-
Notifications
You must be signed in to change notification settings - Fork 1k
/
build.py
636 lines (585 loc) · 25.2 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import os
import time
import traceback
from concurrent.futures import ProcessPoolExecutor, as_completed
from importlib.machinery import SourceFileLoader
from multiprocessing import get_context
from typing import Optional, Union
import torch
from tensorrt_llm._utils import (OMPI_COMM_TYPE_HOST, mpi_barrier, mpi_comm,
mpi_rank, mpi_world_size)
from tensorrt_llm.auto_parallel import infer_cluster_config
from tensorrt_llm.auto_parallel.cluster_info import cluster_infos
from tensorrt_llm.bindings import KVCacheType
from tensorrt_llm.builder import BuildConfig, Engine, build
from tensorrt_llm.logger import logger, severity_map
from tensorrt_llm.lora_manager import LoraConfig, LoraManager
from tensorrt_llm.models import MODEL_MAP, PretrainedConfig
from tensorrt_llm.models.modeling_utils import SpeculativeDecodingMode
from tensorrt_llm.plugin import PluginConfig, add_plugin_argument
from tensorrt_llm.quantization.mode import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--checkpoint_dir',
type=str,
default=None,
help="The directory path that contains TensorRT-LLM checkpoint.")
parser.add_argument(
'--model_config',
type=str,
default=None,
help="The file path that saves TensorRT-LLM checkpoint config.")
parser.add_argument(
'--build_config',
type=str,
default=None,
help="The file path that saves TensorRT-LLM build config.")
parser.add_argument(
'--model_cls_file',
type=str,
default=None,
help="The file path that defines customized TensorRT-LLM model.")
parser.add_argument('--model_cls_name',
type=str,
default=None,
help="The customized TensorRT-LLM model class name.")
parser.add_argument(
'--output_dir',
type=str,
default='engine_outputs',
help=
"The directory path to save the serialized engine files and engine config file."
)
parser.add_argument(
'--max_batch_size',
type=int,
default=BuildConfig.max_batch_size,
help="Maximum number of requests that the engine can schedule.")
parser.add_argument('--max_input_len',
type=int,
default=BuildConfig.max_input_len,
help="Maximum input length of one request.")
parser.add_argument(
'--max_seq_len',
'--max_decoder_seq_len',
dest='max_seq_len',
type=int,
default=BuildConfig.max_seq_len,
help="Maximum total length of one request, including prompt and outputs. "
"If unspecified, the value is deduced from the model config.")
parser.add_argument(
'--max_beam_width',
type=int,
default=BuildConfig.max_beam_width,
help="Maximum number of beams for beam search decoding.")
parser.add_argument(
'--max_num_tokens',
type=int,
default=BuildConfig.max_num_tokens,
help=
"Maximum number of batched input tokens after padding is removed in each batch. "
"Currently, the input padding is removed by default; "
"you may explicitly disable it by specifying ``--remove_input_padding disable``."
)
parser.add_argument(
'--opt_num_tokens',
type=int,
default=BuildConfig.opt_num_tokens,
help=
"Optimal number of batched input tokens after padding is removed in each batch "
"It equals to ``max_batch_size * max_beam_width`` by default, set this "
"value as close as possible to the actual number of tokens on your workload. "
"Note that this argument might be removed in the future.")
parser.add_argument(
'--max_encoder_input_len',
type=int,
default=BuildConfig.max_encoder_input_len,
help="Maximum encoder input length for enc-dec models. "
"Set ``max_input_len`` to 1 to start generation from decoder_start_token_id of length 1."
)
parser.add_argument(
'--max_prompt_embedding_table_size',
'--max_multimodal_len',
type=int,
default=BuildConfig.max_prompt_embedding_table_size,
help=
"Maximum prompt embedding table size for prompt tuning, or maximum multimodal input size for multimodal models. "
"Setting a value > 0 enables prompt tuning or multimodal input.")
parser.add_argument(
'--kv_cache_type',
default=argparse.SUPPRESS,
type=KVCacheType,
help=
"Set KV cache type (continuous, paged, or disabled). For disabled case, KV cache is disabled and only context phase is allowed."
