-
Notifications
You must be signed in to change notification settings - Fork 971
/
Copy pathtm_solov2.cpp
1098 lines (977 loc) · 36.3 KB
/
tm_solov2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2021, OPEN AI LAB
* Author: 774074168@qq.com
* original model: https://github.com/WXinlong/SOLO
*/
#include <vector>
#include <string>
#include <algorithm>
#include <cmath>
#include <stdlib.h>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <set>
#include <map>
#include "common.h"
#include "tengine/c_api.h"
#include "tengine_operations.h"
#include "graph/graph.h"
#include "graph/subgraph.h"
#include "graph/node.h"
#include "graph/tensor.h"
#include "operator/prototype/convolution_param.h"
typedef int (*common_test)(graph_t, const char* input_name, const char* node_name, int data_type, int layout, int n, int c, int h, int w, int outc);
int create_input_node(graph_t graph, const char* node_name, int data_type, int layout, int n, int c, int h, int w, int dims_count = 4)
{
if (0 == n) dims_count = 3;
if (0 == c) dims_count = 2;
if (0 == h) dims_count = 1;
if (0 == w)
{
fprintf(stderr, "Dim of input node is not allowed. { n, c, h, w } = {%d, %d, %d, %d}.\n", n, c, h, w);
return -1;
}
node_t node = create_graph_node(graph, node_name, "InputOp");
if (NULL == node)
{
fprintf(stderr, "Create %d dims node(%s) failed. ", dims_count, node_name);
return -1;
}
tensor_t tensor = create_graph_tensor(graph, node_name, data_type);
if (NULL == tensor)
{
release_graph_node(node);
fprintf(stderr, "Create %d dims tensor for node(%s) failed. ", dims_count, node_name);
return -1;
}
int ret = set_node_output_tensor(node, 0, tensor, TENSOR_TYPE_INPUT);
if (0 != ret)
{
release_graph_tensor(tensor);
release_graph_node(node);
fprintf(stderr, "Set %d dims output tensor for node(%s) failed. ", dims_count, node_name);
return -1;
}
switch (dims_count)
{
case 1:
{
int dims_array[1] = {w};
set_tensor_shape(tensor, dims_array, dims_count);
break;
}
case 2:
{
int dims_array[2] = {h, w};
set_tensor_shape(tensor, dims_array, dims_count);
break;
}
case 3:
{
if (TENGINE_LAYOUT_NCHW == layout)
{
int dims_array[3] = {c, h, w};
set_tensor_shape(tensor, dims_array, dims_count);
break;
}
if (TENGINE_LAYOUT_NHWC == layout)
{
int dims_array[3] = {h, w, c};
set_tensor_shape(tensor, dims_array, dims_count);
break;
}
}
case 4:
{
if (TENGINE_LAYOUT_NCHW == layout)
{
int dims_array[4] = {n, c, h, w};
set_tensor_shape(tensor, dims_array, dims_count);
break;
}
if (TENGINE_LAYOUT_NHWC == layout)
{
int dims_array[4] = {n, h, w, c};
set_tensor_shape(tensor, dims_array, dims_count);
break;
}
}
case 5:
{
if (TENGINE_LAYOUT_NCHW == layout)
{
int dims_array[5] = {1, n, c, h, w};
set_tensor_shape(tensor, dims_array, dims_count);
break;
}
if (TENGINE_LAYOUT_NHWC == layout)
{
int dims_array[5] = {1, n, h, w, c};
set_tensor_shape(tensor, dims_array, dims_count);
break;
}
}
default:
fprintf(stderr, "Cannot support %d dims tensor.\n", dims_count);
}
release_graph_tensor(tensor);
release_graph_node(node);
return 0;
}
graph_t create_common_test_graph(const char* test_node_name, int data_type, int layout, int n, int c, int h, int w, int outc, common_test test_func, int dims_num = 4)
{
graph_t graph = create_graph(NULL, NULL, NULL);
if (NULL == graph)
{
fprintf(stderr, "get graph failed.\n");
return NULL;
}
