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1 Introduction

The ball and beam system is one of the most enduringly popular and important
laboratory models for teaching control systems engineering. The ball-and-beam is
widely used because it is very simple to understand as a system, and yet the control
techniques that can be studied cover many important classical and modern design
methods. It has a very important property; it is open-loop unstable.

The system is very simple, a steel ball rolling on the top of a long beam. The
beam is mounted on the output shaft of an electric motor and so the beam can
be tilted about its center axis by applying an electrical control signal to the motor
amplifier. The control job is to automatically regulate the position of the ball on
the beam by changing the angle of the beam. This is a difficult control task because
the ball does not stay in one place on the beam but moves with acceleration that is
approximately proportional to the tilt of the beam. In control terminology, the sys-
tem is open-loop unstable because the system output (the ball position) increases
without limit for a fixed input (beam angle). Feedback control must be used to
stabilize the system and to keep the ball in a desired position on the beam.

Figure 1: Ball and Beam Diagram

2 Mathematical Modeling

2.1 Lagrangian Method

The control objective is to control the torque τ applied at the pivot of the beam,
such that the ball can roll on the beam and track a desired trajectory. The torque
causes thus a change of the beam angle and a movement in the position of the ball.
The ball rolls on the beam without slipping under the action of the force of gravity.
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Defining the generalized coordinate:

Containing the 2 D.o.F. of the system: the position of the ball and the angle of
the beam, respectively.

Considering:

• K1: Kinetic energy of the beam;

• K2: Kinetic energy of the ball;

• U : total potential energy of the system;

• K: total kinetic energy of the system;

The Lagrangian of a system is defined as:

The computation of the Kinetic Energy of the two system components:

Where:

• J : moment of inertia of the beam;

• Jb: moment of inertia of the ball;

• ·θb: angular speed of the ball;
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• νb: linear speed of the ball;

Actually both the linear and the angular speed of the ball can be expressed in
terms of the generalized coordinates considering r the ball radius:

Therefore the kinetic energy of the ball in function of the generalized coordinates
can be written as:

The Potential Energy of the system:

The Lagrangian of the system:

The two lagrange equations that provide the dynamics of the system will result
to be:

explaining the terms of the equations:
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Therefore the two dynamic equations would result to be:

2.2 Non-Linear and Linear State-Variable Representation

The equations of motion we derived for the Ball and Beam system can be written
in state-variable representation.

Defining the state vector:

The equations of motion can then be written in terms of the state variables as:

This state vector is composed of the minimum set of variables required to deter-
mine the future response of the system given the input and the current state.
The Jacobian of the right hand side of the above equation, with respect to the state
vector x, yields
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with:

The Jacobian with respect to the input yields:

Now by defining an operating point corresponding to a constant ball position
with null velocity. Being null also the corresponding angle and angular velocity, the
operating state will be then given by:

In addition it can also been defined the operating input required to maintain the
operating point, above defined, as:

Then we can evaluate the matrix A,B,C of the state-variable representation at
the operating point:
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Using these matrices, the system can now be written in a state-space represen-
tation of the form:

From this state space representation, the system can be analyzed and a controller
may be designed.

3 Proposed tasks

3.1 Task-1: Trajectory Exploration

Choose two equilibria and define a step between these two configurations. Com-
pute the optimal transition for the robot to move from one equilibrium to another
exploiting the DDP algorithm.

3.2 Task-2: Trajectory Optimization

Define the reference (quasi) trajectory which the ball needs to follow exploiting
the DDP algorithm to compute the optimal trajectory.

3.3 Task-3: Trajectory Tracking

Linearizing the system dynamics about the (optimal) trajectory (x, u) computed
in Task 2, exploit the LQR algorithm to define the optimal feedback controller to
track this reference trajectory.

3.4 Task-4: Physical Implementation / Animation

Presentation of a simple prototype using Raspberry Pi board programmed in
python or by making a simple animation of the robot executing Task 3.
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