-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathosc.py
421 lines (366 loc) · 18.6 KB
/
osc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for OSCAR. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
from isaacgym import gymapi
import torch
import numpy as np
from oscar.utils.torch_utils import quat_mul, quat2mat, orientation_error, axisangle2quat
from .base_controller import Controller
class OSCController(Controller):
"""
Operational Space Controller. Leverages impedance-based end effector control.
This controller expects 6DOF delta commands (dx, dy, dz, dax, day, daz), where the delta orientation
commands are in axis-angle form, and outputs low-level torque commands.
Gains may also be considered part of the action space as well. In this case, the action space would be:
(
dx, dy, dz, dax, day, daz <-- 6DOF delta eef commands
[, kpx, kpy, kpz, kpax, kpay, kpaz] <-- kp gains
[, drx dry, drz, drax, dray, draz] <-- damping ratio gains
[, kpnx, kpny, kpnz, kpnax, kpnay, kpnaz] <-- kp null gains
)
Note that in this case, we ASSUME that the inputted gains are normalized to be in the range [-1, 1], and will
be mapped appropriately to their respective ranges, as defined by XX_limits
Alternatively, parameters (in this case, kp or damping_ratio) can either be set during initialization or provided
from an external source; if the latter, the control_dict should include the respective parameter(s) as
a part of its keys
Args:
input_min (int, float, or array): Minimum values below which received commands will be clipped
input_max (int, float, or array): Maximum values above which received commands will be clipped
output_min (int, float, or array): Lower end of range that received commands will be mapped to
output_max (int, float, or array): Upper end of range that received commands will be mapped to
control_min (int, float, or array): Minimum control values below which outputted controls will be clipped
control_max (int, float, or array): Maximum control values above which outputted controls will be clipped
control_noise (float): Amount of noise to apply. Should be in [0, 1)
control_dim (int): Outputted control dimension -- should be number of joints from base to eef body frame
device (str): Which device to send all tensors to by default
kp (None, int, float, or array): Gain values to apply to 6DOF error.
If None, will be variable (part of action space)
kp_limits (2-array): (min, max) values of kp
damping_ratio (None, int, float, or array): Damping ratio to apply to 6DOF error controller gain
If None, will be variable (part of action space)
damping_ratio_limits (2-array): (min, max) values of damping ratio
kp_null (None, int, float, or array): Gain applied when calculating null torques
If None, will be variable (part of action space)
kp_null_limits (2-array): (min, max) values of kp_null
rest_qpos (None, int, float, or array): If not None, sets the joint configuration used for null torques
decouple_pos_ori (bool): Whether to decouple position and orientation control or not
normalize_control (bool): Whether or not to normalize outputted controls to (-1, 1) range
"""
def __init__(
self,
input_min,
input_max,
output_min,
output_max,
control_min,
control_max,
control_noise,
control_dim,
device,
kp=150.0,
kp_limits=(10.0, 300.),
damping_ratio=1.0,
damping_ratio_limits=(0.0, 2.0),
kp_null=10.0,
kp_null_limits=(0.0, 50.0),
rest_qpos=None,
decouple_pos_ori=False,
normalize_control=True,
**kwargs, # hacky way to sink extraneous args
):
# Run super init first
super().__init__(
command_dim=6,
input_min=input_min,
input_max=input_max,
output_min=output_min,
output_max=output_max,
control_min=control_min,
control_max=control_max,
control_noise=control_noise,
control_dim=control_dim,
device=device,
normalize_control=normalize_control,
)
# Store gains
self.kp = self.nums2tensorarray(nums=kp, dim=6) if kp is not None else None
self.damping_ratio = damping_ratio