if (set_graph_layout(graph, layout) < 0)
{
fprintf(stderr, "set layout failed.\n");
return NULL;
}
const char* input_name = "input_node";
if (create_input_node(graph, input_name, data_type, layout, n, c, h, w, dims_num) < 0)
{
fprintf(stderr, "create input node failed.\n");
return NULL;
}
if (test_func(graph, input_name, test_node_name, data_type, layout, n, c, h, w, outc) < 0)
{
fprintf(stderr, "create test node failed.\n");
return NULL;
}
/* set input/output node */
const char* inputs[] = {input_name};
const char* outputs[] = {test_node_name};
if (set_graph_input_node(graph, inputs, sizeof(inputs) / sizeof(char*)) < 0)
{
fprintf(stderr, "set inputs failed.\n");
return NULL;
}
if (set_graph_output_node(graph, outputs, sizeof(outputs) / sizeof(char*)) < 0)
{
fprintf(stderr, "set outputs failed.\n");
return NULL;
}
return graph;
}
struct Object
{
int cx;
int cy;
int label;
float prob;
cv::Mat mask;
};
static inline float intersection_area(const Object& a, const Object& b, int img_w, int img_h)
{
float area = 0.f;
for (int y = 0; y < img_h; y = y + 4)
{
for (int x = 0; x < img_w; x = x + 4)
{
const uchar* mp1 = a.mask.ptr(y);
const uchar* mp2 = b.mask.ptr(y);
if (mp1[x] == 255 && mp2[x] == 255) area += 1.f;
}
}
return area;
}
static inline float area(const Object& a, int img_w, int img_h)
{
float area = 0.f;
for (int y = 0; y < img_h; y = y + 4)
{
for (int x = 0; x < img_w; x = x + 4)
{
const uchar* mp = a.mask.ptr(y);
if (mp[x] == 255) area += 1.f;
}
}
return area;
}
static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right)
{
int i = left;
int j = right;
float p = objects[(left + right) / 2].prob;
while (i <= j)
{
while (objects[i].prob > p)
i++;
while (objects[j].prob < p)
j--;
if (i <= j)
{
// swap
std::swap(objects[i], objects[j]);
i++;
j--;
}
}
#pragma omp parallel sections
{
#pragma omp section
{
if (left < j) qsort_descent_inplace(objects, left, j);
}
#pragma omp section
{
if (i < right) qsort_descent_inplace(objects, i, right);
}
}
}
static void qsort_descent_inplace(std::vector<Object>& objects)
{
if (objects.empty())
return;
qsort_descent_inplace(objects, 0, objects.size() - 1);
}
static void nms_sorted_segs(const std::vector<Object>& objects, std::vector<int>& picked, float nms_threshold, int img_w, int img_h)
{
picked.clear();
const int n = objects.size();
std::vector<float> areas(n);
for (int i = 0; i < n; i++)
{
areas[i] = area(objects[i], img_w, img_h);
}
for (int i = 0; i < n; i++)
{
const Object& a = objects[i];
int keep = 1;
for (int j = 0; j < (int)picked.size(); j++)
{
const Object& b = objects[picked[j]];
// intersection over union
float inter_area = intersection_area(a, b, img_w, img_h);
float union_area = areas[i] + areas[picked[j]] - inter_area;
// float IoU = inter_area / union_area
if (inter_area / union_area > nms_threshold)
keep = 0;
}
if (keep)
picked.push_back(i);
}
}
static void kernel_pick(const float* cate_pred, int w, int h, std::vector<int>& picked, int num_class, float cate_thresh)
{
for (int q = 0; q < num_class; q++)
{
for (int i = 0; i < h; i++)
{
for (int j = 0; j < w; j++)
{
int index = i * w + j;
float cate_score = cate_pred[q * h * w + index];
if (cate_score < cate_thresh)
{
continue;
}
else
picked.push_back(index);
}
}
}
}
void show_usage()
{
fprintf(
stderr,