)
parser.add_argument(
'--paged_kv_cache',
type=str,
default=argparse.SUPPRESS,
help=
"Deprecated. Enabling this option is equvilient to ``--kv_cache_type paged`` for transformer based models."
)
parser.add_argument(
'--input_timing_cache',
type=str,
default=BuildConfig.input_timing_cache,
help=
"The file path to read the timing cache. This option is ignored if the file does not exist."
)
parser.add_argument('--output_timing_cache',
type=str,
default=BuildConfig.output_timing_cache,
help="The file path to write the timing cache.")
parser.add_argument(
'--profiling_verbosity',
type=str,
default=BuildConfig.profiling_verbosity,
choices=['layer_names_only', 'detailed', 'none'],
help=
"The profiling verbosity for the generated TensorRT engine. Setting to detailed allows inspecting tactic choices and kernel parameters."
)
parser.add_argument(
'--strip_plan',
default=BuildConfig.use_strip_plan,
action='store_true',
help=
"Enable stripping weights from the final TensorRT engine under the assumption that the refit weights are identical to those provided at build time."
)
parser.add_argument('--weight_sparsity',
default=BuildConfig.weight_sparsity,
action='store_true',
help="Enable weight sparsity.")
parser.add_argument(
'--weight_streaming',
default=BuildConfig.weight_streaming,
action='store_true',
help=
"Enable offloading weights to CPU and streaming loading at runtime.",
)
parser.add_argument(
'--fast_build',
default=False,
action='store_true',
help=
"Enable features for faster engine building. This may cause some performance degradation and is currently incompatible with int8/int4 quantization without plugin.",
)
parser.add_argument('--workers',
type=int,
default=1,
help="The number of workers for building in parallel.")
parser.add_argument('--log_level',
type=str,
default='info',
choices=severity_map.keys(),
help="The logging level.")
parser.add_argument('--enable_debug_output',
default=BuildConfig.enable_debug_output,
action='store_true',
help="Enable debug output.")
parser.add_argument(
'--visualize_network',
default=BuildConfig.visualize_network,
action='store_true',
help=
"Export TensorRT Networks to ONNX prior to Engine build for debugging.")
parser.add_argument(
'--dry_run',
default=BuildConfig.dry_run,
action='store_true',
help=
"Run through the build process except the actual Engine build for debugging."
)
parser.add_argument('--monitor_memory',
default=False,
action='store_true',
help="Enable memory monitor during Engine build.")
logits_parser = parser.add_argument_group("Logits arguments")
logits_parser.add_argument('--logits_dtype',
type=str,
default=None,
choices=['float16', 'float32'],
help="The data type of logits.")
logits_parser.add_argument('--gather_context_logits',
action='store_true',
default=False,
help="Enable gathering context logits.")
logits_parser.add_argument('--gather_generation_logits',
action='store_true',
default=False,
help="Enable gathering generation logits.")
logits_parser.add_argument(
'--gather_all_token_logits',
action='store_true',
default=False,
help=
"Enable both ``gather_context_logits`` and ``gather_generation_logits``."
)
lora_parser = parser.add_argument_group("LoRA arguments")
lora_parser.add_argument(
'--lora_dir',
type=str,
default=None,
nargs="+",
help="The directory of LoRA weights. "
"If multiple directories are provided, the first one is used for configuration."
)
lora_parser.add_argument('--lora_ckpt_source',
type=str,
default="hf",
choices=["hf", "nemo"],
help="The source type of LoRA checkpoint.")
lora_parser.add_argument(
'--lora_target_modules',
nargs='+',
default=None,
choices=LoraManager.LORA_MODULE_IDS.keys(),
help=
"The target module names that LoRA is applied. Only effective when ``lora_plugin`` is enabled."
