-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAIRDOS kalibrace
126 lines (120 loc) · 3.98 KB
/
AIRDOS kalibrace
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from IPython.display import Image as ImageDisp
from pandas import DataFrame
import string
import os
import matplotlib.pyplot as plt
%pylab inline --no-import-all
def Flux(fileName,outName):
fto = fileName # File to Open
name = outName
l=[]
l.extend(range(0,548))
df = pd.read_table(fto, sep=',', header=None, names=l, comment='*')
rc = df.loc[df[0]=='$CANDY']
rc.reset_index(drop=True, inplace=True)
rc = rc.apply(pd.to_numeric, errors='coerce')
i=1
points=[[0,1],[2,0]]
print(points)
while(points[0]!=points[1]): # Dokud nejsou obe kliknuti stejna, tak to porad bude cyklovat
plt.figure(figsize=(15,5))
plt.rcParams.update({'font.size': 15})
rc['flux'] = rc[range(24,544)].sum(axis=1)
rc['flux'].plot(c='orange')
plt.ylabel('Flux')
points=plt.ginput(2)
plt.close()
if round(points[0][0])>=round(points[1][0]):
X1=int(round(points[1][0]))
X2=int(round(points[0][0]))
else:
X1=int(round(points[0][0]))
X2=int(round(points[1][0]))
sheet = name + str(i) + ".csv"
spectrum = rc.ix[X1:X2,20:520].sum()
spectrum.to_csv(sheet)
i+=1
def Gauss(x, amp, cen, wid):
"1-d gaussian: gaussian(x, amp, cen, wid)"
return (amp/(np.sqrt(2*np.pi)*wid)) * np.exp(-(x-cen)**2 /(2*wid**2))
def Kalibrace(fileName,scale,delim):
if not os.path.isdir('Kalibrace'):
os.makedirs('Kalibrace')
result=[]
with open(fileName+".csv","r") as myCSVfile:
data=csv.reader(myCSVfile, delimiter=delim)
data=list(data)
noiseChannel=float(data[0][0])
print(noiseChannel)
x,y=[],[]
for line in data:
x.append(float(line[0])-noiseChannel)
y.append(float(line[1]))
plt.plot(x,y)
points=plt.ginput(2)
plt.close()
if round(points[0][0],3)>=round(points[1][0],3):
X1=int(scale*round(points[1][0],3))
X2=int(scale*round(points[0][0],3))
else:
X1=int(scale*round(points[0][0],3))
X2=int(scale*round(points[1][0],3))
delta_x=X2-X1
delta_y=float(y[X2])-float(y[X1])
a=delta_y/delta_x
b=y[X1]
spread=np.linspace(0,X2-X1,X2-X1+1)
spread=spread[:-1]+noiseChannel+X1
peak=y[X1:X2]-(a*spread+b) # odecitani linearniho pozadi od piku
# Inicializacni odhady pro fitovani Gaussem
amp=max(y[X1:X2])
cen=X1+(X2-X1)/2
wid=(X2-X1)/4
popt,pcov = curve_fit(Gauss, spread, peak, p0=[amp,cen,wid]) # fitovani Gaussem
result.append(popt[1])
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(spread,peak, 'b+' ,label='data')
ax.plot(spread, Gauss(spread, *popt), 'r-', label='fit')
ax.legend()
figName="Gauss_"+fileName+".png"
plt.savefig('Kalibrace\\'+figName)
plt.close(fig)
return result
def linearFit(x,y):
k=[0,max(x)+max(x)/8.0]
l=[0,0]
f=[0,0]
z=np.polyfit(x,y,1)
l[0]=z[0]*k[0]+z[1]
l[1]=z[0]*k[1]+z[1]
a=(curve_fit(lambda x, m: m*x, x, y))[0]
f[0]=a[0]*k[0]
f[1]=a[0]*k[1]
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(x,y, 'b+' ,label='data')
ax.plot(k,l, label=str(z[1])+"+"+str(z[0])+"*x")
ax.plot(k,f, label=str(a[0])+"x"+" zero intercept")
ax.legend()
plt.ylabel("Absorbed energy in Si diode [MeV]")
plt.xlabel("Channel number [-]")
plt.title("Energy calibration of Airdos")
figName="Calibration.png"
plt.savefig('Kalibrace\\'+figName)
return z,a
A,B,C=[],[],[]
Flux("DATALOG.TXT","60Co") # vytvori .csv s nazvem 60Co1.csv
for i in range(3):
name1="ener"+str(i+1)
name2="mcnp"+str(i+1)
A.append((Kalibrace(name1,1,","))[0])
B.append((Kalibrace(name2,1000,";"))[0])
C.append(name1)
A.append((Kalibrace("60Co1",1,","))[0])
B.append(1.125)
print(linearFit(A,B))
plt.show()