-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmixed-gan.py
593 lines (510 loc) · 21 KB
/
mixed-gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
from torchvision import transforms
import copy
import threading
import time
from queue import Queue
from random import Random
from matplotlib import pyplot as plt
import torch
from torch import nn, optim
from torchvision import datasets as torch_ds
from torch.utils.data import DataLoader
import os
from torchvision.utils import save_image
from tqdm import tqdm
import torch.nn.functional as F
from model.mnist_model import Discriminator, MixGenerator
from torch.autograd import Variable
import pickle as pkl
import numpy as np
from fedlab.utils.dataset.partition import MNISTPartitioner
from fedlab.utils.functional import partition_report
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--cloud_epoch", default=1, type=int)
parser.add_argument("-s", "--segema", default=0., type=float)
args = parser.parse_args()
Tensor = torch.cuda.FloatTensor if torch.cuda.device_count() else torch.FloatTensor
rd = Random()
seed = 20211212
rd.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
plt.ion()
lock = threading.Lock()
SimulationName = None
num_communication = 20000
workers = []
servers = []
cloud = None
cloud_epoch = args.cloud_epoch
segema = args.segema
# server_epoch = 100
num_workers = 10
num_servers = 5
num_class = 10 #
num_sample = 1000 # 结果的样本数量 the num of result sample
iid = 0
datasets = []
test_set = []
batch_size = 100
frac_workers = 1 # 选择同步的工人的比例 (默认为全部)
epoch = 1 # 同步前的本地迭代次数 local epoch of clients
b1 = 0.5
b2 = 0.999
img_size = 28
# dataset = None
dataset = torch_ds.MNIST(root="./data/", train=True, download=True)
ims = (1, img_size, img_size)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
elif classname.find('Linear') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def plot_2d():
for item in tqdm(range(num_communication//500)):
D = []
for j in range(num_servers):
X = servers[j].queen_gen_data.get()
D.append(X[::X.shape[0] // (num_sample // num_servers)])
# D.append(X)
D = torch.cat(D)
save_image(D[::D.shape[0] // 100], "./logger/" + SimulationName + "/%d.png" % item, nrow=10, normalize=True)
class Cloud(threading.Thread):
def __init__(self):
super(Cloud, self).__init__(name="Cloud")
self.cache = Queue()
self.server_list = [x for x in range(num_servers)]
self.A = []
def getMaxCon(self, a, b):
while b:
a, b = b, a % b
return a
def run(self) -> None:
self.A = torch.zeros(num_servers)
for id in range(num_servers):
while servers[self.server_list[id]].data_len is None:
pass
self.A[id] = servers[self.server_list[id]].data_len
self.A /= self.A.sum()
assert cloud_epoch > 0
for i in range(num_communication // cloud_epoch):
p = {}
for item in range(num_servers):
idx, paras = self.cache.get()
for key in paras:
if key in p:
p[key] += paras[key] * self.A[self.server_list.index(idx)]
else:
p[key] = paras[key] * self.A[self.server_list.index(idx)]
for idx in self.server_list:
servers[idx].cache.put(p)
class Server(threading.Thread):
def __init__(self, rank, dt=None, lr_g=0.0002, lr_d=0.0002):
super(Server, self).__init__(name="Server"+str(rank+1))
self.idx = rank
self.generator = Queue(maxsize=20)
self.discriminator = Queue(maxsize=20)
self.cache = Queue(maxsize=5)
self.lr_g = lr_g
self.lr_d = lr_d
self.dataset = dt
self.batch_size = batch_size
self.epoch = epoch
self.queen_g = Queue(maxsize=20)
self.queen_d = Queue(maxsize=20)
self.rd = Random()
self.rd.seed(rank+100)
self.client_list = []
self.queen_gen_data = Queue(maxsize=50)
self.beta = None
self.Lambda = torch.tensor(0., requires_grad=True)
self.opti_L = optim.SGD([self.Lambda], lr=0.1)
self.data_len = None
self.fixed_z = torch.randn(num_sample//num_servers, 100, device="cuda:0")
def copy_parameters(self, net):
parameters = {}
for key, var in net.state_dict().items():
if len(var.size()) != 0:
parameters[key] = var.clone()
return parameters