"[Usage]: [-h]\n [-m model_file] [-i image_file] [-r repeat_count] [-t thread_count]\n");
}
void get_input_data(const char* image_file, float* input_data, int letterbox_rows, int letterbox_cols, const float* mean, const float* scale, int& wpad, int& hpad)
{
cv::Mat sample = cv::imread(image_file, 1);
cv::Mat img;
if (sample.channels() == 1)
cv::cvtColor(sample, img, cv::COLOR_GRAY2RGB);
else
cv::cvtColor(sample, img, cv::COLOR_BGR2RGB);
/* letterbox process to support different letterbox size */
float scale_letterbox;
int resize_rows;
int resize_cols;
if ((letterbox_rows * 1.0 / img.rows) < (letterbox_cols * 1.0 / img.cols))
{
scale_letterbox = letterbox_rows * 1.0 / img.rows;
}
else
{
scale_letterbox = letterbox_cols * 1.0 / img.cols;
}
resize_cols = int(scale_letterbox * img.cols);
resize_rows = int(scale_letterbox * img.rows);
cv::resize(img, img, cv::Size(resize_cols, resize_rows));
img.convertTo(img, CV_32FC3);
// Generate a gray image for letterbox using opencv
cv::Mat img_new(letterbox_cols, letterbox_rows, CV_32FC3, cv::Scalar(0, 0, 0));
int top = (letterbox_rows - resize_rows) / 2;
int bot = (letterbox_rows - resize_rows + 1) / 2;
int left = (letterbox_cols - resize_cols) / 2;
int right = (letterbox_cols - resize_cols + 1) / 2;
hpad = letterbox_rows - resize_rows;
wpad = letterbox_cols - resize_cols;
// Letterbox filling
cv::copyMakeBorder(img, img_new, top, bot, left, right, cv::BORDER_CONSTANT, cv::Scalar(114.f, 114.f, 114.f));
float* img_data = (float*)img_new.data;
/* nhwc to nchw */
for (int h = 0; h < letterbox_rows; h++)
{
for (int w = 0; w < letterbox_cols; w++)
{
for (int c = 0; c < 3; c++)
{
int in_index = h * letterbox_cols * 3 + w * 3 + c;
int out_index = c * letterbox_rows * letterbox_cols + h * letterbox_cols + w;
input_data[out_index] = (img_data[in_index] - mean[c]) * scale[c];
}
}
}
}
int create_test_conv_node(graph_t graph, const char* input_name, const char* node_name, int data_type, int layout, int n, int c, int h, int w, int outc)
{
(void)layout;
(void)n;
(void)c;
(void)h;
(void)w;
(void)outc;
/* create the test node */
struct node* test_node = (struct node*)create_graph_node(graph, node_name, "Convolution");
tensor_t input_tensor = get_graph_tensor(graph, input_name);
if (nullptr == input_tensor)
{
fprintf(stderr, "create test node failed.\n");
return -1;
}
/* create the sub node to product another input tensors which the test node is needed, such as weight/bias/slope tensor. */
/* weight */
node_t weight_node = create_graph_node(graph, "weight", "Const");
tensor_t weight_tensor = create_graph_tensor(graph, "weight", TENGINE_DT_FP32);
set_node_output_tensor(weight_node, 0, weight_tensor, TENSOR_TYPE_CONST);
int weight_dims[4] = {outc, c, 1, 1}; // channel num
set_tensor_shape(weight_tensor, weight_dims, 4);
/* bias */
node_t bias_node = create_graph_node(graph, "bias", "Const");
tensor_t bias_tensor = create_graph_tensor(graph, "bias", TENGINE_DT_FP32);
set_node_output_tensor(bias_node, 0, bias_tensor, TENSOR_TYPE_CONST);
int bias_dims[1] = {outc}; // channel num
set_tensor_shape(bias_tensor, bias_dims, 1);
/* input tensors of test node */
set_node_input_tensor(test_node, 0, input_tensor);
set_node_input_tensor(test_node, 1, weight_tensor);
set_node_input_tensor(test_node, 2, bias_tensor);
/* output tensors of test node */
