-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_snli.py
271 lines (187 loc) · 10.4 KB
/
train_snli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.optim import Optimizer
from torch.nn import Module, CrossEntropyLoss
from torchtext.vocab import Vectors
import argparse
import os
from datetime import datetime
import time
from constants import Constants
from datasets.snli_dataset import SnliDataset
from helpers.snli_loader import SnliLoader
from helpers.data_helper_snli import DataHelperSnli
from helpers.utils_helper import UtilsHelper
from model.SnliClassifier import MLP
from tensorboardX import SummaryWriter
utils_helper = UtilsHelper()
def initialize_model(argument_parser, device, glove_vectors_dim):
total_embedding_dim = Constants.ORIGINAL_ELMO_EMBEDDING_DIMENSION + glove_vectors_dim
model = MLP(argument_parser, total_embedding_dim, device).to(device)
### WEIGHT DECAY SEPERATELLY????
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),
lr=argument_parser.learning_rate, weight_decay=argument_parser.weight_decay)
# Load the checkpoint if found
start_epoch = 1
if argument_parser.load_model and os.path.isfile(argument_parser.model_checkpoint):
checkpoint = torch.load(argument_parser.model_checkpoint)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if checkpoint['epoch']:
start_epoch = checkpoint['epoch'] + 1
print('Found previous model state')
else:
print('Loading model state...Done')
print("Starting training in '%s' mode from epoch %d..." %
("SNLI", start_epoch))
return model, optimizer, start_epoch
def create_snli_loaders(argument_parser, glove_vectors):
train_dataset, validation_dataset, test_dataset = SnliLoader.get_snli_datasets(argument_parser.snli_dataset_folder, glove_vectors, argument_parser)
train_dataloader, validation_dataloader, test_dataloader = DataHelperSnli.create_dataloaders(
train_dataset, validation_dataset, test_dataset, argument_parser.batch_size, shuffle=True)
return train_dataloader, validation_dataloader, test_dataloader
def iterate_dataset(model, optimizer, criterion, snli_data, device, train = False):
batch_inputs1 = snli_data[0].to(device)
batch_sent_lengths1 = snli_data[1].to(device)
batch_recover_idx1 = snli_data[2].to(device)
batch_inputs2 = snli_data[3].to(device)
batch_sent_lengths2 = snli_data[4].to(device)
batch_recover_idx2 = snli_data[5].to(device)
batch_targets = snli_data[6].to(device)
if train:
logits = model.forward(batch_inputs1, batch_inputs2, batch_sent_lengths1, batch_sent_lengths2, batch_recover_idx1, batch_recover_idx2)
loss = criterion(logits, batch_targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()
else:
with torch.no_grad():
logits = model.forward(batch_inputs1, batch_inputs2, batch_sent_lengths1, batch_sent_lengths2, batch_recover_idx1, batch_recover_idx2)
loss = criterion(logits, batch_targets)
accuracy = utils_helper.calculate_accuracy(logits, batch_targets)
return loss.item(), accuracy.item(), batch_targets.long().tolist(), torch.argmax(logits, dim=1).long().tolist()
def forward_full_dataset(model, optimizer, criterion, dataloader, device, train = False):
all_targets = []
all_predictions = []
running_loss = 0
running_accuracy = 0
total_length = len(dataloader)
for step, snli_data in enumerate(dataloader):
loss, accuracy, batch_targets, batch_predictions = iterate_dataset(model, optimizer, criterion, snli_data, device, train)
running_loss += loss
running_accuracy += accuracy
all_targets += batch_targets
all_predictions += batch_predictions
final_loss = running_loss / (step + 1)
final_accuracy = running_accuracy / (step + 1)
return final_loss, final_accuracy, all_targets, all_predictions
def print_stats(train_loss, valid_loss, train_accuracy, valid_accuracy, valid_precision, valid_recall, valid_f1,
epoch, art_epoch, eval_per_epoch, new_best_score = False):
epoch_str = str(epoch)
if len(epoch_str) == 1:
epoch_str = "0" + epoch_str
new_best_str = '<- New Best' if new_best_score else ''
print("[{}] epoch {}({}/{})|| LOSS: train = {:.4f}, valid = {:.4f} || ACCURACY: train = {:.4f}, valid = {:.4f} || F1 SCORE : {:.4f} {}".format(
datetime.now().time().replace(microsecond=0),
epoch_str, art_epoch, eval_per_epoch, train_loss, valid_loss, train_accuracy, valid_accuracy, valid_f1, new_best_str))
def cache_model(model, optimizer, epoch=None):
torch_state = {'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()}
if epoch is not None:
torch_state['epoch'] = epoch
torch.save(torch_state, argument_parser.model_checkpoint)
def log_metrics(summary_writer, global_step, loss_train, accuracy_train, valid_loss, valid_accuracy, valid_precision, valid_recall, valid_f1):
summary_writer.add_scalar('train_loss', loss_train, global_step=global_step)
summary_writer.add_scalar('train_accuracy', accuracy_train, global_step=global_step)
summary_writer.add_scalar('valid_loss', valid_loss, global_step=global_step)
summary_writer.add_scalar('valid_accuracy', valid_accuracy, global_step=global_step)
summary_writer.add_scalar('valid_precision', valid_precision, global_step=global_step)
summary_writer.add_scalar('valid_recall', valid_recall, global_step=global_step)
