-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRel.v
447 lines (369 loc) · 14.4 KB
/
Rel.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
(** * Rel: Properties of Relations *)
(** This short (and optional) chapter develops some basic definitions
and a few theorems about binary relations in Coq. The key
definitions are repeated where they are actually used (in the
[Smallstep] chapter of _Programming Language Foundations_),
so readers who are already comfortable with these ideas can safely
skim or skip this chapter. However, relations are also a good
source of exercises for developing facility with Coq's basic
reasoning facilities, so it may be useful to look at this material
just after the [IndProp] chapter. *)
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
From LF Require Export IndProp.
(* ################################################################# *)
(** * Relations *)
(** A binary _relation_ on a set [X] is a family of propositions
parameterized by two elements of [X] -- i.e., a proposition about
pairs of elements of [X]. *)
Definition relation (X: Type) := X -> X -> Prop.
(** Rather confusingly, the Coq standard library hijacks the generic
term "relation" for this specific instance of the idea. To
maintain consistency with the library, we will do the same. So,
henceforth, the Coq identifier [relation] will always refer to a
binary relation _on_ some set (between the set and itself),
whereas in ordinary mathematical English the word "relation" can
refer either to this specific concept or the more general concept
of a relation between any number of possibly different sets. The
context of the discussion should always make clear which is
meant. *)
(** An example relation on [nat] is [le], the less-than-or-equal-to
relation, which we usually write [n1 <= n2]. *)
Print le.
(* ====> Inductive le (n : nat) : nat -> Prop :=
le_n : n <= n
| le_S : forall m : nat, n <= m -> n <= S m *)
Check le : nat -> nat -> Prop.
Check le : relation nat.
(** (Why did we write it this way instead of starting with [Inductive
le : relation nat...]? Because we wanted to put the first [nat]
to the left of the [:], which makes Coq generate a somewhat nicer
induction principle for reasoning about [<=].) *)
(* ################################################################# *)
(** * Basic Properties *)
(** As anyone knows who has taken an undergraduate discrete math
course, there is a lot to be said about relations in general,
including ways of classifying relations (as reflexive, transitive,
etc.), theorems that can be proved generically about certain sorts
of relations, constructions that build one relation from another,
etc. For example... *)
(* ----------------------------------------------------------------- *)
(** *** Partial Functions *)
(** A relation [R] on a set [X] is a _partial function_ if, for every
[x], there is at most one [y] such that [R x y] -- i.e., [R x y1]
and [R x y2] together imply [y1 = y2]. *)
Definition partial_function {X: Type} (R: relation X) :=
forall x y1 y2 : X, R x y1 -> R x y2 -> y1 = y2.
(** For example, the [next_nat] relation defined earlier is a partial
function. *)
Print next_nat.
(* ====> Inductive next_nat (n : nat) : nat -> Prop :=
nn : next_nat n (S n) *)
Check next_nat : relation nat.
Theorem next_nat_partial_function :
partial_function next_nat.
Proof.
unfold partial_function.
intros x y1 y2 H1 H2.
inversion H1. inversion H2.
reflexivity. Qed.
(** However, the [<=] relation on numbers is not a partial
function. (Assume, for a contradiction, that [<=] is a partial
function. But then, since [0 <= 0] and [0 <= 1], it follows that
[0 = 1]. This is nonsense, so our assumption was
contradictory.) *)
Theorem le_not_a_partial_function :
~ (partial_function le).
Proof.
unfold not. unfold partial_function. intros Hc.
assert (0 = 1) as Nonsense. {
apply Hc with (x := 0).
- apply le_n.
- apply le_S. apply le_n. }
discriminate Nonsense.
Qed.
(** **** Exercise: 2 stars, standard, optional (total_relation_not_partial)
Show that the [total_relation] defined in (an exercise in)
[IndProp] is not a partial function. *)
Theorem total_relation_not_a_partial_function: ~ (partial_function total_relation).
Proof.
unfold not. unfold partial_function. intros H. assert (0 = 1) as Nonsense.
{ apply (H 0 0 1).
+ apply total. right. right. reflexivity.
+ apply total. left. unfold lt. apply le_n.
}
discriminate Nonsense.
Qed.
(* [] *)
(** **** Exercise: 2 stars, standard, optional (empty_relation_partial)
Show that the [empty_relation] defined in (an exercise in)
[IndProp] is a partial function. *)
Theorem empty_relation_is_a_partial_function: partial_function empty_relation.
Proof.
unfold partial_function. intros _ _ _ [].
Qed.
(* [] *)
(* ----------------------------------------------------------------- *)
(** *** Reflexive Relations *)
(** A _reflexive_ relation on a set [X] is one for which every element
of [X] is related to itself. *)
Definition reflexive {X: Type} (R: relation X) :=
forall a : X, R a a.
Theorem le_reflexive :
reflexive le.
Proof.
unfold reflexive. intros n. apply le_n. Qed.
(* ----------------------------------------------------------------- *)
(** *** Transitive Relations *)
(** A relation [R] is _transitive_ if [R a c] holds whenever [R a b]
and [R b c] do. *)
Definition transitive {X: Type} (R: relation X) :=
forall a b c : X, (R a b) -> (R b c) -> (R a c).
Theorem le_trans :
transitive le.
Proof.
intros n m o Hnm Hmo.
induction Hmo.
- (* le_n *) apply Hnm.
- (* le_S *) apply le_S. apply IHHmo. Qed.
Theorem lt_trans:
transitive lt.
Proof.
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
apply le_S in Hnm.
apply le_trans with (a := (S n)) (b := (S m)) (c := o).
apply Hnm.
apply Hmo. Qed.
(** **** Exercise: 2 stars, standard, optional (le_trans_hard_way)
We can also prove [lt_trans] more laboriously by induction,
without using [le_trans]. Do this. *)
Theorem lt_trans' :
transitive lt.
Proof.
(* Prove this by induction on evidence that [m] is less than [o]. *)
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
induction Hmo as [| m' Hm'o IHm'o].
+ apply le_S in Hnm. apply Hnm.
+ apply le_S in IHm'o. apply IHm'o.
Qed.
(** [] *)
(** **** Exercise: 2 stars, standard, optional (lt_trans'')
Prove the same thing again by induction on [o]. *)
Theorem lt_trans'' :
transitive lt.
Proof.
unfold lt. unfold transitive.
intros n m o Hnm Hmo.
induction o as [| o' Ho'].
+ induction Hmo. { apply le_S. apply Hnm. } { apply le_S. apply IHHmo. }
+ induction Hmo. { apply le_S. apply Hnm. } { apply le_S. apply IHHmo. }
Qed.
(** [] *)
(** The transitivity of [le], in turn, can be used to prove some facts
that will be useful later (e.g., for the proof of antisymmetry
below)... *)
Theorem le_Sn_le : forall n m, S n <= m -> n <= m.
Proof.
intros n m H. apply le_trans with (S n).
- apply le_S. apply le_n.
- apply H.
Qed.
(** **** Exercise: 1 star, standard, optional (le_S_n) *)
Theorem le_S_n : forall n m,
(S n <= S m) -> (n <= m).
Proof.
intros n m H. inversion H.
+ apply le_reflexive.
+ apply le_Sn_le. apply H1.
Qed.
(** [] *)
(** **** Exercise: 2 stars, standard, optional (le_Sn_n_inf)
Provide an informal proof of the following theorem:
Theorem: For every [n], [~ (S n <= n)]
A formal proof of this is an optional exercise below, but try
writing an informal proof without doing the formal proof first.
Proof: *)
(* FILL IN HERE
[] *)
Search le.
(** **** Exercise: 1 star, standard, optional (le_Sn_n) *)
Theorem le_Sn_n : forall n,
~ (S n <= n).