tensor_t output_tensor = create_graph_tensor(graph, node_name, data_type);
set_node_output_tensor(test_node, 0, output_tensor, TENSOR_TYPE_VAR);
/* set params */
struct conv_param* conv_param = (struct conv_param*)(struct node*)test_node->op.param_mem;
conv_param->kernel_h = 1;
conv_param->kernel_w = 1;
conv_param->stride_h = 1;
conv_param->stride_w = 1;
conv_param->pad_h0 = 0;
conv_param->pad_h1 = 0;
conv_param->pad_w0 = 0;
conv_param->pad_w1 = 0;
conv_param->dilation_h = 1;
conv_param->dilation_w = 1;
conv_param->input_channel = c;
conv_param->output_channel = outc;
conv_param->group = 1;
conv_param->activation = -1;
return 0;
}
static int ins_decode(float* kernel_pred, float* feature_pred,
std::vector<int>& kernel_picked, std::map<int, int>& kernel_map, std::vector<std::vector<float> >& ins_pred, int c_in)
{
std::set<int> kernel_pick_set;
kernel_pick_set.insert(kernel_picked.begin(), kernel_picked.end());
int c_out = kernel_pick_set.size();
int ret = 0;
if (c_out > 0)
{
std::vector<float> bias_data(c_out, 0);
//init graph
ret = init_tengine();
if (0 != ret)
fprintf(stderr, "Tengine init failed.\n");
// create
graph_t graph = create_common_test_graph("conv", TENGINE_DT_FP32, TENGINE_LAYOUT_NCHW, 1, c_in, 112, 112, c_out, &create_test_conv_node);
if (nullptr == graph)
return -1;
//set_log_level(LOG_INFO);
//dump_graph(graph);
/* fill test data */
// set quantize params
struct tensor* input_tensor = (struct tensor*)get_graph_tensor(graph, "input_node");
struct tensor* weight_tensor = (struct tensor*)get_graph_tensor(graph, "weight");
struct tensor* bias_tensor = (struct tensor*)get_graph_tensor(graph, "bias");
struct tensor* output_tensor = (struct tensor*)get_graph_tensor(graph, "conv");
// set input data
set_tensor_buffer(input_tensor, feature_pred, c_in * 112 * 112 * sizeof(float));
std::vector<float> weights(c_in * c_out);
std::set<int>::iterator pick_c;
int count_c = 0;
for (pick_c = kernel_pick_set.begin(); pick_c != kernel_pick_set.end(); pick_c++)
{
kernel_map[*pick_c] = count_c;
for (int j = 0; j < c_in; j++)
{
weights[count_c * c_in + j] = kernel_pred[c_in * (*pick_c) + j];
}
count_c++;
}
// set weight data
set_tensor_buffer(weight_tensor, weights.data(), c_in * c_out * sizeof(float));
// set bias data
set_tensor_buffer(bias_tensor, bias_data.data(), c_out * sizeof(float));
// graph run
if (prerun_graph(graph) < 0)
{
fprintf(stderr, "Pre-run graph failed.\n");
return -1;
}
if (0 != run_graph(graph, 1))
{
fprintf(stderr, "Run graph error.\n");
postrun_graph(graph);
destroy_graph(graph);
release_tengine();
return -1;
}
/* get output*/
int output_size = output_tensor->elem_num;
float* output_fp32 = (float*)output_tensor->data;
for (int i = 0; i < output_tensor->dims[1]; i++)
{
std::vector<float> tmp;
for (int j = 0; j < output_tensor->dims[2] * output_tensor->dims[3]; j++)
tmp.push_back(output_fp32[i * output_tensor->dims[2] * output_tensor->dims[3] + j]);
ins_pred.push_back(tmp);
}
// exit
postrun_graph(graph);
destroy_graph(graph);
release_tengine();
}
return 0;
}
static inline float sigmoid(float x)
{
return static_cast<float>(1.f / (1.f + exp(-x)));
}
void generate_res(float* cate_pred, std::vector<std::vector<float> > ins_pred, std::map<int, int>& kernel_map,
std::vector<std::vector<Object> >& objects, float cate_thresh,
