-
Notifications
You must be signed in to change notification settings - Fork 530
/
train.py
188 lines (162 loc) · 7.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import argparse
import json
import os
import torch
#=====START: ADDED FOR DISTRIBUTED======
from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor
from torch.utils.data.distributed import DistributedSampler
#=====END: ADDED FOR DISTRIBUTED======
from torch.utils.data import DataLoader
from glow import WaveGlow, WaveGlowLoss
from mel2samp import Mel2Samp
def load_checkpoint(checkpoint_path, model, optimizer):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
optimizer.load_state_dict(checkpoint_dict['optimizer'])
model_for_loading = checkpoint_dict['model']
model.load_state_dict(model_for_loading.state_dict())
print("Loaded checkpoint '{}' (iteration {})" .format(
checkpoint_path, iteration))
return model, optimizer, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
iteration, filepath))
model_for_saving = WaveGlow(**waveglow_config).cuda()
model_for_saving.load_state_dict(model.state_dict())
torch.save({'model': model_for_saving,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, filepath)
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate,
sigma, iters_per_checkpoint, batch_size, seed, fp16_run,
checkpoint_path, with_tensorboard):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#=====START: ADDED FOR DISTRIBUTED======
if num_gpus > 1:
init_distributed(rank, num_gpus, group_name, **dist_config)
#=====END: ADDED FOR DISTRIBUTED======
criterion = WaveGlowLoss(sigma)
model = WaveGlow(**waveglow_config).cuda()
#=====START: ADDED FOR DISTRIBUTED======
if num_gpus > 1:
model = apply_gradient_allreduce(model)
#=====END: ADDED FOR DISTRIBUTED======
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
if fp16_run:
from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
# Load checkpoint if one exists
iteration = 0
if checkpoint_path != "":
model, optimizer, iteration = load_checkpoint(checkpoint_path, model,
optimizer)
iteration += 1 # next iteration is iteration + 1
trainset = Mel2Samp(**data_config)
# =====START: ADDED FOR DISTRIBUTED======
train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None
# =====END: ADDED FOR DISTRIBUTED======
train_loader = DataLoader(trainset, num_workers=1, shuffle=False,
sampler=train_sampler,
batch_size=batch_size,
pin_memory=False,
drop_last=True)
# Get shared output_directory ready
if rank == 0:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
os.chmod(output_directory, 0o775)
print("output directory", output_directory)
if with_tensorboard and rank == 0:
from tensorboardX import SummaryWriter
logger = SummaryWriter(os.path.join(output_directory, 'logs'))
model.train()
epoch_offset = max(0, int(iteration / len(train_loader)))
# ================ MAIN TRAINNIG LOOP! ===================
for epoch in range(epoch_offset, epochs):
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
model.zero_grad()
mel, audio = batch
mel = torch.autograd.Variable(mel.cuda())
audio = torch.autograd.Variable(audio.cuda())
outputs = model((mel, audio))
loss = criterion(outputs)
if num_gpus > 1:
reduced_loss = reduce_tensor(loss.data, num_gpus).item()
else:
reduced_loss = loss.item()
if fp16_run:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
print("{}:\t{:.9f}".format(iteration, reduced_loss))
if with_tensorboard and rank == 0:
logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch)
if (iteration % iters_per_checkpoint == 0):
if rank == 0:
checkpoint_path = "{}/waveglow_{}".format(
output_directory, iteration)
save_checkpoint(model, optimizer, learning_rate, iteration,
checkpoint_path)
iteration += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str,
help='JSON file for configuration')
parser.add_argument('-r', '--rank', type=int, default=0,
help='rank of process for distributed')
parser.add_argument('-g', '--group_name', type=str, default='',
help='name of group for distributed')
args = parser.parse_args()
# Parse configs. Globals nicer in this case
with open(args.config) as f:
data = f.read()
config = json.loads(data)
train_config = config["train_config"]
global data_config
data_config = config["data_config"]
global dist_config
dist_config = config["dist_config"]
global waveglow_config
waveglow_config = config["waveglow_config"]
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
if args.group_name == '':
print("WARNING: Multiple GPUs detected but no distributed group set")
print("Only running 1 GPU. Use distributed.py for multiple GPUs")
num_gpus = 1
if num_gpus == 1 and args.rank != 0:
raise Exception("Doing single GPU training on rank > 0")
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
train(num_gpus, args.rank, args.group_name, **train_config)