def receive_parameter(self):
p = self.discriminator.get()
for _ in range(len(self.client_list) - 1):
d = self.discriminator.get()
for key in p:
p[key] += d[key]
for key in p:
p[key] /= len(self.client_list)
return p
def run(self):
print(self.name, ":starting service for", [item+1 for item in self.client_list])
N = len(self.client_list)
self.choose_flag = [0 for _ in range(N)]
self.beta = torch.zeros(N)
for c in range(N):
self.beta[c] = len(workers[self.client_list[c]].dataset)
self.data_len = self.beta.sum()
self.beta /= self.data_len
t = num_communication
net_g = MixGenerator(ims, N).cuda()
net_g.apply(weights_init)
opti_g = optim.Adam(net_g.parameters(), lr=self.lr_g, betas=(b1, b2))
# segema = torch.tensor(0) # 1 是完全独立学习 0 是完全共享学习
lambda_list = []
gen_data = []
betas = []
gammas = []
while t > 0:
if t % 500 == 0:
gen_data.append(self.plot_2d(net_g))
if cloud_epoch !=0 and t % cloud_epoch == 0:
self_p = self.copy_parameters(net_g.model)
parameters = copy.deepcopy(self_p)
cloud.cache.put((self.idx, parameters))
recv_p = self.cache.get()
for key in recv_p:
recv_p[key] = segema * self_p[key] + (1 - segema) * recv_p[key]
net_g.load_state_dict(recv_p, strict=False)
fbeta, fgamma, fmax = self.train(net_g, opti_g, N)
print(self.idx, num_communication - t, fmax)
if t % 500 == 0:
betas.append(fbeta)
gammas.append(fgamma)
lambda_list.append(self.Lambda.item())
if t % 5000 == 0:
torch.save(net_g.state_dict(), "./logger/" + SimulationName + "/{}.pt".format(self.name, t))
with open("./logger/" + SimulationName + "/config{}.pkl".format(self.name), 'wb') as f: # 将数据写入pkl文件
pkl.dump((self.client_list, self.beta, lambda_list, [], gen_data, betas, gammas), f)
f.flush()
f.close()
lambda_list.clear()
gen_data.clear()
betas.clear()
gammas.clear()
torch.cuda.empty_cache()
t -= 1
for idx in self.client_list:
workers[idx].queen_d.put((self.idx, False))
torch.save(net_g.state_dict(), "./logger/"+SimulationName + "/{}.pt".format(self.name))
with open("./logger/" + SimulationName + "/config{}.pkl".format(self.name), 'wb') as f: # 将数据写入pkl文件
pkl.dump((self.client_list, self.beta, lambda_list, [], gen_data, betas, gammas), f)
def plot_2d(self, net):
net.eval()
with torch.no_grad():
X = net(self.fixed_z).cpu()
self.queen_gen_data.put(X)
net.train()
return X
def train(self, net_g, opti, N):
start = time.time()
# 生成随机噪音,使用正态分布
with torch.no_grad():
z = torch.randn(self.batch_size, 100, device="cuda:0", requires_grad=True)
Xd = torch.chunk(net_g(z), len(self.client_list), dim=0)
z = torch.randn(self.batch_size, 100, device="cuda:0", requires_grad=True)
Xg = torch.chunk(net_g(z), len(self.client_list), dim=0)
# send
for client in self.client_list:
workers[client].queen_d.put((self.idx, Xd[self.client_list.index(client)].clone()))
workers[client].queen_g.put((self.idx, Xg[self.client_list.index(client)].clone()))
opti.zero_grad()
loss = torch.zeros(N)
for i in range(N):
(idx, g_loss) = self.queen_g.get()
# 更新个性层
loss[self.client_list.index(idx)] = g_loss.clone()
losses = loss.sum()
net_g.model.requires_grad_(False)
losses.backward(retain_graph=True)
net_g.model.requires_grad_(True)
# 计算权重和并更新神经网络
self.opti_L.zero_grad()
# gamma = F.softmax(self.Lambda * loss.detach(), dim=0)
# F_beta = (self.beta * loss).sum()
# F_gamma = (gamma * loss).sum()
# F_max = (F_beta + F_gamma) / 2
alpha = F.softmax(self.beta * self.Lambda.detach() * loss.detach(), dim=0)
F_max = (alpha * loss).sum() - 0.001 * self.Lambda
net_g.paths.requires_grad_(False)
F_max.backward()
net_g.paths.requires_grad_(True)
#
# grad = (loss * loss * gamma).sum() - (loss * gamma * F_gamma).sum()
# self.Lambda = Lambda + 10 * grad
self.opti_L.step()
opti.step()
# self.opti_L.step()
end = time.time()
# return F_beta.cpu().item(), F_gamma.cpu().item(), F_max.cpu().item()
return 0, 0, F_max.cpu().item()
class Worker(threading.Thread):
def __init__(self, rank, dataset, lr_g=0.0002, lr_d=0.0002):
super(Worker, self).__init__(name="Worker" + str(rank+1))