float conf_thresh, int img_w, int img_h, int num_class, float stride, int wpad, int hpad,
int cate_pred_w, int cate_pred_h, int cate_pred_c)
{
int w = cate_pred_w;
int h = cate_pred_h;
int w_ins = 112;
int h_ins = 112;
for (int q = 0; q < num_class; q++)
{
const float* cate_ptr = cate_pred + q * w * h;
for (int i = 0; i < h; i++)
{
for (int j = 0; j < w; j++)
{
int index = i * w + j;
float cate_socre = cate_ptr[index];
if (cate_socre < cate_thresh)
{
continue;
}
const float* ins_ptr = ins_pred[kernel_map[index]].data();
cv::Mat mask(h_ins, w_ins, CV_32FC1);
float sum_mask = 0.f;
int count_mask = 0;
{
mask = cv::Scalar(0.f);
float* mp = (float*)mask.data;
for (int m = 0; m < w_ins * h_ins; m++)
{
float mask_score = sigmoid(ins_ptr[m]);
if (mask_score > 0.5)
{
mp[m] = mask_score;
sum_mask += mask_score;
count_mask++;
}
}
}
if (count_mask < stride)
{
continue;
}
float mask_score = sum_mask / (float(count_mask) + 1e-6);
float socre = mask_score * cate_socre;
if (socre < conf_thresh)
{
continue;
}
cv::Mat mask_cut;
cv::Rect rect(wpad / 8, hpad / 8, w_ins - wpad / 4, h_ins - hpad / 4);
mask_cut = mask(rect);
cv::Mat mask2;
cv::resize(mask_cut, mask2, cv::Size(img_w, img_h));
Object obj;
obj.mask = cv::Mat(img_h, img_w, CV_8UC1);
float sum_mask_y = 0.f;
float sum_mask_x = 0.f;
int area = 0;
{
obj.mask = cv::Scalar(0);
for (int y = 0; y < img_h; y++)
{
const float* mp2 = mask2.ptr<const float>(y);
uchar* bmp = obj.mask.ptr<uchar>(y);
for (int x = 0; x < img_w; x++)
{
if (mp2[x] > 0.5f)
{
bmp[x] = 255;
sum_mask_y += (float)y;
sum_mask_x += (float)x;
area++;
}
else
bmp[x] = 0;
}
}
}
if (area < 100) continue;
obj.cx = int(sum_mask_x / area);
obj.cy = int(sum_mask_y / area);
obj.label = q + 1;
obj.prob = socre;
objects[q].push_back(obj);
}
}
}
}
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects, const char* save_path)
{
static const char* class_names[] = {"background",
"person", "bicycle", "car", "motorcycle", "airplane", "bus",
"train", "truck", "boat", "traffic light", "fire hydrant",
"stop sign", "parking meter", "bench", "bird", "cat", "dog",
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket",
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana", "apple", "sandwich", "orange", "broccoli", "carrot",
"hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop",
"mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"};
static const unsigned char colors[81][3] = {
{56, 0, 255},
{226, 255, 0},
{0, 94, 255},
{0, 37, 255},
{0, 255, 94},
{255, 226, 0},
{0, 18, 255},
{255, 151, 0},
{170, 0, 255},
{0, 255, 56},
{255, 0, 75},
{0, 75, 255},
{0, 255, 169},
{255, 0, 207},
{75, 255, 0},
{207, 0, 255},
{37, 0, 255},
{0, 207, 255},
{94, 0, 255},
{0, 255, 113},
{255, 18, 0},
{255, 0, 56},
{18, 0, 255},
{0, 255, 226},
{170, 255, 0},
{255, 0, 245},
{151, 255, 0},
{132, 255, 0},
{75, 0, 255},
{151, 0, 255},
{0, 151, 255},
{132, 0, 255},
{0, 255, 245},
{255, 132, 0},
{226, 0, 255},
{255, 37, 0},
{207, 255, 0},
{0, 255, 207},
{94, 255, 0},
{0, 226, 255},
{56, 255, 0},
{255, 94, 0},
{255, 113, 0},
{0, 132, 255},
{255, 0, 132},
{255, 170, 0},
{255, 0, 188},
{113, 255, 0},
{245, 0, 255},
{113, 0, 255},
{255, 188, 0},
{0, 113, 255},
{255, 0, 0},
{0, 56, 255},
{255, 0, 113},
{0, 255, 188},
{255, 0, 94},
{255, 0, 18},
{18, 255, 0},
{0, 255, 132},
{0, 188, 255},
{0, 245, 255},
{0, 169, 255},