summary_writer.add_scalar('valid_f1', valid_f1, global_step=global_step)
def train_model(argument_parser):
# Flags for deterministic runs
if argument_parser.deterministic:
utils_helper.initialize_deterministic_mode(argument_parser.deterministic)
# Set device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load GloVe vectors
glove_vectors = utils_helper.load_glove_vectors(argument_parser.vector_file_name, argument_parser.vector_cache_dir, argument_parser.glove_size)
# Define the model, the optimizer and the loss module
model, optimizer, start_epoch = initialize_model(argument_parser, device, glove_vectors.dim)
summary_writer = SummaryWriter(f'runs/exp-snli-lr_{argument_parser.learning_rate}-wd_{argument_parser.weight_decay}')
criterion = CrossEntropyLoss()
train_dataloader, validation_dataloader, test_dataloader = create_snli_loaders(argument_parser, glove_vectors)
tic = time.clock()
best_f1 = .0
counter = 0
running_loss, running_accuracy = 0, 0
total_length = len(train_dataloader)
eval_step = int(total_length / argument_parser.eval_per_epoch)
artificial_epoch = 0
for epoch in range(start_epoch, argument_parser.max_epochs + 1):
for train_step, snli_train_data in enumerate(train_dataloader, start = 1):
model.train()
loss, accuracy, _, _ = iterate_dataset(model, optimizer, criterion, snli_train_data, device, train = True)
running_loss += loss
running_accuracy += accuracy
if not train_step % eval_step:
artificial_epoch += 1
model.eval()
valid_loss, valid_accuracy, valid_targets, valid_predictions = forward_full_dataset(model, optimizer, criterion, validation_dataloader, device)
valid_f1, valid_precision, valid_recall = utils_helper.calculate_metrics(valid_targets, valid_predictions, average = "micro")
train_loss = running_loss / eval_step
train_accuracy = running_accuracy / eval_step
running_loss, running_accuracy = 0, 0
log_metrics(summary_writer, artificial_epoch, train_loss, train_accuracy, valid_loss, valid_accuracy, valid_precision, valid_recall, valid_f1)
print_stats(train_loss, valid_loss, train_accuracy, valid_accuracy, valid_precision, valid_recall, valid_f1,
epoch, train_step//eval_step, argument_parser.eval_per_epoch, new_best_score = best_f1 < valid_f1)
if valid_f1 > best_f1:
counter = 0
best_f1 = valid_f1
best_artificial_epoch = artificial_epoch
cache_model(model, optimizer, artificial_epoch)
else:
counter += 1
if counter > argument_parser.eval_per_epoch - 1:
break
print("[{}] Training completed in {:.2f} minutes".format(datetime.now().time().replace(microsecond=0), (time.clock() - tic) / 60))
print("[{}] Loading model of epoch {}({}/{}) with f1 score {:.4f}".format(datetime.now().time().replace(microsecond=0),
best_artificial_epoch // argument_parser.eval_per_epoch, best_artificial_epoch % argument_parser.eval_per_epoch, argument_parser.eval_per_epoch, best_f1))
summary_writer.close()
model = MLP(argument_parser, Constants.ORIGINAL_ELMO_EMBEDDING_DIMENSION + glove_vectors.dim, device).to(device)
checkpoint = torch.load(argument_parser.model_checkpoint)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
test_loss, test_accuracy, test_targets, test_predictions = forward_full_dataset(model, optimizer, criterion, test_dataloader, device)
test_f1, test_precision, test_recall = utils_helper.calculate_metrics(test_targets, test_predictions, average = "micro")
print("[{}] TEST SET: loss = {:.4f}, accu = {:.4f}, precision = {:.4f}, recall = {:.4f}, f1 = {:.4f}".format(
datetime.now().time().replace(microsecond=0), test_loss, test_accuracy, test_precision, test_recall, test_f1))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--load_model', action='store_true', default = False)
parser.add_argument('--vector_file_name', type=str, default = "glove.840B.300d.txt")
parser.add_argument('--vector_cache_dir', type=str)
parser.add_argument('--learning_rate', type=float, default = 0.0001)
parser.add_argument('--max_epochs', type=int, default = 20)
parser.add_argument('--batch_size', type=int, default = 64)
parser.add_argument('--hidden_dim', type=int, default=Constants.DEFAULT_HIDDEN_DIMENSION)
parser.add_argument('--glove_size', default = None)
parser.add_argument('--weight_decay', type=float, default = 0.0001)
parser.add_argument('--snli_dataset_folder', type=str)
parser.add_argument('--deterministic', default = False)
parser.add_argument('--sent_encoder_dropout_rate', type=float, default=0.)
parser.add_argument('--num_layers', type=int, default=Constants.DEFAULT_NUM_LAYERS)
parser.add_argument('--skip_connection', action='store_true', default=Constants.DEFAULT_SKIP_CONNECTION)
parser.add_argument('--use_data_train', default = None)
parser.add_argument('--use_data_valid', default = None)
parser.add_argument('--use_data_test', default = None)
parser.add_argument('--eval_per_epoch', type=int, default = 10)
parser.add_argument('--model_checkpoint', type=str, default = "checkpoints/snli/run.pt")
argument_parser = parser.parse_args()
print("*** Hyperparameters ***")
print("_"*50)
for key, value in vars(argument_parser).items():
print(key + ' : ' + str(value))
print("_"*50)
train_model(argument_parser)