self.idx = rank
self.generator = Queue(maxsize=20)
self.discriminator = Queue(maxsize=20)
self.lr_g = lr_g
self.lr_d = lr_d
self.dataset = dataset
self.batch_size = batch_size
self.epoch = epoch
self.queen_g = Queue(maxsize=20)
self.queen_d = Queue(maxsize=20)
self.rd = Random()
self.rd.seed(rank)
self.server_list = []
self.dataloader = DataLoader(dataset=self.dataset, batch_size=self.batch_size, shuffle=True)
# self.test = self.dataset[self.rd.sample(range(len(self.dataset)), num_sample)]
self.data = iter(self.dataloader)
self.mse = torch.nn.L1Loss()
self.A = None
def copy_parameters(self, net):
parameters = {}
for key, var in net.state_dict().items():
if len(var.size()) != 0:
parameters[key] = var.clone()
return parameters
def receive_parameter(self):
p = self.discriminator.get()
for _ in range(len(self.server_list) - 1):
d = self.discriminator.get()
for key in p:
p[key] += d[key]
for key in p:
p[key] /= len(self.server_list)
return p
def run(self):
print(self.name, ":starting waiting for service from", [item+1 for item in self.server_list])
N = len(self.server_list)
self.A = torch.zeros(N)
for id in range(N):
while servers[self.server_list[id]].data_len is None:
pass
self.A[id] = servers[self.server_list[id]].data_len
self.A /= self.A.sum()
# self.A *= N
t = num_communication
net_d = Discriminator(ims).cuda()
net_d.apply(weights_init)
loss = nn.CrossEntropyLoss().cuda()
opti_d = optim.Adam(net_d.parameters(), lr=self.lr_d, betas=(b1, b2))
self.train(t, net_d, loss, opti_d, N)
def train(self, t, net_d, loss, opti_d, N):
while True:
start = time.time()
Xs = []
idx , X = self.queen_d.get()
if isinstance(X, bool) is True:
return
for i in range(epoch):
try:
imgs, _ = next(self.data)
except StopIteration:
self.dataloader = DataLoader(dataset=self.dataset, batch_size=self.batch_size, shuffle=True)
self.data = iter(self.dataloader)
imgs, _ = next(self.data)
valid = Variable(torch.cuda.LongTensor(imgs.shape[0]).fill_(1.), requires_grad=False)
real_imgs = Variable(imgs.type(Tensor))
opti_d.zero_grad()
real_loss = loss(net_d(real_imgs), valid)
fake = Variable(torch.cuda.LongTensor(self.batch_size).fill_(0.),
requires_grad=False)
fake_loss = loss(net_d(X), fake)
D_loss = (real_loss + fake_loss) * 0.5
D_loss.backward()
opti_d.step()
valid = Variable(torch.cuda.LongTensor(self.batch_size).fill_(1.), requires_grad=False)
(idx, Xg) = self.queen_g.get()
validaty = net_d(Xg)
G_loss = loss(validaty, valid)
servers[idx].queen_g.put((self.idx, G_loss))
end = time.time()
def del_tensor_ele(arr, index, l):
arr1 = arr[0:index]
arr2 = arr[index+l:]
return torch.cat((arr1, arr2), dim=0)
def allocate_dataset(data, iid):
labels = list(data.targets)
global ims
ims = (1, 28, 28)
data_len = len(data.data)
indexes = [x for x in range(0, data_len)]
#
global test_set
# # test_set = copy.deepcopy(data)
test_set = data.data[rd.sample(range(data_len), num_sample)]
# iid 简单均分就完事了
if iid == 0:
sizes = [1.0 / num_workers for _ in range(num_workers)]
rd.shuffle(indexes) # 打乱下标
for frac in sizes:
part_len = int(frac * data_len)
dd = copy.deepcopy(data)
dd.data = data.data[indexes[0:part_len]]
dd.targets = data.targets[indexes[0:part_len]]
datasets.append(dd)
indexes = indexes[part_len:]
else:
order = np.argsort(labels)
data.data = data.data[order]
data.targets = data.targets[order]
labels = data.targets
# 生成和为 1 的随机比例
se = rd.sample(range(1, num_workers ** 2), k=num_workers - 1)
se.append(0)
se.append(num_workers ** 2)
se = sorted(se)
sizes = [(se[i] - se[i - 1]) / (num_workers ** 2) for i in range(1, len(se))]
# [0.16, 0.24, 0.18, 0.03, 0.02, 0.01, 0.09, 0.22, 0.03, 0.02]
if iid == 1:
labels = labels.tolist()
for i in range(num_workers):
index_s = (i - 1 + num_class) % num_class
index_e = (i + 2) % num_class
s = labels.index(index_s)
e = labels.index(index_e)
l = int(sizes[i] * data_len)
dd = copy.deepcopy(data)
if s < e:
if l > (e - s):
l = e - s
choose_list = rd.sample(range(s, e), l)