)
lora_parser.add_argument(
'--max_lora_rank',
type=int,
default=64,
help="Maximum LoRA rank for different LoRA modules. "
"It is used to compute the workspace size of LoRA plugin.")
spec_parser = parser.add_argument_group("Speculative decoding arguments")
spec_parser.add_argument('--speculative_decoding_mode',
default=None,
choices=[
"draft_tokens_external", "lookahead_decoding",
"medusa", "explicit_draft_tokens", "eagle"
],
help="Mode of speculative decoding.")
spec_parser.add_argument(
'--max_draft_len',
type=int,
default=0,
help=
"Maximum lengths of draft tokens for speculative decoding target model."
)
autopp_parser = parser.add_argument_group("Auto parallel arguments")
autopp_parser.add_argument('--auto_parallel',
type=int,
default=1,
help="MPI world size for auto parallel.")
autopp_parser.add_argument(
'--gpus_per_node',
type=int,
default=8,
help=
"Number of GPUs each node has in a multi-node setup. This is a cluster spec and can be greater/smaller than world size. "
"This option is only used for auto parallel specified with ``--auto_parallel``."
)
autopp_parser.add_argument(
'--cluster_key',
type=str,
default=None,
choices=cluster_infos.keys(),
help=
"Unique name for target GPU type. Inferred from current GPU type if not specified. "
"This option is only used for auto parallel specified with ``--auto_parallel``."
)
plugin_config_parser = parser.add_argument_group("Plugin config arguments")
add_plugin_argument(plugin_config_parser)
return parser
def build_model(
build_config: BuildConfig,
rank: int = 0,
ckpt_dir: str = None,
model_config: Union[str, PretrainedConfig] = None,
model_cls=None,
dry_run:
bool = False, # return the modified BuildConfig without actually building the engine
**kwargs
) -> Union[Engine, BuildConfig]:
model_config = copy.deepcopy(model_config)
logits_dtype = kwargs.get('logits_dtype')
if logits_dtype is not None:
model_config.logits_dtype = logits_dtype
architecture = model_config.architecture
assert not build_config.plugin_config.streamingllm or architecture == "LlamaForCausalLM", \
"StreamingLLM is only supported in the llama model."
assert not build_config.plugin_config.pp_reduce_scatter or architecture == "MixtralForCausalLM", \
"PP reduce scatter is only supported in the mixtral model."
real_rank = rank
model_config.mapping.gpus_per_node = build_config.auto_parallel_config.gpus_per_node
if build_config.auto_parallel_config.enabled:
assert rank < build_config.auto_parallel_config.world_size
assert model_config.mapping.pp_size == 1 and model_config.mapping.tp_size == 1, \
"You must convert to full model with TP=1&&PP=1 to use auto parallel planner"
#TODO: TRTLLM-193 remove this after the new build API for autopp is done
rank = 0 # This is a WAR to construct a whole model and load all the weights before auto parallel
else:
assert rank < model_config.mapping.world_size
rank_config = copy.deepcopy(model_config)
rank_config.set_rank(rank)
if model_cls is None:
assert architecture in MODEL_MAP, \
f"Unsupported model architecture: {architecture}"
model_cls = MODEL_MAP[architecture]
if ckpt_dir is None:
model = model_cls(rank_config)
else:
model = model_cls.from_checkpoint(ckpt_dir, config=rank_config)
is_checkpoint_pruned = getattr(rank_config, 'is_pruned', False)
if build_config.plugin_config.lora_plugin is not None:
lora_config = LoraConfig(lora_dir=kwargs['lora_dir'] or [],
lora_ckpt_source=kwargs['lora_ckpt_source'],
max_lora_rank=kwargs['max_lora_rank'])
if kwargs['lora_target_modules'] is not None:
# command line options is preferred over the modules in the lora dir
lora_config.lora_target_modules = kwargs['lora_target_modules']
build_config.lora_config = lora_config
# tells the low level build api to only build rank-th shard of the model
if build_config.auto_parallel_config.enabled:
model.config.mapping.rank = real_rank
if is_checkpoint_pruned or kwargs.pop('strip_plan', False):
build_config.use_strip_plan = True
build_config.use_refit = kwargs.get('refit', False)
if dry_run:
return build_config
return build(model, build_config)
def build_and_save(rank, gpu_id, ckpt_dir, build_config, output_dir, log_level,
model_config, model_cls, **kwargs):
torch.cuda.set_device(gpu_id)
logger.set_level(log_level)
engine = build_model(build_config,
rank,
ckpt_dir,
model_config,
model_cls=model_cls,
**kwargs)
assert engine is not None
engine.save(output_dir)
return True
def parallel_build(model_config: PretrainedConfig,
ckpt_dir: Optional[str],
build_config: BuildConfig,
output_dir: str,
workers: int = 1,
log_level: str = 'info',
model_cls=None,
**kwargs):
if build_config.auto_parallel_config.enabled:
if model_config.mapping.world_size > 1:
raise RuntimeError(
"manually TP and PP are not supported in auto parallel mode.")
