-
Notifications
You must be signed in to change notification settings - Fork 356
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(): started working on lstm_cell converter
Signed-off-by: Abhiram Iyer <abhirami@nvidia.com> Signed-off-by: Abhiram Iyer <abhi.iyer.ai@gmail.com>
- Loading branch information
1 parent
5a105c6
commit 546d790
Showing
2 changed files
with
122 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
#include "torch/torch.h" | ||
#include "NvInfer.h" | ||
#include "core/util/prelude.h" | ||
#include "core/conversion/converters/converters.h" | ||
#include "core/conversion/tensorcontainer/TensorContainer.h" | ||
|
||
#include <ATen/ATen.h> | ||
#include <vector> | ||
|
||
namespace trtorch { | ||
namespace core { | ||
namespace conversion { | ||
namespace converters { | ||
namespace impl { | ||
namespace { | ||
|
||
auto lstm_cell_registrations TRTORCH_UNUSED = RegisterNodeConversionPatterns() | ||
.pattern({ | ||
"aten::lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor)", | ||
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool { | ||
auto input = args[0].ITensorOrFreeze(ctx); | ||
auto w_ih = args[2].ITensorOrFreeze(ctx); | ||
auto w_hh = args[3].ITensorOrFreeze(ctx); | ||
auto b_ih = args[4].ITensorOrFreeze(ctx); | ||
auto b_hh = args[5].ITensorOrFreeze(ctx); | ||
|
||
LOG_DEBUG("Input tensor shape: " << input->getDimensions()); | ||
LOG_DEBUG("w_ih tensor shape: " << w_ih->getDimensions()); | ||
LOG_DEBUG("w_hh tensor shape: " << w_hh->getDimensions()); | ||
LOG_DEBUG("b_ih tensor shape: " << b_ih->getDimensions()); | ||
LOG_DEBUG("b_hh tensor shape: " << b_hh->getDimensions()); | ||
|
||
std::vector<nvinfer1::ITensor*> state; | ||
auto hx = args[1].IValue()->toListRef(); | ||
for (unsigned int i = 0; i < hx.size(); i++) { | ||
auto t = hx[i]; | ||
|
||
nvinfer1::ITensor* itensor; | ||
|
||
if (t.isTensor()) { | ||
itensor = tensor_to_const(ctx, t.toTensor()); | ||
} else { | ||
auto cont = t.toCustomClass<TensorContainer>(); | ||
itensor = cont->tensor(); | ||
} | ||
|
||
LOG_DEBUG("State tensor " << i << " shape: " << itensor->getDimensions()); | ||
state.push_back(itensor); | ||
} | ||
|
||
// calculate first half of gates | ||
auto mm1 = ctx->net->addMatrixMultiply(*input, nvinfer1::MatrixOperation::kNONE, *w_ih, nvinfer1::MatrixOperation::kTRANSPOSE); | ||
TRTORCH_CHECK(mm1, "Unable to create matrix multiplication node: " << *n); | ||
|
||
auto mm1_out = mm1->getOutput(0); | ||
auto mm1_dim = mm1_out->getDimensions(); | ||
auto b_ih_dim = b_ih->getDimensions(); | ||
|
||
TRTORCH_CHECK(util::broadcastable(mm1_dim, b_ih_dim, false)); | ||
|
||
if (util::toVec(mm1_dim) != util::toVec(b_ih_dim)) { | ||
LOG_DEBUG("b_ih dimensions need to be reshaped"); | ||
|
||
auto shuffle = ctx->net->addShuffle(*b_ih); | ||
TRTORCH_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n); | ||
shuffle->setReshapeDimensions(util::toDimsPad(util::toVec(b_ih_dim), mm1_dim.nbDims)); | ||
b_ih = shuffle->getOutput(0); | ||
} | ||
|
||
auto add1 = ctx->net->addElementWise(*mm1_out, *b_ih, nvinfer1::ElementWiseOperation::kSUM); | ||
TRTORCH_CHECK(add1, "Unable to create ElementWise layer from node: " << *n); | ||
auto add1_out = add2->getOutput(0); | ||
|
||
// calculate second half of gates | ||
auto mm2 = ctx->net->addMatrixMultiply(*state[0], nvinfer1::MatrixOperation::kNONE, *w_hh, nvinfer1::MatrixOperation::kTRANSPOE); | ||
TRTORCH_CHECK(mm2, "Unable to create matrix multiplication node: " << *n); | ||
|
||
auto mm2_out = mm2->getOutput(0); | ||
auto mm2_dim = mm2_out->getDimensions(); | ||
auto b_hh_dim = b_hh->getDimensions(); | ||
|
||
TRTORCH_CHECK(util::broadcastable(mm2_dim, b_hh_dim, false)); | ||
|
||
if (util::toVec(mm2_dim) != util::toVec(b_hh_dim)) { | ||
LOG_DEBUG("b_hh dimensions need to be reshaped"); | ||
|
||
auto shuffle = ctx->net->addShuffle(*b_hh); | ||
TRTORCH_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n); | ||
shuffle->setReshapeDimensions(util::toDimsPad(util::toVec(b_hh_dim), mm2_dim.nbDims)); | ||
b_hh = shuffle->getOutput(0); | ||
} | ||
|
||
auto add2 = ctx->net->addElementWise(*mm2_out, *b_ih, nvinfer1::ElementWiseOperation::kSUM); | ||
TRTORCH_CHECK(add2, "Unable to create ElementWise layer from node: " << *n); | ||
auto add2_out = add2->getOutput(0); | ||
|
||
// gates | ||
auto add3 = ctx->net->addElementWise(*add1_out, *add2_out, nvinfer1::ElementWiseOperation::kSUM); | ||
TRTORCH_CHECK(add3, "Unable to create ElementWise layer from node: " << *n); | ||
auto add3_out = add3->getOutput(0); | ||
|
||
|
||
|
||
|
||
|
||
auto mm_layer = ctx->net->addMatrixMultiply(*self, nvinfer1::MatrixOperation::kNONE, *other, nvinfer1::MatrixOperation::kNONE); | ||
TRTORCH_CHECK(mm_layer, "Unable to create matrix multiplication node: " << *n); | ||
mm_layer->setName(util::node_info(n).c_str()); | ||
auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], mm_layer->getOutput(0)); | ||
|
||
LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions()); | ||
return true; | ||
} | ||
}); | ||
} // namespace | ||
} // namespace impl | ||
} // namespace converters | ||
} // namespace conversion | ||
} // namespace core | ||
} // namespace trtorch |