self.kp_null = self.nums2tensorarray(nums=kp_null, dim=self.control_dim) if kp_null is not None else None
self.kd_null = 2 * torch.sqrt(self.kp_null) if kp_null is not None else None # critically damped
self.kp_limits = np.array(kp_limits)
self.damping_ratio_limits = np.array(damping_ratio_limits)
self.kp_null_limits = np.array(kp_null_limits)
# Store settings for whether we're learning gains or not
self.variable_kp = self.kp is None
self.variable_damping_ratio = self.damping_ratio is None
self.variable_kp_null = self.kp_null is None
# Modify input / output scaling based on whether we expect gains to be part of the action space
for variable_gain, gain_limits, dim in zip(
(self.variable_kp, self.variable_damping_ratio, self.variable_kp_null),
(self.kp_limits, self.damping_ratio_limits, self.kp_null_limits),
(6, 6, self.control_dim),
):
if variable_gain:
# Add this to input / output limits
self.input_min = torch.cat([self.input_min, self.nums2tensorarray(nums=-1., dim=dim)])
self.input_max = torch.cat([self.input_max, self.nums2tensorarray(nums=1., dim=dim)])
self.output_min = torch.cat([self.output_min, self.nums2tensorarray(nums=gain_limits[0], dim=dim)])
self.output_max = torch.cat([self.output_max, self.nums2tensorarray(nums=gain_limits[1], dim=dim)])
# Update command dim
self.command_dim += dim
# Other values
self.rest_qpos = self.nums2tensorarray(nums=rest_qpos, dim=self.control_dim) if rest_qpos is not None else None
self.decouple_pos_ori = decouple_pos_ori
# Initialize internal vars
self.n_envs = None
self.goal_pos = None
self.goal_ori_mat = None
def update_goal(self, control_dict, command, env_ids=None, train=False):
"""
Updates the internal goal (ee pos and ee ori mat) based on the inputted delta command
Args:
control_dict (dict): Dictionary of keyword-mapped tensors including relevant control
information (eef state, q states, etc.)
Expected keys:
eef_state: shape of (N, 13), the (lin_pos, quat_ori, lin_vel, ang_vel) state of the eef body
command (tensor): 6+DOF EEF command -- first 6 dimensions should be (dx, dy, dz, dax, day, daz), where the
delta orientation commands are in axis angle form
env_ids (None or tensor): If specified, should be (integer) IDs corresponding to the
specific env instances should have gains updated
train (bool): If True, will assume env_ids is None and will NOT index specific goals so we avoid inplace
operations and so that we can backprop later
"""
# Get useful state info
ee_pos = control_dict["eef_state"][:, :3]
ee_quat = control_dict["eef_state"][:, 3:7]
# Scale the commands appropriately
command = self.scale_command(command)
dpose = command[:, :6]
gains = command[:, 6:]
# Set n_envs, goal_pos, goal_ori, (and maybe gains) if we haven't done so already or if we need to update values
if self.n_envs is None or command.shape[0] != self.n_envs:
self.n_envs = command.shape[0]
self.goal_pos = torch.zeros(self.n_envs, 3, device=self.device)
self.goal_ori_mat = torch.zeros(self.n_envs, 3, 3, device=self.device)
self._reset_variable_gains()
# If we're training, make sure env_ids is None
if train:
assert env_ids is None or len(env_ids) == self.n_envs, \
"When in training mode, env_ids must be None or len of n_envs!"
# Directly set goals
self.goal_pos = ee_pos + dpose[:, :3]
self.goal_ori_mat = quat2mat(quat_mul(axisangle2quat(dpose[:, 3:6]), ee_quat))
self._update_variable_gains(gains=gains, env_ids=env_ids, train=train)
else:
# If env_ids is None, we update all the envs
if env_ids is None:
# DON'T use individual indexes since this breaks backpropping
env_ids = torch.arange(start=0, end=self.n_envs, device=self.device, dtype=torch.long)
# Update specific goals
self.goal_pos[env_ids] = ee_pos[env_ids] + dpose[env_ids, :3]
self.goal_ori_mat[env_ids] = quat2mat(quat_mul(axisangle2quat(dpose[env_ids, 3:6]), ee_quat[env_ids]))
self._update_variable_gains(gains=gains, env_ids=env_ids, train=train)
def compute_control(self, control_dict):
"""
Computes low-level torque controls using internal eef goal pos / ori.
