(str(token))
else:
tag_prompt = ",".join(text_prompt_list)
tag_prompts.append(tag_prompt)
caption_lemmas.append(caption_lemma)
text_prompt_list = []
caption_lemma = []
# 生成检测框(考虑到不改变原始图片形状,one by one)
json_datas = []
mask_imgs = []
cap_oris_new = []
keys_new = []
images_new = []
for img,tag_prompt,caption_lemma,caption,cap_ori,key in zip(images,tag_prompts,caption_lemmas,captions,cap_oris,keys):
# 过滤掉只包含两个实体
if len(tag_prompt.split(","))<3 or len(tag_prompt.split(","))>8:
continue
image_save = self.image_transforms_save(img,None)[0]
image = self.image_transforms(img,None)[0]
boxes_filt, scores, pred_phrases = get_grounding_output(self.grounding_model, image, tag_prompt, self.box_threshold, self.text_threshold, device=self.device)
if len(pred_phrases)<2 or len(pred_phrases)>8:
continue
size = image.shape
H, W = size[-2], size[-1]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]).to(self.device)
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
# use NMS to handle overlapped boxes
# print(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(boxes_filt, scores.to(self.device), self.iou_threshold).cpu().numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
# print(f"After NMS: {boxes_filt.shape[0]} boxes")
caption = check_caption_spacy(caption, pred_phrases,caption_lemma)
# print(f"Revise caption with number: {caption}")
# sam
image = image_tensor2cv2(image[None])
self.predictor.set_image(image)
transformed_boxes = self.predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(self.device)
try:
masks, _, _ = self.predictor.predict_torch(point_coords = None,point_labels = None,boxes = transformed_boxes,multimask_output = False,)
except:
print(image.shape)
continue
mask_img = torch.zeros(masks.shape[-2:])
value = 0
for idx, mask in enumerate(masks):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
json_data = {
'caption': caption,
'mask':[{
'value': value,
'label': 'background'
}]
}
for label, box in zip(pred_phrases, boxes_filt):
value += 1
name, logit = label.split('(')
logit = logit[:-1] # the last is ')'
json_data['mask'].append({
'value': value,
'label': name,
'logit': float(logit),
'box': box.cpu().numpy().tolist(),
})
mask_img = image_tensor2pillow(mask_img)
json_datas.append(json_data)
mask_imgs.append(mask_img)
cap_oris_new.append(cap_ori)
keys_new.append(key)
images_new.append(image_save)
samples.append([keys_new,images_new,cap_oris_new,json_datas,mask_imgs])
dst = wds.TarWriter(output)
for sample in tqdm(samples, desc=f"Writing {output}"):
new_keys = [pre_name+name for name in sample[0]]
for x,y,z,json,png in zip(new_keys,sample[1],sample[2],sample[3],sample[4]):
dst.write({"__key__":x, "jpg":y, "txt":z,"json":json,"png":png})
# dst.write({"__key__":new_keys, "jpg":sample[1], "txt":sample[2]})
# dst.write({"__key__":str(new_keys), "jpg":str(sample[1]), "txt":str(sample[2])})
dst.close()
end = time()
print(f"Finished - {end-start:.0f}s")
if __name__ == '__main__':
device = "cuda"
# origin_path = "/public_data/ma/aesthetics_tar_5"
tar_begin = int(sys.argv[1])
tar_end = int(sys.argv[2])
origin_path = sys.argv[3]
output_path = sys.argv[4]
available_shards = list(range(tar_begin, tar_end))
input_url = origin_path+"/{}.tar"
input_shards = [input_url.format(str(shard).zfill(5)) for shard in available_shards]
output_url = output_path+"/{}.tar"
output_shards = [output_url.format(str(shard).zfill(5)) for shard in available_shards]
data_pro = Data_pro(device)
for input_shard, output_shard in zip(input_shards, output_shards):
data_pro.shuffle_augment_wds(input=input_shard, output=output_shard)