-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode (Python).py
75 lines (58 loc) · 2.68 KB
/
Code (Python).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import cv2 # OpenCV library for computer vision tasks
import time # Library for time-related functions
from datetime import datetime # Library for date and time manipulation
import argparse # Library for parsing command-line arguments
import os # Library for interacting with the operating system
# Load the face cascade classifier
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
# Open the video capture
video = cv2.VideoCapture(0)
while True:
# Read a frame from the video
check, frame = video.read()
if frame is not None:
# Convert the frame to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect faces in the grayscale frame
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10)
# Draw rectangles around the detected faces and save the images
for x, y, w, h in faces:
img = cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3)
exact_time = datetime.now().strftime('%Y-%b-%d-%H-%S-%f')
cv2.imwrite("face detected" + str(exact_time) + ".jpg", img)
# Display the frame with rectangles
cv2.imshow("home surv", frame)
# Wait for a key press
key = cv2.waitKey(1)
if key == ord('q'):
# Parse command-line arguments
ap = argparse.ArgumentParser()
ap.add_argument("-ext", "--extension", required=False, default='jpg')
ap.add_argument("-o", "--output", required=False, default='output.mp4')
args = vars(ap.parse_args())
# Get the current directory path, extension, and output file name
dir_path = '.'
ext = args['extension']
output = args['output']
images = []
# Get all files in the directory with the specified extension
for f in os.listdir(dir_path):
if f.endswith(ext):
images.append(f)
# Get the path of the first image
image_path = os.path.join(dir_path, images[0])
frame = cv2.imread(image_path)
height, width, channels = frame.shape
# Create a video writer object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output, fourcc, 5.0, (width, height))
# Write each image to the video
for image in images:
image_path = os.path.join(dir_path, image)
frame = cv2.imread(image_path)
out.write(frame)
# Release the video capture and video writer
break
# Release the video capture and close all windows
video.release()
cv2.destroyAllWindows()