Args:
control_dict (dict): Dictionary of state tensors including relevant info for controller computation
Expected keys:
eef_state: shape of (N, 13), the (lin_pos, quat_ori, lin_vel, ang_vel) state of the eef body
q: shape of (N, N_dof), current joint positions
qd: shape of (N, N_dof), current joint velocities
mm: shape of (N, N_dof, N_dof), current mass matrix
j_eef: shape of (N, 6, N_dof), current jacobian matrix for end effector frame
Note that N_dof can be greater than control_dim; we assume the first control_dim indexes correspond to
the relevant elements to be used for the osc computations
Returns:
tensor: Processed low-level torque control actions
"""
# Possibly grab parameters from dict, otherwise, use internal values
kp = self.nums2tensorarray(nums=control_dict["kp"], dim=6) if \
"kp" in control_dict else self.kp
damping_ratio = self.nums2tensorarray(nums=control_dict["damping_ratio"], dim=6) if \
"damping_ratio" in control_dict else self.damping_ratio
kd = 2 * torch.sqrt(kp) * damping_ratio
# Calculate torques
u = _compute_osc_torques(
control_dict=control_dict,
goal_pos=self.goal_pos,
goal_ori_mat=self.goal_ori_mat,
kp=kp,
kd=kd,
kp_null=self.kp_null,
kd_null=self.kd_null,
rest_qpos=self.rest_qpos,
control_dim=self.control_dim,
decouple_pos_ori=self.decouple_pos_ori,
device=self.device,
)
# Post-process torques (clipping + normalization)
u = self.postprocess_control(u.squeeze(-1))
# Return the control torques
return u
def reset(self, control_dict, env_ids=None):
"""
Reset the internal vars associated with this controller
Args:
control_dict (dict): Dictionary of state tensors including relevant info for controller computation
Expected keys:
eef_state: shape of (N, 13), the (lin_pos, quat_ori, lin_vel, ang_vel) state of the eef body
q: shape of (N, N_dof), current joint positions
qd: shape of (N, N_dof), current joint velocities
mm: shape of (N, N_dof, N_dof), current mass matrix
j_eef: shape of (N, 6, N_dof), current jacobian matrix for end effector frame
Note that N_dof can be greater than control_dim; we assume the first control_dim indexes correspond to
the relevant elements to be used for the osc computations
env_ids (None or tensor): If specified, should be (integer) IDs corresponding to the
specific env instances of this policy that should be reset
"""
# Clear n_envs, goal pos, goal ori (and maybe gains) if we're now controlling a new set of envs
n_cmds = control_dict["eef_state"].shape[0]
if self.n_envs != n_cmds:
self.n_envs = None
self.goal_pos = None
self.goal_ori_mat = None
self._clear_variable_gains()
# Reset corresponding envs to current positions
self.update_goal(
control_dict=control_dict,
command=torch.zeros(n_cmds, 6),
env_ids=env_ids
)
def get_flattened_goals(self):
"""
Returns the current goal command in a serialized 2D form
Returns:
torch.tensor: (N, -1) current goals in this controller
"""
return torch.cat([self.goal_pos, self.goal_ori_mat.view(-1, 9)], dim=-1)
def _clear_variable_gains(self):
"""
Helper function to clear any gains that we're are variable and considered part of actions
"""
if self.variable_kp:
self.kp = None
if self.variable_damping_ratio:
self.damping_ratio = None
if self.variable_kp_null:
self.kp_null = None
self.kd_null = None
def _reset_variable_gains(self):
"""
Helper function to zero-out any gains that we're are variable and considered part of actions
"""
if self.variable_kp:
self.kp = torch.zeros(self.n_envs, 6, device=self.device)
if self.variable_damping_ratio:
self.damping_ratio = torch.zeros(self.n_envs, 6, device=self.device)
if self.variable_kp_null:
self.kp_null = torch.zeros(self.n_envs, self.control_dim, device=self.device)