if build_config.auto_parallel_config.debug_mode:
world_size = 1
else:
world_size = build_config.auto_parallel_config.world_size
else:
world_size = model_config.mapping.world_size
use_mpi = mpi_world_size() > 1
if not use_mpi and workers == 1:
for rank in range(world_size):
passed = build_and_save(rank, rank % workers, ckpt_dir,
build_config, output_dir, log_level,
model_config, model_cls, **kwargs)
assert passed, "Engine building failed, please check error log."
elif not use_mpi:
with ProcessPoolExecutor(mp_context=get_context('spawn'),
max_workers=workers) as p:
futures = [
p.submit(build_and_save, rank, rank % workers, ckpt_dir,
build_config, output_dir, log_level, model_config,
model_cls, **kwargs) for rank in range(world_size)
]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(exceptions
) == 0, "Engine building failed, please check error log."
else:
mpi_local_comm = mpi_comm().Split_type(split_type=OMPI_COMM_TYPE_HOST)
mpi_local_rank = mpi_local_comm.Get_rank()
node_gpu_count = torch.cuda.device_count()
exceptions = []
for engine_rank in range(world_size):
if engine_rank % mpi_world_size() != mpi_rank():
continue
try:
build_and_save(engine_rank, mpi_local_rank % node_gpu_count,
ckpt_dir, build_config, output_dir, log_level,
model_config, model_cls, **kwargs)
except Exception as e:
traceback.print_exc()
exceptions.append(e)
mpi_barrier()
if len(exceptions) != 0:
print("Engine building failed, please check error log.", flush=True)
mpi_comm().Abort()
def main():
parser = parse_arguments()
args = parser.parse_args()
if args.gather_all_token_logits:
args.gather_context_logits = True
args.gather_generation_logits = True
if args.gather_context_logits and args.max_draft_len > 0:
raise RuntimeError(
"Gather context logits is not support with draft len > 0. "
"If want to get the accepted tokens' logits from target model, please just enable gather_generation_logits"
)
logger.set_level(args.log_level)
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
model_cls = None
if args.model_cls_file is not None:
assert args.model_cls_name is not None
loader = SourceFileLoader('models', args.model_cls_file)
mod = loader.load_module()
model_cls = getattr(mod, args.model_cls_name)
workers = min(torch.cuda.device_count(), args.workers)
if hasattr(args, 'paged_kv_cache'):
logger.warning(
'Option --paged_kv_cache is deprecated, use --kv_cache_type=paged/disabled instead.'
