-
-
Notifications
You must be signed in to change notification settings - Fork 164
/
Copy pathhc.py
54 lines (44 loc) · 1.87 KB
/
hc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
""" Hierarchical Clustering
"""
# Importing the libraries
import matplotlib.pyplot as plt
import pandas as pd
import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering
def main():
# Importing the dataset
dataset = pd.read_csv('Mall_Customers.csv')
X = dataset.iloc[:, [3, 4]].values
# y = dataset.iloc[:, 3].values
# Splitting the dataset into the Training set and Test set
"""from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"""
# Feature Scaling
"""from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)"""
# Using the dendrogram to find the optimal number of clusters
dendrogram = sch.dendrogram(sch.linkage(X, method='ward'))
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean distances')
plt.show()
# Fitting Hierarchical Clustering to the dataset
hc = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')
y_hc = hc.fit_predict(X)
# Visualising the clusters
plt.scatter(X[y_hc == 0, 0], X[y_hc == 0, 1], s=100, c='red', label='Cluster 1')
plt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s=100, c='blue', label='Cluster 2')
plt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s=100, c='green', label='Cluster 3')
plt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s=100, c='cyan', label='Cluster 4')
plt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s=100, c='magenta', label='Cluster 5')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
if __name__ == '__main__':
main()