diff --git a/.gitignore b/.gitignore index f286952aa..ec0092def 100644 --- a/.gitignore +++ b/.gitignore @@ -6,3 +6,4 @@ docs/_site build dist .vscode +*.gif \ No newline at end of file diff --git a/Makefile b/Makefile index 4c2be1a0b..8152f1e6f 100644 --- a/Makefile +++ b/Makefile @@ -34,4 +34,11 @@ dist: clean python setup.py sdist bdist_wheel clean: - rm -rf dist \ No newline at end of file + rm -rf dist + +nbdev_flow: + nbdev_install_git_hooks && nbdev_build_lib \ + && nbdev_build_docs \ + && nbdev_clean_nbs --clear_all True --fname "nbs/*" \ + && nbdev_diff_nbs \ + && nbdev_test_nbs --timing diff --git a/docs/arima.html b/docs/arima.html index 753ee9b84..c48b429e0 100644 --- a/docs/arima.html +++ b/docs/arima.html @@ -59,9 +59,9 @@
{'ar1': 0.47051736809750594, - 'ar2': 0.22174549894902976, - 'ma1': -1.088591942427617}+
{'ar1': 0.466880673428245, + 'ar2': 0.22506344134934328, + 'ma1': -1.0964437716813402}
predict_arima
-(array([448.08972925, 423.7922724 , 453.50022757, 496.68138142, - 508.6158662 , 572.31747306, 659.85480907, 644.26321316, - 546.57452622, 499.81156619]), - array([11.52472983, 13.1634063 , 14.67466798, 15.63674637, 16.39162602, - 16.98465381, 17.47757493, 17.89954747, 18.27186588, 18.60809127]))+
(array([448.03641765, 423.6958796 , 453.37910036, 496.53844782, + 508.4585562 , 572.14906375, 659.67853114, 644.08113724, + 546.38826999, 499.62227626]), + array([11.53128398, 13.1873165 , 14.74522214, 15.74954361, 16.54939395, + 17.18562958, 17.7205789 , 18.18296878, 18.59424176, 18.96803794]))@@ -162,12 +162,12 @@
predict_arima
-(array([470.00979488, 440.51641849, 442.19288043, 430.30732962, - 425.09870714, 417.37227647, 411.26942366, 404.89077868, - 399.07483755, 393.42076235]), - array([ 30.69910081, 51.71193144, 61.8938269 , 71.06720305, - 77.98073384, 83.94820591, 88.93458668, 93.25690786, - 96.99562864, 100.27009363]))+
(array([470.0097129 , 440.51623786, 442.19261859, 430.30698345, + 425.09828469, 417.37177946, 411.26885683, 404.89014495, + 399.07414049, 393.42000495]), + array([ 30.69910087, 51.7119296 , 61.89382391, 71.067199 , + 77.98072868, 83.94819971, 88.93457943, 93.2568996 , + 96.9956194 , 100.27008344]))@@ -202,11 +202,11 @@
predict_arima
-(array([441.89788144, 463.67037804, 489.91183156, 513.32967966, - 528.76742686, 534.25615255, 530.97888695, 522.3581832 , - 512.68418691, 505.75238209]), - array([25.04154419, 31.85337573, 33.32711537, 33.3424047 , 34.68174014, - 37.33840844, 39.68800215, 40.77979968, 40.92280668, 40.99296291]))+
(array([441.89777076, 463.6701726 , 489.91157043, 513.32941052, + 528.76719128, 534.25597523, 530.97877135, 522.35811387, + 512.68413676, 505.7523218 ]), + array([25.04154425, 31.85337615, 33.32711649, 33.34240568, 34.68173961, + 37.33840629, 39.6879995 , 40.7797975 , 40.92280492, 40.99296076]))@@ -240,7 +240,7 @@
predict_arima
-1020.700659230761+
1020.8073918488345@@ -475,17 +475,17 @@
auto_arima_f
print_statsforecast_
-class
ARIMASummary
[source]
ARIMASummary
(model
)
+class
ARIMASummary
[source]
ARIMASummary
(model
)
ARIMA Summary.
