-
Notifications
You must be signed in to change notification settings - Fork 380
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ERROR tune_controller.py:1331 -- Trial task failed for trial _train_tune_793c7e93 #987
Comments
from neuralforecast.auto import AutoTSMixer, AutoTSMixerx from datasetsforecast.long_horizon import LongHorizon Change this to your own data to try the modelY_df, X_df, _ = LongHorizon.load(directory='./', group='ETTm2') X_df contains the exogenous features, which we add to Y_dfX_df['ds'] = pd.to_datetime(X_df['ds']) We make validation and test splitsn_time = len(Y_df.ds.unique()) tsmixer_config = { tsmixerx_config = tsmixer_config.copy() nf = NeuralForecast(models=[modelx], freq='15min') print(f'MAE TSMixerx: {mae(y_hat_tsmixerx, y_true):.3f}') |
Thanks - this is weird, if I run your code it runs without any issue. Can you give more details about the machine config (OS, Python) you are using? How are you running this script? If I'd have to guess it's a package conflict issue - so I would create a new virtual environment, install neuralforecast in that environment, and try rerunning the script. |
This issue has been automatically closed because it has been awaiting a response for too long. When you have time to to work with the maintainers to resolve this issue, please post a new comment and it will be re-opened. If the issue has been locked for editing by the time you return to it, please open a new issue and reference this one. |
What happened + What you expected to happen
(_train_tune pid=59932) /Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/tune/integration/pytorch_lightning.py:198:
ray.tune.integration.pytorch_lightning.TuneReportCallback
is deprecated. Useray.tune.integration.pytorch_lightning.TuneReportCheckpointCallback
instead.(_train_tune pid=59932) Seed set to 1
2024-05-01 01:27:11,649 ERROR tune_controller.py:1331 -- Trial task failed for trial _train_tune_793c7e93
Traceback (most recent call last):
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/air/execution/_internal/event_manager.py", line 110, in resolve_future
result = ray.get(future)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/_private/auto_init_hook.py", line 21, in auto_init_wrapper
return fn(*args, **kwargs)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/_private/client_mode_hook.py", line 103, in wrapper
return func(*args, **kwargs)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/_private/worker.py", line 2623, in get
values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/_private/worker.py", line 861, in get_objects
raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(ValueError): ray::ImplicitFunc.train() (pid=59932, ip=127.0.0.1, actor_id=b48464a8f9278052285d8c3c01000000, repr=_train_tune)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/tune/trainable/trainable.py", line 330, in train
raise skipped from exception_cause(skipped)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/air/_internal/util.py", line 98, in run
self._ret = self._target(*self._args, **self._kwargs)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/tune/trainable/function_trainable.py", line 45, in
training_func=lambda: self._trainable_func(self.config),
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/tune/trainable/function_trainable.py", line 253, in _trainable_func
output = fn()
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/ray/tune/trainable/util.py", line 130, in inner
return trainable(config, **fn_kwargs)
File "/Users/leo/web3/LLM/langchain/neuralforecast/neuralforecast/common/_base_auto.py", line 209, in _train_tune
_ = self._fit_model(
File "/Users/leo/web3/LLM/langchain/neuralforecast/neuralforecast/common/_base_auto.py", line 357, in _fit_model
model = model.fit(
File "/Users/leo/web3/LLM/langchain/neuralforecast/neuralforecast/common/_base_multivariate.py", line 537, in fit
return self._fit(
File "/Users/leo/web3/LLM/langchain/neuralforecast/neuralforecast/common/_base_model.py", line 218, in _fit
trainer = pl.Trainer(**model.trainer_kwargs)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/pytorch_lightning/utilities/argparse.py", line 70, in insert_env_defaults
return fn(self, **kwargs)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 431, in init
self._callback_connector.on_trainer_init(
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py", line 79, in on_trainer_init
_validate_callbacks_list(self.trainer.callbacks)
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py", line 227, in _validate_callbacks_list
stateful_callbacks = [cb for cb in callbacks if is_overridden("state_dict", instance=cb)]
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py", line 227, in
stateful_callbacks = [cb for cb in callbacks if is_overridden("state_dict", instance=cb)]
File "/Users/leo/web3/LLM/langchain/venv/lib/python3.10/site-packages/pytorch_lightning/utilities/model_helpers.py", line 42, in is_overridden
raise ValueError("Expected a parent")
ValueError: Expected a parent
Versions / Dependencies
Name: neuralforecast
Version: 1.7.1
Summary: Time series forecasting suite using deep learning models
Home-page: https://github.com/Nixtla/neuralforecast/
Author: Nixtla
Author-email: business@nixtla.io
License: Apache Software License 2.0
Reproduction script
Y_hat_df = nf.cross_validation(df=Y_train_df,
val_size=val_size,
test_size=test_size,
n_windows=None
)
Issue Severity
High: It blocks me from completing my task.
The text was updated successfully, but these errors were encountered: