Skip to content

Commit

Permalink
feat(//tests): New optional accuracy tests to check INT8 and FP16
Browse files Browse the repository at this point in the history
Signed-off-by: Naren Dasan <naren@narendasan.com>
Signed-off-by: Naren Dasan <narens@nvidia.com>
  • Loading branch information
narendasan committed Apr 24, 2020
1 parent b989c7f commit df74136
Show file tree
Hide file tree
Showing 13 changed files with 508 additions and 56 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -21,5 +21,6 @@ py/.eggs
cpp/ptq/training/vgg16/data/*
*.bin
cpp/ptq/datasets/data/
tests/accuracy/datasets/data/*
._.DS_Store
*.tar.gz
9 changes: 8 additions & 1 deletion tests/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -5,4 +5,11 @@ test_suite(
"//tests/modules:test_modules"
],
)


test_suite(
name = "required_and_optional_tests",
tests = [
":tests",
"//tests/accuracy:test_accuracy"
]
)
73 changes: 73 additions & 0 deletions tests/accuracy/BUILD
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
filegroup(
name = "jit_models",
srcs = glob(["**/*.jit.pt"])
)

test_suite(
name = "test_accuracy",
tests = [
":test_int8_accuracy",
":test_fp16_accuracy",
":test_fp32_accuracy",
]
)

cc_test(
name = "test_int8_accuracy",
srcs = ["test_int8_accuracy.cpp"],
deps = [
":accuracy_test",
"//tests/accuracy/datasets:cifar10"
],
data = [
":jit_models",
]
)

cc_test(
name = "test_fp16_accuracy",
srcs = ["test_fp16_accuracy.cpp"],
deps = [
":accuracy_test",
"//tests/accuracy/datasets:cifar10"
],
data = [
":jit_models",
]
)

cc_test(
name = "test_fp32_accuracy",
srcs = ["test_fp32_accuracy.cpp"],
deps = [
":accuracy_test",
"//tests/accuracy/datasets:cifar10"
],
data = [
":jit_models",
]
)

cc_binary(
name = "test",
srcs = ["test.cpp"],
deps = [
":accuracy_test",
"//tests/accuracy/datasets:cifar10"
],
data = [
":jit_models",
]
)


cc_library(
name = "accuracy_test",
hdrs = ["accuracy_test.h"],
deps = [
"//cpp/api:trtorch",
"//tests/util",
"@libtorch//:libtorch",
"@googletest//:gtest_main",
],
)
30 changes: 30 additions & 0 deletions tests/accuracy/accuracy_test.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
#include <utility>
#include "torch/script.h"
#include "gtest/gtest.h"
#include "tests/util/util.h"
#include "trtorch/trtorch.h"
#include "c10/cuda/CUDACachingAllocator.h"

// TODO: Extend this to support other datasets
class AccuracyTests
: public testing::TestWithParam<std::string> {
public:
void SetUp() override {
auto params = GetParam();
auto module_path = params;
try {
// Deserialize the ScriptModule from a file using torch::jit::load().
mod = torch::jit::load(module_path);
}
catch (const c10::Error& e) {
std::cerr << "error loading the model\n";
return;
}
}

void TearDown() {
c10::cuda::CUDACachingAllocator::emptyCache();
}
protected:
torch::jit::script::Module mod;
};
23 changes: 23 additions & 0 deletions tests/accuracy/datasets/BUILD
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
package(default_visibility = ["//visibility:public"])

cc_library(
name = "cifar10",
hdrs = [
"cifar10.h"
],
srcs = [
"cifar10.cpp"
],
deps = [
"@libtorch//:libtorch"
],
data = [
":cifar10_data"
]

)

filegroup(
name = "cifar10_data",
srcs = glob(["data/cifar-10-batches-bin/**/*.bin"])
)
132 changes: 132 additions & 0 deletions tests/accuracy/datasets/cifar10.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
#include "tests/accuracy/datasets/cifar10.h"

#include "torch/torch.h"
#include "torch/data/example.h"
#include "torch/types.h"

#include <iostream>
#include <cstddef>
#include <fstream>
#include <string>
#include <vector>
#include <utility>
#include <sstream>
#include <memory>

namespace datasets {
namespace {
constexpr const char* kTrainFilenamePrefix = "data_batch_";
constexpr const uint32_t kNumTrainFiles = 5;
constexpr const char* kTestFilename = "test_batch.bin";
constexpr const size_t kLabelSize = 1; // B
constexpr const size_t kImageSize = 3072; // B
constexpr const size_t kImageDim = 32;
constexpr const size_t kImageChannels = 3;
constexpr const size_t kBatchSize = 10000;

std::pair<torch::Tensor, torch::Tensor> read_batch(const std::string& path) {
std::ifstream batch;
batch.open(path, std::ios::in|std::ios::binary|std::ios::ate);

auto file_size = batch.tellg();
std::unique_ptr<char[]> buf(new char[file_size]);

batch.seekg(0, std::ios::beg);
batch.read(buf.get(), file_size);
batch.close();

std::vector<uint8_t> labels;
std::vector<torch::Tensor> images;
labels.reserve(kBatchSize);
images.reserve(kBatchSize);

for (size_t i = 0; i < kBatchSize; i++) {
uint8_t label = buf[i * (kImageSize + kLabelSize)];
std::vector<uint8_t> image;
image.reserve(kImageSize);
std::copy(&buf[i * (kImageSize + kLabelSize) + 1], &buf[i * (kImageSize + kLabelSize) + kImageSize], std::back_inserter(image));
labels.push_back(label);
auto image_tensor = torch::from_blob(image.data(),
{kImageChannels, kImageDim, kImageDim},
torch::TensorOptions().dtype(torch::kU8)).to(torch::kF32);
images.push_back(image_tensor);
}

auto labels_tensor = torch::from_blob(labels.data(),
{kBatchSize},
torch::TensorOptions().dtype(torch::kU8)).to(torch::kF32);
assert(labels_tensor.size(0) == kBatchSize);

auto images_tensor = torch::stack(images);
assert(images_tensor.size(0) == kBatchSize);

return std::make_pair(images_tensor, labels_tensor);
}

std::pair<torch::Tensor, torch::Tensor> read_train_data(const std::string& root) {
std::vector<torch::Tensor> images, targets;
for(uint32_t i = 1; i <= 5; i++) {
std::stringstream ss;
ss << root << '/' << kTrainFilenamePrefix << i << ".bin";
auto batch = read_batch(ss.str());
images.push_back(batch.first);
targets.push_back(batch.second);
}

torch::Tensor image_tensor = std::accumulate(++images.begin(), images.end(), *images.begin(), [&](torch::Tensor a, torch::Tensor b) {return torch::cat({a, b}, 0);});
torch::Tensor target_tensor = std::accumulate(++targets.begin(), targets.end(), *targets.begin(), [&](torch::Tensor a, torch::Tensor b) {return torch::cat({a, b}, 0);});

return std::make_pair(image_tensor, target_tensor);
}

std::pair<torch::Tensor, torch::Tensor> read_test_data(const std::string& root) {
std::stringstream ss;
ss << root << '/' << kTestFilename;
return read_batch(ss.str());
}
}

CIFAR10::CIFAR10(const std::string& root, Mode mode)
: mode_(mode) {

std::pair<torch::Tensor, torch::Tensor> data;
if (mode_ == Mode::kTrain) {
data = read_train_data(root);
} else {
data = read_test_data(root);
}

images_ = std::move(data.first);
targets_ = std::move(data.second);
assert(images_.sizes()[0] == images_.sizes()[0]);
}

torch::data::Example<> CIFAR10::get(size_t index) {
return {images_[index], targets_[index]};
}

c10::optional<size_t> CIFAR10::size() const {
return images_.size(0);
}

bool CIFAR10::is_train() const noexcept {
return mode_ == Mode::kTrain;
}

const torch::Tensor& CIFAR10::images() const {
return images_;
}

const torch::Tensor& CIFAR10::targets() const {
return targets_;
}

CIFAR10&& CIFAR10::use_subset(int64_t new_size) {
assert(new_size <= images_.sizes()[0]);
images_ = images_.slice(0, 0, new_size);
targets_ = targets_.slice(0, 0, new_size);
return std::move(*this);
}

