-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo.py
218 lines (189 loc) · 9.4 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
'''
Implement the PPO algorithm for our Selection Environment.
'''
import os
import json
import math
import argparse
from tqdm import tqdm
import itertools
from collections import defaultdict
from stable_baselines3.common.env_checker import check_env
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3 import PPO
from IRT.implement_irt import read_dataset
from selection_env import SelectionEnv
def implement_PPO_algorithm(env, num_students, MAX_EPISODES, num_test_students, hyperparameters, save_main_dir = 'results', intermediate=None, bypass_num_passes=None):
'''
Implement stable baselines algorithm with the environment
'''
# wrap the environment using DummyVecEnv
if intermediate is None:
obs = env.set_force_reset(force_reset=-1, mode='train') # start from student 0
env = DummyVecEnv([lambda: env])
policy_name = hyperparameters['policy_name']
gamma = hyperparameters['gamma']
ent_coef = hyperparameters['ent_coef']
learning_rate = hyperparameters['learning_rate']
num_forward_passes = hyperparameters['num_forward_passes']
# train students
num_train_students = num_students - num_test_students
# train the agent
print('\nTraining the agent')
model = PPO(policy_name, env, verbose=1, gamma=gamma, ent_coef=ent_coef, learning_rate=learning_rate, n_epochs = num_forward_passes, n_steps=1024, batch_size=64).learn(total_timesteps = int(num_train_students)*MAX_EPISODES)
print('\nTesting the trained agent')
# test the trained agent
for sub_env in env.envs:
sub_env.set_force_reset(num_students-num_test_students-1, mode='test')
obs = env.reset() # start from student 0
# test for k students
K = num_test_students-1
# TODO: Calculate discounted return for each student
pred_student_information = defaultdict(dict)
for j in tqdm(range(K)):
# print('##### Testing for student {:d} #####'.format(j))
n_steps = 20
pred_student_information[j]['discounted_return'] = 0
pred_student_information[j]['test_cases'] = []
for step in range(n_steps):
action, _ = model.predict(obs, deterministic=False)
# print("Step {}".format(step + 1))
# print("Action: ", action)
obs, reward, done, info = env.step(action)
# print('Observation, Reward, Done, Info: ', obs, reward, done, info)
env.render(mode='console')
# update discounted return
pred_student_information[j]['discounted_return'] += (gamma**step)*reward.tolist()[0]
# update test cases
pred_student_information[j]['test_cases'].append(action.tolist()[0])
if done:
break
save_dir = '{:s}/PPO/{:s}'.format(save_main_dir, policy_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# save discounted return
if intermediate is None:
save_path = '{:s}/{:f}_{:f}_{:f}_{:d}.json'.format(save_dir, gamma, ent_coef, learning_rate, num_forward_passes)
with open(save_path, 'w') as f:
json.dump(pred_student_information, f, indent=4)
else:
save_path_dir = '{:s}/{:f}_{:f}_{:f}_{:d}'.format(save_dir, gamma, ent_coef, learning_rate, bypass_num_passes)
if not os.path.exists(save_path_dir):
os.makedirs(save_path_dir)
save_path = '{:d}.json'.format(intermediate)
with open(os.path.join(save_path_dir, save_path), 'w') as f:
json.dump(pred_student_information, f, indent=4)
def save_intermediate_results(env, num_students, MAX_EPISODES, num_test_students, hyperparameters):
'''
Train the model and save the validation results after each epoch
'''
save_main_dir = 'results_intermediate'
num_forward_passes = hyperparameters['num_forward_passes']
hyperparameters['num_forward_passes'] = 1
for intermediate in range(1, num_forward_passes+1):
if intermediate == 1:
# wrap the environment using DummyVecEnv
obs = env.set_force_reset(force_reset=-1, mode='train') # start from student 0
env = DummyVecEnv([lambda: env])
else:
for sub_env in env.envs:
sub_env.set_force_reset(force_reset=-1, mode='train')
# call the implement_PPO_algorithm function
print('Epoch: {:d}'.format(intermediate))
implement_PPO_algorithm(env, num_students, MAX_EPISODES, num_test_students, hyperparameters, save_main_dir, intermediate, bypass_num_passes=num_forward_passes)
def test_individual_env_methods():
env = SelectionEnv()
observation = env.get_observation('This is a test', 'This is a test also')