self.kd_null = torch.zeros(self.n_envs, self.control_dim, device=self.device)
def _update_variable_gains(self, gains, env_ids, train=False):
"""
Helper function to update any gains that we're are variable and considered part of actions
Args:
gains (tensor): (n_envs, X) tensor where X dim is parsed based on which gains are being learned
env_ids (tensor): 1D Integer IDs corresponding to the
specific env instances that should have gains updated
"""
idx = 0
# Take train and testing case separately
if train:
# Ignore indexing
if self.variable_kp:
self.kp = gains[:, idx:idx+6]
idx += 6
if self.variable_damping_ratio:
self.damping_ratio = gains[:, idx:idx+6]
idx += 6
if self.variable_kp_null:
self.kp_null = gains[:, idx:idx+self.control_dim]
self.kd_null = 2 * torch.sqrt(self.kp_null) # critically damped
idx += self.control_dim
else:
# Use indexing
if self.variable_kp:
self.kp[env_ids] = gains[env_ids, idx:idx+6]
idx += 6
if self.variable_damping_ratio:
self.damping_ratio[env_ids] = gains[env_ids, idx:idx+6]
idx += 6
if self.variable_kp_null:
self.kp_null[env_ids] = gains[env_ids, idx:idx+self.control_dim]
self.kd_null[env_ids] = 2 * torch.sqrt(self.kp_null) # critically damped
idx += self.control_dim
@property
def goal_dim(self):
# This is 3 from pos goals + 9 from the ee ori goal
return 12
@property
def control_type(self):
# This controller outputs torques
return gymapi.DOF_MODE_EFFORT
@property
def differentiable(self):
# We can backprop through all osc computations
return True
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def _compute_osc_torques(
control_dict,
goal_pos,
goal_ori_mat,
kp,
kd,
kp_null,
kd_null,
rest_qpos,
control_dim,
decouple_pos_ori,
device,
):
# type: (Dict[str, Tensor], Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, bool, str) -> Tensor
# Extract relevant values from the control dict
q = control_dict["q"][:, :control_dim].to(device)
qd = control_dict["qd"][:, :control_dim].to(device)
mm = control_dict["mm"][:, :control_dim, :control_dim] # Keep mm on cpu because running the mm inverse is OOM quicker, see https://github.com/pytorch/pytorch/issues/42265
j_eef = control_dict["j_eef"][:, :, :control_dim].to(device)
ee_pos = control_dict["eef_state"][:, :3].to(device)
ee_quat = control_dict["eef_state"][:, 3:7].to(device)
ee_vel = control_dict["eef_state"][:, 7:].to(device)
# Compute the inverse
mm_inv = torch.inverse(mm.cpu()).to(device)
# Calculate error
pos_err = goal_pos - ee_pos
ori_err = orientation_error(goal_ori_mat, quat2mat(ee_quat))
err = torch.cat([pos_err, ori_err], dim=1)
# Determine desired wrench
err = (kp * err - kd * ee_vel).unsqueeze(-1)
m_eef_inv = j_eef @ mm_inv @ torch.transpose(j_eef, 1, 2)
m_eef = torch.inverse(m_eef_inv)
if decouple_pos_ori:
m_eef_pos_inv = j_eef[:, :3, :] @ mm_inv @ torch.transpose(j_eef[:, :3, :], 1, 2)
m_eef_ori_inv = j_eef[:, 3:, :] @ mm_inv @ torch.transpose(j_eef[:, 3:, :], 1, 2)
m_eef_pos = torch.inverse(m_eef_pos_inv)
m_eef_ori = torch.inverse(m_eef_ori_inv)
wrench_pos = m_eef_pos @ err[:, :3, :]
wrench_ori = m_eef_ori @ err[:, 3:, :]
wrench = torch.cat([wrench_pos, wrench_ori], dim=1)
else:
wrench = m_eef @ err
# Compute OSC torques
u = torch.transpose(j_eef, 1, 2) @ wrench
# Nullspace control torques `u_null` prevents large changes in joint configuration
# They are added into the nullspace of OSC so that the end effector orientation remains constant
# roboticsproceedings.org/rss07/p31.pdf
if rest_qpos is not None:
j_eef_inv = m_eef @ j_eef @ mm_inv
u_null = kd_null * -qd + kp_null * ((rest_qpos - q + np.pi) % (2 * np.pi) - np.pi)
u_null = mm @ u_null.unsqueeze(-1)
u += (torch.eye(control_dim).unsqueeze(0).to(device) - torch.transpose(j_eef, 1, 2) @ j_eef_inv) @ u_null
return u