Proof.
unfold not. intros n H. induction n as [|n' Hn].
+ inversion H.
+ inversion H.
- apply Hn. rewrite H1. apply le_reflexive.
- apply Hn. apply le_S_n. apply H.
Qed.
(** [] *)
(** Reflexivity and transitivity are the main concepts we'll need for
later chapters, but, for a bit of additional practice working with
relations in Coq, let's look at a few other common ones... *)
(* ----------------------------------------------------------------- *)
(** *** Symmetric and Antisymmetric Relations *)
(** A relation [R] is _symmetric_ if [R a b] implies [R b a]. *)
Definition symmetric {X: Type} (R: relation X) :=
forall a b : X, (R a b) -> (R b a).
(** **** Exercise: 2 stars, standard, optional (le_not_symmetric) *)
Theorem le_not_symmetric :
~ (symmetric le).
Proof.
unfold not. unfold symmetric. intros H. assert (1 <= 0) as NS. {
apply H. apply le_0_n.
}
inversion NS.
Qed.
(** [] *)
(** A relation [R] is _antisymmetric_ if [R a b] and [R b a] together
imply [a = b] -- that is, if the only "cycles" in [R] are trivial
ones. *)
Definition antisymmetric {X: Type} (R: relation X) :=
forall a b : X, (R a b) -> (R b a) -> a = b.
(** **** Exercise: 2 stars, standard, optional (le_antisymmetric) *)
Theorem le_antisymmetric :
antisymmetric le.
Proof.
unfold antisymmetric. intros a b Hab Hba. induction a as [|a' IHa].
+ inversion Hba. { reflexivity. }
+ inversion Hba.
- reflexivity.
- assert (a'=b) as Heab. {
apply IHa. apply le_Sn_le. apply Hab. apply H0.
}
rewrite Heab in Hab. apply le_Sn_n in Hab. destruct Hab.
Qed.
(** [] *)
Search le.
(** **** Exercise: 2 stars, standard, optional (le_step) *)
Theorem le_step : forall n m p,
n < m ->
m <= S p ->
n <= p.
Proof.
intros n m p Hnm Hmp. inversion Hnm.
+ rewrite <- H in Hmp. apply Sn_le_Sm__n_le_m. apply Hmp.
+ rewrite <- H0 in Hmp. apply Sn_le_Sm__n_le_m in Hmp.
assert (S n <= p). apply (le_trans (S n) m0 p). apply H. apply Hmp.
apply le_S in H1. apply le_S_n. apply H1.
Qed.
(** [] *)
(* ----------------------------------------------------------------- *)
(** *** Equivalence Relations *)
(** A relation is an _equivalence_ if it's reflexive, symmetric, and
transitive. *)
Definition equivalence {X:Type} (R: relation X) :=
(reflexive R) /\ (symmetric R) /\ (transitive R).
(* ----------------------------------------------------------------- *)
(** *** Partial Orders and Preorders *)
(** A relation is a _partial order_ when it's reflexive,
_anti_-symmetric, and transitive. In the Coq standard library
it's called just "order" for short. *)
Definition order {X:Type} (R: relation X) :=
(reflexive R) /\ (antisymmetric R) /\ (transitive R).
(** A preorder is almost like a partial order, but doesn't have to be
antisymmetric. *)
Definition preorder {X:Type} (R: relation X) :=
(reflexive R) /\ (transitive R).
Theorem le_order :
order le.
Proof.
unfold order. split.
- (* refl *) apply le_reflexive.
- split.
+ (* antisym *) apply le_antisymmetric.
+ (* transitive. *) apply le_trans. Qed.