{37, 255, 0},
{255, 0, 151},
{188, 0, 255},
{0, 255, 37},
{0, 255, 0},
{255, 0, 170},
{255, 0, 37},
{255, 75, 0},
{0, 0, 255},
{255, 207, 0},
{255, 0, 226},
{255, 245, 0},
{188, 255, 0},
{0, 255, 18},
{0, 255, 75},
{0, 255, 151},
{255, 56, 0},
{245, 255, 0}};
cv::Mat image = bgr.clone();
int color_index = 0;
for (size_t i = 0; i < objects.size(); i++)
{
const Object& obj = objects[i];
if (obj.prob < 0.15)
continue;
fprintf(stderr, "%d = %.5f at %.2d %.2d\n", obj.label, obj.prob,
obj.cx, obj.cy);
const unsigned char* color = colors[color_index % 81];
color_index++;
char text[256];
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
int x = obj.cx;
int y = obj.cy;
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
cv::Scalar(255, 255, 255), -1);
cv::putText(image, text, cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
// draw mask
for (int y = 0; y < image.rows; y++)
{
const uchar* mp = obj.mask.ptr(y);
uchar* p = image.ptr(y);
for (int x = 0; x < image.cols; x++)
{
if (mp[x] == 255)
{
p[0] = cv::saturate_cast<uchar>(p[0] * 0.5 + color[0] * 0.5);
p[1] = cv::saturate_cast<uchar>(p[1] * 0.5 + color[1] * 0.5);
p[2] = cv::saturate_cast<uchar>(p[2] * 0.5 + color[2] * 0.5);
}
p += 3;
}
}
}
cv::imwrite(save_path, image);
}
int main(int argc, char* argv[])
{
const char* model_file = nullptr;
const char* image_file = nullptr;
int img_c = 3;
const float mean[3] = {123.68f, 116.78f, 103.94f};
const float scale[3] = {1.0 / 58.40f, 1.0 / 57.12f, 1.0 / 57.38f};
// allow none square letterbox, set default letterbox size
int letterbox_rows = 448;
int letterbox_cols = 448;
int repeat_count = 1;
int num_thread = 1;
int res;
while ((res = getopt(argc, argv, "m:i:r:t:h:")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'i':
image_file = optarg;
break;
case 'r':
repeat_count = std::strtoul(optarg, nullptr, 10);
break;
case 't':
num_thread = std::strtoul(optarg, nullptr, 10);
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check files */
if (nullptr == model_file)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (nullptr == image_file)
{
fprintf(stderr, "Error: Image file not specified!\n");
show_usage();
return -1;
}
if (!check_file_exist(model_file) || !check_file_exist(image_file))
return -1;
cv::Mat img = cv::imread(image_file, 1);
if (img.empty())
{
fprintf(stderr, "cv::imread %s failed\n", image_file);
return -1;
}
/* set runtime options */
struct options opt;
opt.num_thread = num_thread;
opt.cluster = TENGINE_CLUSTER_ALL;
opt.precision = TENGINE_MODE_FP32;
opt.affinity = 0;
/* inital tengine */
if (init_tengine() != 0)
{
fprintf(stderr, "Initial tengine failed.\n");
return -1;
}
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version());
/* create graph, load tengine model xxx.tmfile */
graph_t graph = create_graph(nullptr, "tengine", model_file);
if (graph == nullptr)
{
fprintf(stderr, "Create graph failed.\n");
return -1;
}
int img_size = letterbox_rows * letterbox_cols * img_c;
int dims[] = {1, 3, int(letterbox_rows), int(letterbox_cols)};
int dims3[] = {1, 2, int(letterbox_rows / 8), int(letterbox_cols / 8)};
int dims4[] = {1, 2, int(letterbox_rows / 16), int(letterbox_cols / 16)};
int dims5[] = {1, 2, int(letterbox_rows / 32), int(letterbox_cols / 32)};
std::vector<float> input_data(img_size);
std::vector<float> input_data3(2 * 56 * 56);