@@ -614,7 +614,7 @@ class
ARIMASummary
-class
AutoARIMA
[source]
AutoARIMA
(d
:Optional
[int
]=None
, D
:Optional
[int
]=None
, max_p
:int
=5
, max_q
:int
=5
, max_P
:int
=2
, max_Q
:int
=2
, max_order
:int
=5
, max_d
:int
=2
, max_D
:int
=1
, start_p
:int
=2
, start_q
:int
=2
, start_P
:int
=1
, start_Q
:int
=1
, stationary
:bool
=False
, seasonal
:bool
=True
, ic
:str
='aicc'
, stepwise
:bool
=True
, nmodels
:int
=94
, trace
:bool
=False
, approximation
:Optional
[bool
]=None
, method
:Optional
[str
]=None
, truncate
:Optional
[bool
]=None
, test
:str
='kpss'
, test_kwargs
:Optional
[str
]=None
, seasonal_test
:str
='seas'
, seasonal_test_kwargs
:Optional
[Dict
[KT
, VT
]]=None
, allowdrift
:bool
=True
, allowmean
:bool
=True
, blambda
:Optional
[float
]=None
, biasadj
:bool
=False
, parallel
:bool
=False
, num_cores
:int
=2
, period
:int
=1
)
+class
AutoARIMA
[source]
AutoARIMA
(d
:Optional
[int
]=None
, D
:Optional
[int
]=None
, max_p
:int
=5
, max_q
:int
=5
, max_P
:int
=2
, max_Q
:int
=2
, max_order
:int
=5
, max_d
:int
=2
, max_D
:int
=1
, start_p
:int
=2
, start_q
:int
=2
, start_P
:int
=1
, start_Q
:int
=1
, stationary
:bool
=False
, seasonal
:bool
=True
, ic
:str
='aicc'
, stepwise
:bool
=True
, nmodels
:int
=94
, trace
:bool
=False
, approximation
:Optional
[bool
]=None
, method
:Optional
[str
]=None
, truncate
:Optional
[bool
]=None
, test
:str
='kpss'
, test_kwargs
:Optional
[str
]=None
, seasonal_test
:str
='seas'
, seasonal_test_kwargs
:Optional
[typing.Dict
]=None
, allowdrift
:bool
=True
, allowmean
:bool
=True
, blambda
:Optional
[float
]=None
, biasadj
:bool
=False
, parallel
:bool
=False
, num_cores
:int
=2
, period
:int
=1
)
An AutoARIMA estimator.
Returns best ARIMA model according to either AIC, AICc or BIC value.
@@ -829,27 +829,27 @@
References
1
- 483.363283
+ 483.363282
2
- 490.196788
+ 490.196787
3
- 489.549976
+ 489.549975
4
- 485.653256
+ 485.653255
5
- 481.407363
+ 481.407362
6
- 478.248914
+ 478.248913
@@ -909,45 +909,45 @@ References
0
- 426.326488
+ 426.326487
464.631601
- 502.936715
+ 502.936714
1
- 419.928953
- 483.363283
- 546.797613
+ 419.928952
+ 483.363282
+ 546.797612
2
- 411.105076
- 490.196788
- 569.288501
+ 411.105075
+ 490.196787
+ 569.288499
3
401.920876
- 489.549976
- 577.179076
+ 489.549975
+ 577.179074
4
393.609048
- 485.653256
- 577.697464
+ 485.653255
+ 577.697462
5
386.910310
- 481.407363
- 575.904416
+ 481.407362
+ 575.904414
6
382.073456
- 478.248914
- 574.424372
+ 478.248913
+ 574.424370
@@ -999,8 +999,8 @@ References
- lo_90%
lo_80%
+ lo_90%
mean
hi_80%
hi_90%
@@ -1009,59 +1009,59 @@ References
0
+ 426.326487
415.467520
- 426.326488
464.631601
- 502.936715
+ 502.936714
513.795682
1
- 401.946202
- 419.928953
- 483.363283
- 546.797613
- 564.780365
+ 419.928952
+ 401.946201
+ 483.363282
+ 546.797612
+ 564.780363
2
+ 411.105075
388.683674
- 411.105076
- 490.196788
- 569.288501
- 591.709902
+ 490.196787
+ 569.288499
+ 591.709900
3
- 377.079244
401.920876
- 489.549976
- 577.179076
- 602.020708
+ 377.079244
+ 489.549975
+ 577.179074
+ 602.020706
4
- 367.515794
393.609048