} // namespace datasets

45 changes: 45 additions & 0 deletions tests/accuracy/datasets/cifar10.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
#pragma once

#include "torch/data/datasets/base.h"
#include "torch/data/example.h"
#include "torch/types.h"

#include <cstddef>
#include <string>

namespace datasets {
// The CIFAR10 Dataset
class CIFAR10 : public torch::data::datasets::Dataset<CIFAR10> {
public:
// The mode in which the dataset is loaded
enum class Mode { kTrain, kTest };

// Loads CIFAR10 from un-tarred file
// Dataset can be found https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
// Root path should be the directory that contains the content of tarball
explicit CIFAR10(const std::string& root, Mode mode = Mode::kTrain);

// Returns the pair at index in the dataset
torch::data::Example<> get(size_t index) override;

// The size of the dataset
c10::optional<size_t> size() const override;

// The mode the dataset is in
bool is_train() const noexcept;

// Returns all images stacked into a single tensor
const torch::Tensor& images() const;

// Returns all targets stacked into a single tensor
const torch::Tensor& targets() const;

// Trims the dataset to the first n pairs
CIFAR10&& use_subset(int64_t new_size);


private:
Mode mode_;
torch::Tensor images_, targets_;
};
} // namespace datasets
56 changes: 56 additions & 0 deletions tests/accuracy/test_fp16_accuracy.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
#include "accuracy_test.h"
#include "datasets/cifar10.h"
#include "torch/torch.h"

TEST_P(AccuracyTests, FP16AccuracyIsClose) {
auto eval_dataset = datasets::CIFAR10("tests/accuracy/datasets/data/cifar-10-batches-bin/", datasets::CIFAR10::Mode::kTest)
.use_subset(3200)
.map(torch::data::transforms::Normalize<>({0.4914, 0.4822, 0.4465},
{0.2023, 0.1994, 0.2010}))
.map(torch::data::transforms::Stack<>());
auto eval_dataloader = torch::data::make_data_loader(std::move(eval_dataset), torch::data::DataLoaderOptions()
.batch_size(32)
.workers(2));

// Check the FP32 accuracy in JIT
torch::Tensor jit_correct = torch::zeros({1}, {torch::kCUDA}), jit_total = torch::zeros({1}, {torch::kCUDA});
for (auto batch : *eval_dataloader) {
auto images = batch.data.to(torch::kCUDA);
auto targets = batch.target.to(torch::kCUDA);

auto outputs = mod.forward({images});
auto predictions = std::get<1>(torch::max(outputs.toTensor(), 1, false));

jit_total += targets.sizes()[0];
jit_correct += torch::sum(torch::eq(predictions, targets));
}
torch::Tensor jit_accuracy = jit_correct / jit_total;

std::vector<std::vector<int64_t>> input_shape = {{32, 3, 32, 32}};
auto extra_info = trtorch::ExtraInfo({input_shape});
extra_info.op_precision = torch::kF16;

auto trt_mod = trtorch::CompileGraph(mod, extra_info);

torch::Tensor trt_correct = torch::zeros({1}, {torch::kCUDA}), trt_total = torch::zeros({1}, {torch::kCUDA});
for (auto batch : *eval_dataloader) {
auto images = batch.data.to(torch::kCUDA).to(torch::kF16);
auto targets = batch.target.to(torch::kCUDA).to(torch::kF16);

auto outputs = trt_mod.forward({images});
auto predictions = std::get<1>(torch::max(outputs.toTensor(), 1, false));
predictions = predictions.reshape(predictions.sizes()[0]);

trt_total += targets.sizes()[0];
trt_correct += torch::sum(torch::eq(predictions, targets));
}

torch::Tensor trt_accuracy = trt_correct / trt_total;

ASSERT_TRUE(trtorch::tests::util::almostEqual(jit_accuracy, trt_accuracy, 3));
}


INSTANTIATE_TEST_SUITE_P(FP16AccuracyIsCloseSuite,
AccuracyTests,
testing::Values("tests/accuracy/vgg16_cifar10.jit.pt"));
Loading

0 comments on commit df74136

Please sign in to comment.