std::vector<float> input_data4(2 * 28 * 28);
std::vector<float> input_data5(2 * 14 * 14);
tensor_t input_tensor = get_graph_tensor(graph, "input");
tensor_t p3_input_tensor = get_graph_tensor(graph, "p3_input");
tensor_t p4_input_tensor = get_graph_tensor(graph, "p4_input");
tensor_t p5_input_tensor = get_graph_tensor(graph, "p5_input");
if (input_tensor == nullptr || p3_input_tensor == nullptr || p4_input_tensor == nullptr || p5_input_tensor == nullptr)
{
fprintf(stderr, "Get input tensor failed\n");
return -1;
}
if (set_tensor_shape(input_tensor, dims, 4) < 0 || set_tensor_shape(p3_input_tensor, dims3, 4) < 0 || set_tensor_shape(p4_input_tensor, dims4, 4) < 0 || set_tensor_shape(p5_input_tensor, dims5, 4) < 0)
{
fprintf(stderr, "Set input tensor shape failed\n");
return -1;
}
if (set_tensor_buffer(input_tensor, input_data.data(), img_size * 4) < 0 || set_tensor_buffer(p3_input_tensor, input_data3.data(), 2 * 56 * 56 * 4) < 0 || set_tensor_buffer(p4_input_tensor, input_data4.data(), 2 * 28 * 28 * 4) < 0 || set_tensor_buffer(p5_input_tensor, input_data5.data(), 2 * 14 * 14 * 4) < 0)
{
fprintf(stderr, "Set input tensor buffer failed\n");
return -1;
}
/* prerun graph, set work options(num_thread, cluster, precision) */
if (prerun_graph_multithread(graph, opt) < 0)
{
fprintf(stderr, "Prerun multithread graph failed.\n");
return -1;
}
int wpad, hpad;
/* prepare process input data, set the data mem to input tensor */
get_input_data(image_file, input_data.data(), letterbox_rows, letterbox_cols, mean, scale, wpad, hpad);
int pw = int(letterbox_cols / 8);
int ph = int(letterbox_rows / 8);
float step_h = 2.f / (ph - 1);
float step_w = 2.f / (pw - 1);
for (int h = 0; h < ph; h++)
{
for (int w = 0; w < pw; w++)
{
input_data3[0 + h * pw + w] = -1.f + step_w * (float)w;
input_data3[ph * pw + h * pw + w] = -1.f + step_h * (float)h;
}
}
pw = int(letterbox_cols / 16);
ph = int(letterbox_rows / 16);
step_h = 2.f / (ph - 1);
step_w = 2.f / (pw - 1);
for (int h = 0; h < ph; h++)
{
for (int w = 0; w < pw; w++)
{
input_data4[0 + h * pw + w] = -1.f + step_w * (float)w;
input_data4[ph * pw + h * pw + w] = -1.f + step_h * (float)h;
}
}
pw = int(letterbox_cols / 32);
ph = int(letterbox_rows / 32);
step_h = 2.f / (ph - 1);
step_w = 2.f / (pw - 1);
for (int h = 0; h < ph; h++)
{
for (int w = 0; w < pw; w++)
{
input_data5[0 + h * pw + w] = -1.f + step_w * (float)w;
input_data5[ph * pw + h * pw + w] = -1.f + step_h * (float)h;
}
}
/* run graph */
double min_time = DBL_MAX;
double max_time = DBL_MIN;
double total_time = 0.;
for (int i = 0; i < repeat_count; i++)
{
double start = get_current_time();
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "Run graph failed\n");
return -1;
}
double end = get_current_time();
double cur = end - start;
total_time += cur;
min_time = (std::min)(min_time, cur);
max_time = (std::max)(max_time, cur);
}
fprintf(stderr, "Repeat %d times, thread %d, avg time %.2f ms, max_time %.2f ms, min_time %.2f ms\n", repeat_count, num_thread,
total_time / repeat_count, max_time, min_time);
fprintf(stderr, "--------------------------------------\n");
tensor_t feature_pred = get_graph_tensor(graph, "feature_pred");
tensor_t cate_pred1 = get_graph_tensor(graph, "cate_pred1");
tensor_t cate_pred2 = get_graph_tensor(graph, "cate_pred2");