- 485.653256
- 577.697464
- 603.790718
+ 367.515794
+ 485.653255
+ 577.697462
+ 603.790716
5
- 360.121709
386.910310
- 481.407363
- 575.904416
- 602.693017
+ 360.121709
+ 481.407362
+ 575.904414
+ 602.693015
6
- 354.809050
382.073456
- 478.248914
- 574.424372
- 601.688778
+ 354.809051
+ 478.248913
+ 574.424370
+ 601.688776
@@ -1143,7 +1143,7 @@ References
139
- 630.376069
+ 630.376068
140
@@ -1240,7 +1240,7 @@ References 3
116.143488
136.303743
- 156.463999
+ 156.463998
4
@@ -1256,9 +1256,9 @@ References
139
- 610.215814
- 630.376069
- 650.536324
+ 610.215813
+ 630.376068
+ 650.536323
140
@@ -1345,40 +1345,40 @@ References
0
+ 73.582887
62.723919
- 73.582886
111.888000
150.193114
161.052081
1
- 63.524432
74.383399
+ 63.524432
112.688513
150.993626
- 161.852594
+ 161.852593
2
- 71.583402
82.442370
+ 71.583402
120.747483
159.052597
169.911564
3
- 87.139662
97.998630
+ 87.139662
136.303743
174.608857
185.467824
4
- 75.745671
86.604639
+ 75.745671
124.909752
163.214866
174.073833
@@ -1393,40 +1393,40 @@ References
139
- 581.211988
- 592.070955
- 630.376069
- 668.681182
- 679.540150
+ 592.070954
+ 581.211987
+ 630.376068
+ 668.681181
+ 679.540149
140
- 518.791984
529.650951
+ 518.791984
567.956065
606.261178
617.120146
141
+ 413.509353
402.650385
- 413.509352
451.814466
490.119580
500.978547
142
- 394.334338
405.193306
+ 394.334338
443.498419
481.803533
492.662500
143
- 324.924284
335.783252
+ 324.924284
374.088365
412.393479
423.252446
@@ -1596,8 +1596,8 @@ References
- lo_90%
lo_80%
+ lo_90%
mean
hi_80%
hi_90%
@@ -1606,83 +1606,83 @@ References
0
- 434.808281
- 444.848076
- 480.263550
- 515.679025
- 525.718820
+ 444.847963
+ 434.808168
+ 480.263437
+ 515.678911
+ 525.718706
1
- 398.250812
- 414.132285
- 470.154335
- 526.176385
- 542.057858
+ 414.132100
+ 398.250623
+ 470.154163
+ 526.176226
+ 542.057702
2
- 403.968806
- 422.259587
- 486.780495
- 551.301404
- 569.592185
+ 422.259329
+ 403.968541
+ 486.780261
+ 551.301193
+ 569.591981
3
- 379.813843
- 398.925989
- 466.344269
- 533.762548
- 552.874694
+ 398.925698
+ 379.813546
+ 466.344002
+ 533.762305
+ 552.874457
4
- 381.849918
- 400.962063
- 468.380343
- 535.798623
- 554.910769
+ 400.961769
+ 381.849617
+ 468.380072
+ 535.798375
+ 554.910527
5
- 383.880201
- 402.992346
- 470.410626
- 537.828906
- 556.941052
+ 402.992047
+ 383.879895
+ 470.410351
+ 537.828654
+ 556.940806
6
- 385.904743
- 405.016888
- 472.435168
- 539.853448
- 558.965594
+ 405.016585
+ 385.904433
+ 472.434888
+ 539.853191
+ 558.965344
7
- 387.923594
- 407.035740
- 474.454019
- 541.872299
- 560.984445
+ 407.035432
+ 387.923280
+ 474.453735
+ 541.872038
+ 560.984191
8
- 389.936804
- 409.048950
- 476.467230
- 543.885510
- 562.997655
+ 409.048638
+ 389.936486
+ 476.466941
+ 543.885244
+ 562.997397
9
- 391.944422
- 411.056568
- 478.474848
- 545.893128
- 565.005273
+ 411.056252
+ 391.944099
+ 478.474555
+ 545.892858
+ 565.005010
@@ -1740,23 +1740,23 @@ References
0
- 73.205301
+ 73.205186
1
- 116.318916
+ 116.319149
2
- 100.318857
+ 100.318853
3
- 107.862716
+ 107.862723
4
- 108.927618
+ 108.927698
...