(* ################################################################# *)
(** * Reflexive, Transitive Closure *)
(** The _reflexive, transitive closure_ of a relation [R] is the
smallest relation that contains [R] and that is both reflexive and
transitive. Formally, it is defined like this in the Relations
module of the Coq standard library: *)
Inductive clos_refl_trans {A: Type} (R: relation A) : relation A :=
| rt_step x y (H : R x y) : clos_refl_trans R x y
| rt_refl x : clos_refl_trans R x x
| rt_trans x y z
(Hxy : clos_refl_trans R x y)
(Hyz : clos_refl_trans R y z) :
clos_refl_trans R x z.
(** For example, the reflexive and transitive closure of the
[next_nat] relation coincides with the [le] relation. *)
Theorem next_nat_closure_is_le : forall n m,
(n <= m) <-> ((clos_refl_trans next_nat) n m).
Proof.
intros n m. split.
- (* -> *)
intro H. induction H.
+ (* le_n *) apply rt_refl.
+ (* le_S *)
apply rt_trans with m. apply IHle. apply rt_step.
apply nn.
- (* <- *)
intro H. induction H.
+ (* rt_step *) inversion H. apply le_S. apply le_n.
+ (* rt_refl *) apply le_n.
+ (* rt_trans *)
apply le_trans with y.
apply IHclos_refl_trans1.
apply IHclos_refl_trans2. Qed.
(** The above definition of reflexive, transitive closure is natural:
it says, explicitly, that the reflexive and transitive closure of
[R] is the least relation that includes [R] and that is closed
under rules of reflexivity and transitivity. But it turns out
that this definition is not very convenient for doing proofs,
since the "nondeterminism" of the [rt_trans] rule can sometimes
lead to tricky inductions. Here is a more useful definition: *)
Inductive clos_refl_trans_1n {A : Type}
(R : relation A) (x : A)
: A -> Prop :=
| rt1n_refl : clos_refl_trans_1n R x x
| rt1n_trans (y z : A)
(Hxy : R x y) (Hrest : clos_refl_trans_1n R y z) :
clos_refl_trans_1n R x z.
(** Our new definition of reflexive, transitive closure "bundles"
the [rt_step] and [rt_trans] rules into the single rule step.
The left-hand premise of this step is a single use of [R],
leading to a much simpler induction principle.
Before we go on, we should check that the two definitions do
indeed define the same relation...
First, we prove two lemmas showing that [clos_refl_trans_1n] mimics
the behavior of the two "missing" [clos_refl_trans]
constructors. *)
Lemma rsc_R : forall (X:Type) (R:relation X) (x y : X),
R x y -> clos_refl_trans_1n R x y.
Proof.
intros X R x y H.
apply rt1n_trans with y. apply H. apply rt1n_refl. Qed.
(** **** Exercise: 2 stars, standard, optional (rsc_trans) *)
Lemma rsc_trans :
forall (X:Type) (R: relation X) (x y z : X),
clos_refl_trans_1n R x y ->
clos_refl_trans_1n R y z ->
clos_refl_trans_1n R x z.
Proof.
intros X R x y z Ha Hb. induction Ha.
- apply Hb.
- apply IHHa in Hb. apply (rt1n_trans R x y z Hxy Hb).
Qed.
(** [] *)
(** Then we use these facts to prove that the two definitions of
reflexive, transitive closure do indeed define the same
relation. *)
(** **** Exercise: 3 stars, standard, optional (rtc_rsc_coincide) *)
Theorem rtc_rsc_coincide :
forall (X:Type) (R: relation X) (x y : X),
clos_refl_trans R x y <-> clos_refl_trans_1n R x y.
Proof.
intros X R x y. split.
+ intros H. induction H as [x y|x|x y z H1 Hclos1 H2 Hclos2].
- apply (rsc_R X R x y H).
- apply rt1n_refl.
- apply (rsc_trans X R x y z Hclos1 Hclos2).
+ intros H. induction H as [x|x y z Hxy H1 H].
- apply rt_refl.
- apply (rt_trans R x y z).
{ apply (rt_step R x y Hxy). } { apply H. }
Qed.
(** [] *)
(* 2021-08-11 15:08 *)