print(observation.shape) # (768,)
# test get updated ability
print(env.get_updated_ability(0, [0, 0, 1, 2]))
# test - step
for i in range(10):
print(env.step(i))
def create_new_env(student_ids, num_test_students, outputs, CONSIDER_TEST_CASES, MAX_EPISODES, verbose=False):
'''
Create a new environment
'''
env = SelectionEnv(student_ids, num_test_students, outputs, CONSIDER_TEST_CASES, MAX_EPISODES, verbose=verbose)
return env
def parse_arguments():
'''
Parse command line arguments
'''
parser = argparse.ArgumentParser(description='Test Case Selection Environment')
parser.add_argument('--num_test_students', type=int, default=10, help='Number of test students')
parser.add_argument('--CONSIDER_TEST_CASES', type=int, default=15, help='Number of test cases to consider')
parser.add_argument('--MAX_EPISODES', type=int, default=10, help='Maximum number of episodes')
parser.add_argument('--verbose', type=bool, default=False, help='Verbose')
parser.add_argument('--intermediate', type=bool, default=False, help='Save intermediate results')
parser.add_argument('--config', type=str, default='0.900000_0.000000_0.005000_10.json', help='Default hyperparameters')
parser.add_argument('--save_main_dir', type=str, default='results', help='Save main directory')
parser.add_argument('--force_repeat', type=bool, default=False, help='Force repeat the experiment')
args = parser.parse_args()
return args
def main():
# parse arguments
args = parse_arguments()
# output directory
output_dir = args.save_main_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# define number of test cases to consider
CONSIDER_TEST_CASES = args.CONSIDER_TEST_CASES
MAX_EPISODES = args.MAX_EPISODES
num_test_students = args.num_test_students
verbose = args.verbose
intermediate = args.intermediate
# TODO: Load dataset
student_ids, outputs = read_dataset(CONSIDER_TEST_CASES)
# define environment
env = create_new_env(student_ids, num_test_students, outputs, CONSIDER_TEST_CASES, MAX_EPISODES, verbose)
# test individual environment methods
# test_individual_env_methods()
# check environment
check_env(env)
print('Environment Validated!')
if not intermediate:
# implement algorithm
print('\nPerforming Hyperparameter Tuning')
# define hyperparameters for hyperparameter tuning
policy_name = ['MlpPolicy']
gamma = [0.9]
ent_coef = [0.01, 0.1]
learning_rate = [0.0001, 0.001, 0.01]
num_forward_passes = [10, 25, 50] # num epochs
# iterate over all combinations of hyperparameters
for policy_name, gamma, ent_coef, learning_rate, num_forward_passes in itertools.product(policy_name, gamma, ent_coef, learning_rate, num_forward_passes):
# save path
if not args.force_repeat:
save_dir = 'results/PPO/{:s}'.format(policy_name)
save_path = save_path = '{:s}/{:f}_{:f}_{:f}_{:d}.json'.format(save_dir, gamma, ent_coef, learning_rate, num_forward_passes)
# check if file exists
if os.path.exists(save_path):
continue
# create new environment
env = create_new_env(student_ids, num_test_students, outputs, CONSIDER_TEST_CASES, MAX_EPISODES, verbose=verbose)
# define hyperparameters dictionary
hyperparameters = {'policy_name': policy_name, 'gamma': gamma, 'ent_coef': ent_coef, 'learning_rate': learning_rate, 'num_forward_passes': num_forward_passes}
# implement algorithm
implement_PPO_algorithm(env, len(student_ids), MAX_EPISODES, num_test_students, hyperparameters)
# print hyperparameters
print('Hyperparameters: ', hyperparameters)
# close environment
env.close()
# delete environment
del env
else:
# print intermediate results for a single hyperparameter setting
# parse config
config = args.config
gamma, ent_coef, learning_rate, num_forward_passes = config.strip('.json').split('_')
policy_name = 'MlpPolicy'
hyperparameters = {'policy_name': policy_name, 'gamma': float(gamma), 'ent_coef': float(ent_coef), 'learning_rate': float(learning_rate), 'num_forward_passes': int(num_forward_passes)}
# create new environment
env = create_new_env(student_ids, num_test_students, outputs, CONSIDER_TEST_CASES, MAX_EPISODES, verbose=verbose)
print('Saving intermediate results for hyperparameters: ', hyperparameters)
# save intermediate results
save_intermediate_results(env, len(student_ids), MAX_EPISODES, num_test_students, hyperparameters)
if __name__ == '__main__':
main()