@@ -1764,23 +1764,23 @@ References
139
- 608.317510
+ 608.317523
140
- 564.682721
+ 564.682620
141
- 429.362373
+ 429.362250
142
- 442.344731
+ 442.344697
143
- 391.284051
+ 391.284005
@@ -1843,43 +1843,43 @@ References
0
- 27.750032
- 37.789827
- 73.205301
- 108.620776
- 118.660570
+ 37.789712
+ 27.749917
+ 73.205186
+ 108.620660
+ 118.660455
1
- 70.863647
- 80.903442
- 116.318916
- 151.734390
- 161.774185
+ 80.903675
+ 70.863880
+ 116.319149
+ 151.734624
+ 161.774418
2
- 54.863588
- 64.903383
- 100.318857
- 135.734332
- 145.774127
+ 64.903379
+ 54.863584
+ 100.318853
+ 135.734328
+ 145.774123
3
- 62.407447
- 72.447242
- 107.862716
- 143.278191
- 153.317985
+ 72.447249
+ 62.407454
+ 107.862723
+ 143.278198
+ 153.317993
4
- 63.472349
- 73.512144
- 108.927618
- 144.343093
- 154.382887
+ 73.512224
+ 63.472429
+ 108.927698
+ 144.343172
+ 154.382967
...
@@ -1891,43 +1891,43 @@ References
139
- 562.862241
- 572.902036
- 608.317510
- 643.732985
- 653.772780
+ 572.902048
+ 562.862253
+ 608.317523
+ 643.732997
+ 653.772792
140
- 519.227452
- 529.267247
- 564.682721
- 600.098196
- 610.137991
+ 529.267145
+ 519.227350
+ 564.682620
+ 600.098094
+ 610.137889
141
- 383.907103
- 393.946898
- 429.362373
- 464.777847
- 474.817642
+ 393.946776
+ 383.906981
+ 429.362250
+ 464.777724
+ 474.817519
142
- 396.889462
- 406.929257
- 442.344731
- 477.760206
- 487.800001
+ 406.929222
+ 396.889427
+ 442.344697
+ 477.760171
+ 487.799966
143
- 345.828782
- 355.868577
- 391.284051
- 426.699526
- 436.739321
+ 355.868531
+ 345.828736
+ 391.284005
+ 426.699480
+ 436.739275
@@ -1966,8 +1966,8 @@ References References
-
+
diff --git a/docs/core.html b/docs/core.html
index e464c91d2..558cc92b7 100644
--- a/docs/core.html
+++ b/docs/core.html
@@ -47,14 +47,20 @@
from statsforecast.models import (
adida,
+ auto_arima,
croston_classic,
+ croston_optimized,
+ croston_sba,
historic_average,
+ imapa,
naive,
+ random_walk_with_drift,
+ seasonal_exponential_smoothing,
seasonal_naive,
seasonal_window_average,
ses,
- auto_arima,
- random_walk_with_drift
+ tsb,
+ window_average,
)
from statsforecast.utils import generate_series
@@ -77,7 +83,7 @@
-class
StatsForecast
[source]
StatsForecast
(df
, models
, freq
, n_jobs
=1
)
+class
StatsForecast
[source]
StatsForecast
(df
, models
, freq
, n_jobs
=1
, ray_address
=None
)
@@ -112,7 +118,11 @@ Daily data
fcst = StatsForecast(
series,
- [adida, (ses, 0.1), historic_average, croston_classic],
+ [adida, croston_classic, croston_optimized,
+ croston_sba, historic_average, imapa, naive,
+ random_walk_with_drift, (seasonal_exponential_smoothing, 7, 0.1),
+ (seasonal_naive, 7), (seasonal_window_average, 7, 4),
+ (ses, 0.1), (tsb, 0.1, 0.3), (window_average, 4)],
freq='D',
)
res = fcst.forecast(14)
@@ -123,144 +133,6 @@ Daily data
-
-
-
-
-
-
-
-
-
-
-
-
- ds
- adida
- ses_alpha-0.1
- historic_average
- croston_classic
-
-
- unique_id
-
-
-
-
-
-
-
-
-
- 0
- 2000-08-10
- 157.559219
- 157.559219
- 161.040253
- 157.559219
-
-
- 0
- 2000-08-11
- 157.559219
- 157.559219
- 161.040253
- 157.559219
-
-
- 0
- 2000-08-12
- 157.559219
- 157.559219
- 161.040253
- 157.559219
-
-
- 0
- 2000-08-13
- 157.559219
- 157.559219
- 161.040253
- 157.559219
-
-
- 0
- 2000-08-14
- 157.559219
- 157.559219
- 161.040253
- 157.559219
-
-
- ...