)
plugin_config = PluginConfig.from_arguments(args)
if args.fast_build:
plugin_config.manage_weights = True
kwargs = {
'logits_dtype': args.logits_dtype,
'use_fused_mlp': args.use_fused_mlp,
'lora_dir': args.lora_dir,
'lora_ckpt_source': args.lora_ckpt_source,
'max_lora_rank': args.max_lora_rank,
'lora_target_modules': args.lora_target_modules,
'strip_plan': args.strip_plan,
'refit': False,
}
speculative_decoding_mode = SpeculativeDecodingMode.from_arguments(args)
ckpt_dir_or_model_config = args.checkpoint_dir if args.checkpoint_dir is not None else args.model_config
if ckpt_dir_or_model_config.lower().endswith('.json'):
config_path = ckpt_dir_or_model_config
ckpt_dir = None
else:
config_path = os.path.join(ckpt_dir_or_model_config, 'config.json')
ckpt_dir = ckpt_dir_or_model_config
model_config = PretrainedConfig.from_json_file(config_path)
# avoid ValueError if not supported quantization is chosen with use_fused_mlp
quant_algo = model_config.quantization.quant_algo
if quant_algo and quant_algo not in (QuantAlgo.FP8,
QuantAlgo.MIXED_PRECISION):
kwargs['use_fused_mlp'] = False
if args.build_config is None:
if args.multiple_profiles == "enable" and args.opt_num_tokens is not None:
raise RuntimeError(
"multiple_profiles is enabled, while opt_num_tokens is set. "
"They are not supposed to be working in the same time for now.")
if args.cluster_key is not None:
cluster_config = dict(cluster_key=args.cluster_key)
else:
cluster_config = infer_cluster_config()
# This should only be used for debugging.
# The env var BUILDER_FORCE_NUM_PROFILES should override the number of
# optimization profiles during TRT build.
# BUILDER_FORCE_NUM_PROFILES must be less than or equal to the number of
# optimization profiles set by model's prepare_inputs().
force_num_profiles_from_env = os.environ.get(
"BUILDER_FORCE_NUM_PROFILES", None)
if force_num_profiles_from_env is not None:
logger.warning(
f"Overriding # of builder profiles <= {force_num_profiles_from_env}."
)
build_config = BuildConfig.from_dict(
{
'max_input_len':
args.max_input_len,
'max_seq_len':
args.max_seq_len,
'max_batch_size':
args.max_batch_size,
'max_beam_width':
args.max_beam_width,
'max_num_tokens':
args.max_num_tokens,
'opt_num_tokens':
args.opt_num_tokens,
'max_prompt_embedding_table_size':
args.max_prompt_embedding_table_size,
'gather_context_logits':
args.gather_context_logits,
'gather_generation_logits':
args.gather_generation_logits,
'strongly_typed':
True,
'force_num_profiles':
force_num_profiles_from_env,
'weight_sparsity':
args.weight_sparsity,
'profiling_verbosity':
args.profiling_verbosity,
'enable_debug_output':
args.enable_debug_output,
'max_draft_len':
args.max_draft_len,
'speculative_decoding_mode':
speculative_decoding_mode,
'input_timing_cache':
args.input_timing_cache,
'output_timing_cache':
args.output_timing_cache,
'auto_parallel_config': {
'world_size':
args.auto_parallel,
'gpus_per_node':
args.gpus_per_node,
'sharded_io_allowlist': [
'past_key_value_\\d+',
'present_key_value_\\d*',
],
'same_buffer_io': {
'past_key_value_(\\d+)': 'present_key_value_\\1',
},
**cluster_config,
},
'dry_run':
args.dry_run,
'visualize_network':
args.visualize_network,
'max_encoder_input_len':
args.max_encoder_input_len,
'weight_streaming':
args.weight_streaming,
'monitor_memory':
args.monitor_memory,
'use_mrope':
(True if model_config.qwen_type == "qwen2_vl" else False)
if hasattr(model_config, "qwen_type") else False
},
plugin_config=plugin_config)
if hasattr(args, 'kv_cache_type'):
build_config.update_from_dict({'kv_cache_type': args.kv_cache_type})
else:
build_config = BuildConfig.from_json_file(args.build_config,
plugin_config=plugin_config)
parallel_build(model_config, ckpt_dir, build_config, args.output_dir,
workers, args.log_level, model_cls, **kwargs)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all engines: {t}')
if __name__ == '__main__':
main()