dd.data = data.data[choose_list]
dd.targets = data.targets[choose_list]
datasets.append(dd)
else:
if l > (e + data_len - s):
l = e + data_len - s
choose_list = rd.sample(list(range(0, e)) + list(range(s, data_len)), l)
dd.data = data.data[choose_list]
dd.targets = data.targets[choose_list]
datasets.append(dd)
else:
l = 1
s = 0
for i in range(num_workers):
while l < data_len and labels[l] == labels[l - 1]:
l += 1
dd = copy.deepcopy(data)
choose_list = rd.sample(range(s, l), min(int(sizes[i] * data_len), l-s))
dd.data = data.data[choose_list]
dd.targets = data.targets[choose_list]
datasets.append(dd)
s = l % data_len
l = s + 1
# def allocate_dataset(trainset, iid):
# labels = []
#
# # for i, d in enumerate(torch.utils.data.DataLoader(data, batch_size=len(data), shuffle=False)):
# # ims = d[0][0].shape
# # data = d[0]
# # labels = d[1]
# # data_len = len(data)
# # indexes = [x for x in range(0, data_len)]
#
# global test_set
# # test_set = copy.deepcopy(data)
# test_set = trainset.data[rd.sample(range(len(trainset.data)), num_sample)]
# # iid 简单均分就完事了
# if iid == 0:
# return MNISTPartitioner(trainset.targets,
# num_workers,
# partition="iid",
# dir_alpha=0.3,
# seed=seed)
#
#
#
# elif iid == 1:
# return MNISTPartitioner(trainset.targets,
# num_workers,
# partition="noniid-labeldir",
# dir_alpha=0.1,
# seed=seed)
#
# elif iid == 2:
# return MNISTPartitioner(trainset.targets,
# num_workers,
# major_classes_num=1,
# partition="noniid-#label",
# dir_alpha=0.1,
# seed=seed)
# else:
# raise ValueError('the value of iid only support 0 iid, 1 basic non-iid, 2 fully non-iid')
if __name__ == "__main__":
# sleep(60*60*4)
for l in range(1):
dataset_name = ""
if l == 0:
dataset_name = "MNIST"
dataset = torch_ds.MNIST(root='./data/mnist', train=True, download=True,
transform=transforms.Compose(
[transforms.Resize(img_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
]))
if l == 1:
dataset_name = "Fashion-MNIST"
dataset = torch_ds.FashionMNIST(root='./data', train=True, download=True,
transform=transforms.Compose(
[transforms.Resize(img_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
]))
for k in range(1, 2):
workers.clear()
servers.clear()
datasets.clear()
iid = k
SimulationName = time.strftime("%Y-%m-%d %H-%M-%S",
time.localtime()) + "-MIXGAN-"+dataset_name + "-iid_%d" % iid + "-epoch_%d" % epoch \
+ "-H-%d"%cloud_epoch+ "_share-%.1f"%segema + "_batchsize%d"%batch_size + f"numserver{num_servers}_numworker{num_workers}"
if not os.path.isdir('./logger'):
os.mkdir('./logger')
if not os.path.isdir('./logger/' + SimulationName):
os.mkdir('./logger/' + SimulationName)
# datasets_parts = allocate_dataset(dataset, iid)
allocate_dataset(dataset, iid)
cloud = Cloud()
# csv_file = './logger/' + SimulationName + "/mnist_iid_{}_dir_0.3_100clients.csv".format(iid)
# partition_report(dataset.targets, datasets_parts.client_dict, class_num=10, verbose=False,
# file=csv_file)
#
# for i in range(num_workers):
# dd = copy.deepcopy(dataset)
# dd.data = dataset.data[datasets_parts.client_dict[i]]
# dd.targets = dataset.targets[datasets_parts.client_dict[i]]
# workers.append(Worker(i, dataset=dd))
for i in range(num_workers):
workers.append(Worker(i, dataset=datasets[i]))
for i in range(num_servers):
servers.append(Server(i))
worker = [id for id in range(num_workers)]
for i in range(num_servers):
alnwokers = worker[:num_workers // num_servers]
worker = worker[num_workers // num_servers:]
for j in alnwokers:
servers[i].client_list.append(j)
workers[j].server_list.append(i)
print("Simulation", SimulationName, " is started!!!")
# 启动所有程序
for i in range(num_servers):
servers[i].start()
for i in range(num_workers):
workers[i].start()
cloud.start()
painter = threading.Thread(plot_2d())
painter.start()
for i in range(num_servers):
servers[i].join()
for i in range(num_workers):
workers[i].join()
cloud.join()
painter.join()
print("Simulation", SimulationName, " is over!!!")