- ...
- ...
- ...
- ...
- ...
-
-
- 9999
- 2000-06-27
- 87.646744
- 87.646744
- 78.274399
- 87.646744
-
-
- 9999
- 2000-06-28
- 87.646744
- 87.646744
- 78.274399
- 87.646744
-
-
- 9999
- 2000-06-29
- 87.646744
- 87.646744
- 78.274399
- 87.646744
-
-
- 9999
- 2000-06-30
- 87.646744
- 87.646744
- 78.274399
- 87.646744
-
-
- 9999
- 2000-07-01
- 87.646744
- 87.646744
- 78.274399
- 87.646744
-
-
-
-140000 rows × 5 columns
-
-
-
-
-
-
-
{% endraw %}
@@ -277,7 +149,9 @@ Parallel
-if __name__=="__main__":
+
-
-
-
-
-
-
- ds adida ses_alpha-0.1 historic_average \
-unique_id
-0 2000-08-10 157.559219 157.559219 161.040253
-0 2000-08-11 157.559219 157.559219 161.040253
-0 2000-08-12 157.559219 157.559219 161.040253
-0 2000-08-13 157.559219 157.559219 161.040253
-0 2000-08-14 157.559219 157.559219 161.040253
-... ... ... ... ...
-9999 2000-06-27 87.646744 87.646744 78.274399
-9999 2000-06-28 87.646744 87.646744 78.274399
-9999 2000-06-29 87.646744 87.646744 78.274399
-9999 2000-06-30 87.646744 87.646744 78.274399
-9999 2000-07-01 87.646744 87.646744 78.274399
-
- croston_classic
-unique_id
-0 157.559219
-0 157.559219
-0 157.559219
-0 157.559219
-0 157.559219
-... ...
-9999 87.646744
-9999 87.646744
-9999 87.646744
-9999 87.646744
-9999 87.646744
-
-[140000 rows x 5 columns]
-
-
-
-
-
-
-
{% endraw %}
@@ -358,105 +190,6 @@ Monthly data <
-
-
-
-
-
-
-
-
-
-
-
-
- ds
- y
-
-
- unique_id
-
-
-
-
-
-
- 0
- 2000-06-30
- 0.317078
-
-
- 0
- 2000-07-31
- 1.183993
-
-
- 0
- 2000-08-31
- 2.458650
-
-
- 0
- 2000-09-30
- 3.396637
-
-
- 0
- 2000-10-31
- 4.160418
-
-
- ...
- ...
- ...
-
-
- 9999
- 2001-04-30
- 7.087452
-
-
- 9999
- 2001-05-31
- 8.106541
-
-
- 9999
- 2001-06-30
- 9.162334
-
-
- 9999
- 2001-07-31
- 10.052648
-
-
- 9999
- 2001-08-31
- 11.327798
-
-
-
-150180 rows × 2 columns
-
-
-
-
-
-
-
{% endraw %}
@@ -480,153 +213,6 @@ Monthly data <
-
-
-
-
-
-
-CPU times: user 3.03 s, sys: 10.6 ms, total: 3.05 s
-Wall time: 3.04 s
-
-
-
-
-
-
-
-
-
-
-
-
-
- ds
- adida
- ses_alpha-0.1
- historic_average
- croston_classic
-
-
- unique_id
-
-
-
-
-
-
-
-
-
- 0
- 2001-09-30
- 4.069533
- 4.101110
- 4.895469
- 4.101110
-
-
- 0
- 2001-10-31
- 4.069533
- 4.101110
- 4.895469
- 4.101110
-
-
- 0
- 2001-11-30
- 4.069533
- 4.101110
- 4.895469
- 4.101110
-
-
- 0
- 2001-12-31
- 4.069533
- 4.101110
- 4.895469
- 4.101110
-
-
- 1
- 2001-09-30
- 6.407427
- 5.631709
- 6.588876
- 5.631709
-
-
- ...
- ...
- ...
- ...
- ...
- ...
-
-
- 9998
- 2001-12-31
- 4.352780
- 5.783700
- 5.083481
- 5.783700
-
-
- 9999
- 2001-09-30
- 7.166113
- 7.166113
- 6.789791
- 7.166113
-
-
- 9999
- 2001-10-31
- 7.166113
- 7.166113
- 6.789791
- 7.166113
-
-
- 9999
- 2001-11-30
- 7.166113
- 7.166113
- 6.789791
- 7.166113
-
-
- 9999
- 2001-12-31
- 7.166113
- 7.166113
- 6.789791
- 7.166113
-
-
-
-40000 rows × 5 columns
-
-
-
-
-
-
-
{% endraw %}
@@ -644,28 +230,6 @@ Monthly data <
-
-
-
-
-
-
-
-
-array([[ 5.039017 ],
- [ 6.4191217],
- [ 7.143789 ],
- ...,
- [ 9.162334 ],
- [10.052649 ],
- [11.327798 ]], dtype=float32)
-
-
-
-
-
-
-
{% endraw %}
@@ -709,74 +273,6 @@ Integer datestamp
-
-
-
-
-
-
-
-
-
-
-
- ds
- y
-
-
- unique_id
-
-
-
-
-
-
- AirPassengers
- 1
- 112.0
-
-
- AirPassengers
- 2
- 118.0
-
-
- AirPassengers
- 3
- 132.0
-
-
- AirPassengers
- 4
- 129.0
-
-
- AirPassengers
- 5
- 121.0
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -794,74 +290,6 @@ Integer datestamp
-
-
-
-
-
-
-
-
-
-
-
- ds
- y
-
-
- unique_id
-
-
-
-
-
-
- AirPassengers
- 140
- 606.0
-
-
- AirPassengers
- 141
- 508.0
-
-
- AirPassengers
- 142
- 461.0
-
-
- AirPassengers
- 143
- 390.0
-
-
- AirPassengers
- 144
- 432.0
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -882,74 +310,6 @@ Integer datestamp
-
-
-
-
-
-
-
-
-
-
-
- ds
- historic_average
-
-
- unique_id
-
-
-
-
-
-
- AirPassengers
- 145
- 280.298615
-
-
- AirPassengers
- 146
- 280.298615
-
-
- AirPassengers
- 147
- 280.298615
-
-
- AirPassengers
- 148
- 280.298615
-
-
- AirPassengers
- 149
- 280.298615
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -1023,196 +383,6 @@ External regressors
-
-
-
-
-
-
-
-
-
-
-
- ds
- y
- intercept
- dayofweek_1
- dayofweek_2
- dayofweek_3
- dayofweek_4
- dayofweek_5
- dayofweek_6
-
-
- unique_id
-
-
-
-
-
-
-
-
-
-
-
-
-
- 0
- 2000-10-05
- 0.123838
- 1
- 0
- 0
- 1
- 0
- 0
- 0
-
-
- 0
- 2000-10-06
- 1.460113
- 1
- 0
- 0
- 0
- 1
- 0
- 0
-
-
- 0
- 2000-10-07
- 2.418577
- 1
- 0
- 0
- 0
- 0
- 1
- 0
-
-
- 0
- 2000-10-08
- 3.372232
- 1
- 0
- 0
- 0
- 0
- 0
- 1
-
-
- 0
- 2000-10-09
- 4.241948
- 1
- 0
- 0
- 0
- 0
- 0
- 0
-
-
- ...
- ...
- ...
- ...
- ...
- ...
- ...
- ...
- ...
- ...
-
-
- 9999
- 2001-05-10
- 2.338823
- 1
- 0
- 0
- 1
- 0
- 0
- 0
-
-
- 9999
- 2001-05-11
- 3.402687
- 1
- 0
- 0
- 0
- 1
- 0
- 0
-
-
- 9999
- 2001-05-12
- 4.235569
- 1
- 0
- 0
- 0
- 0
- 1
- 0
-
-
- 9999
- 2001-05-13
- 5.210396
- 1
- 0
- 0
- 0
- 0
- 0
- 1
-
-
- 9999
- 2001-05-14
- 6.238846
- 1
- 0
- 0
- 0
- 0
- 0
- 0
-
-
-
-2769354 rows × 9 columns
-
-
-
-
-
-
-
{% endraw %}
@@ -1242,21 +412,6 @@ External regressors
-
-
-
-
-
-CPU times: user 2.43 s, sys: 12.2 ms, total: 2.45 s
-Wall time: 2.44 s
-
-
-
-
-
-
-
{% endraw %}
@@ -1274,24 +429,6 @@ External regressors
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -1322,24 +459,6 @@ Confidence intervals
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -1377,7 +496,7 @@ n jobs
{% endraw %}
-
+
diff --git a/docs/index.html b/docs/index.html
index 6a0677b46..a039b49d2 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -402,104 +402,6 @@ 🧬 How to use
-
-
-
-
-
-
-
-
-
-unique_id
-ds
-auto_arima_season_length-12
-seasonal_naive_season_length-12
-
-
-
-
-0
-133
-424.16
-360
-
-
-0
-134
-407.082
-342
-
-
-0
-135
-470.861
-406
-
-
-0
-136
-460.914
-396
-
-
-0
-137
-484.901
-420
-
-
-0
-138
-536.904
-472
-
-
-0
-139
-612.903
-548
-
-
-0
-140
-623.903
-559
-
-
-0
-141
-527.903
-463
-
-
-0
-142
-471.903
-407
-
-
-0
-143
-426.903
-362
-
-
-0
-144
-469.903
-405
-
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -542,24 +444,6 @@ 🧬 How to use
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -600,6 +484,7 @@ Adding external regressors
series_xreg['trend'] = np.arange(1, ap_train.size + 1)
+series_xreg['intercept'] = np.ones(ap_train.size)
series_xreg['month'] = series_xreg['ds'].dt.month
series_xreg = pd.get_dummies(series_xreg, columns=['month'], drop_first=True)
@@ -625,128 +510,6 @@ Adding external regressors
-
-
-
-
-
-
-
-
-unique_id
-ds
-y
-trend
-month_2
-month_3
-month_4
-month_5
-month_6
-month_7
-month_8
-month_9
-month_10
-month_11
-month_12
-
-
-
-
-0
-1949-01-31 00:00:00
-112
-1
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-
-
-0
-1949-02-28 00:00:00
-118
-2
-1
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-
-
-0
-1949-03-31 00:00:00
-132
-3
-0
-1
-0
-0
-0
-0
-0
-0
-0
-0
-0
-
-
-0
-1949-04-30 00:00:00
-129
-4
-0
-0
-1
-0
-0
-0
-0
-0
-0
-0
-0
-
-
-0
-1949-05-31 00:00:00
-121
-5
-0
-0
-0
-1
-0
-0
-0
-0
-0
-0
-0
-
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -780,6 +543,7 @@ Adding external regressors
xreg_test['trend'] = np.arange(133, ap_test.size + 133)
+xreg_test['intercept'] = np.ones(ap_test.size)
xreg_test['month'] = xreg_test['ds'].dt.month
xreg_test = pd.get_dummies(xreg_test, columns=['month'], drop_first=True)
@@ -812,104 +576,6 @@ Adding external regressors
-
-
-
-
-
-
-
-
-unique_id
-ds
-auto_arima_season_length-12
-seasonal_naive_season_length-12
-
-
-
-
-0
-1960-01-31 00:00:00
-410.705
-360
-
-
-0
-1960-02-29 00:00:00
-373.401
-342
-
-
-0
-1960-03-31 00:00:00
-448.045
-406
-
-
-0
-1960-04-30 00:00:00
-431.354
-396
-
-
-0
-1960-05-31 00:00:00
-448.953
-420
-
-
-0
-1960-06-30 00:00:00
-509.361
-472
-
-
-0
-1960-07-31 00:00:00
-587.814
-548
-
-
-0
-1960-08-31 00:00:00
-592.518
-559
-
-
-0
-1960-09-30 00:00:00
-480.76
-463
-
-
-0
-1960-10-31 00:00:00
-435.196
-407
-
-
-0
-1960-11-30 00:00:00
-388.282
-362
-
-
-0
-1960-12-31 00:00:00
-439.467
-405
-
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -952,24 +618,6 @@ Adding external regressors
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
{% endraw %}
@@ -990,5 +638,5 @@ 📃 References
-
+
diff --git a/docs/models.html b/docs/models.html
index 9b8d6265a..451310c69 100644
--- a/docs/models.html
+++ b/docs/models.html
@@ -529,5 +529,5 @@ auto_arima
AirPassengers data