-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathloader_llama_mistral.py
659 lines (555 loc) · 26.5 KB
/
loader_llama_mistral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
import json
import os
import sys
import torch
try:
import transformers
except ImportError:
raise ImportError("The 'transformers' package is not installed.")
import gc
import shutil
from tqdm import tqdm
import types
def add_arguments(parser):
group = parser.add_argument_group(title='Llama/Mistral loader.')
# TODO(jbarker): Need assertion to make sure *exactly* one of these is used
parser.add_argument('--model-size', type=str, required=True,
choices=['llama2-7B', 'llama2-13B', 'llama2-70B', 'llama2-7Bf', 'llama2-13Bf', 'llama2-70Bf', 'llama3', 'mistral', 'yi-34B', 'qwen2.5'],
help='Select model size/type')
parser.add_argument('--checkpoint-type', type=str, required=True,
choices=['meta', 'hf'],
help='Type of checkpoint to convert, options are "meta" or "hf"')
parser.add_argument('--bf16', action='store_true', help='Whether to load weights in bf16.')
parser.add_argument('--fp16', action='store_true', help='Whether to load weights in fp16.')
group.add_argument('--true-vocab-size', type=int, default=None,
help='original size of vocab, if specified will trim padding from embedding table.')
group.add_argument('--vocab-file', type=str, default=None,
help='Path to the vocab file. If specified will use this to get vocab size and '
'trim padding from the embedding table.')
group.add_argument('--tokenizer-model', required=True,
help='Tokenizer model file.')
group.add_argument('--megatron-path', type=str, default=None,
help='Base directory of Megatron repository')
group.add_argument("--make-vocab-size-divisible-by", type=int, default=None, help="Make vocab size divisible by")
group.add_argument('--loader-transformer-impl', default='local',
choices=['local', 'transformer_engine'],
help='Which Transformer implementation to use.')
def verify_transformers_version():
major, minor, patch = map(int, transformers.__version__.split('.'))
assert major >= 4 and minor >= 31
NUM_SHARDS = {
"llama2-7B": 1,
"llama2-7Bf": 1,
"llama2-13B": 2,
"llama2-13Bf": 2,
"llama2-70B": 8,
"llama2-70Bf": 8,
}
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
def read_json(path):
with open(path, "r") as f:
return json.load(f)
def write_json(text, path):
with open(path, "w") as f:
json.dump(text, f)
# This conversion is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
def convert_to_hf(model_path, input_base_path, model_size, tokenizer_path):
if "llama2" in model_size:
from transformers import LlamaConfig as ModelConfig
from transformers import LlamaTokenizer, LlamaTokenizerFast
else:
raise NotImplementedError(f"converting {model_size} is only supported using HuggingFace weights")
# for backward compatibility, before you needed the repo to be called `my_repo/model_size`
if not os.path.isfile(os.path.join(input_base_path, "params.json")):
input_base_path = os.path.join(input_base_path, model_size)
os.makedirs(model_path, exist_ok=True)
params = read_json(os.path.join(input_base_path, "params.json"))
num_shards = NUM_SHARDS[model_size]
params = params.get("model", params)
n_layers = params["n_layers"]
n_heads = params["n_heads"]
n_heads_per_shard = n_heads // num_shards
dim = params["dim"]
dims_per_head = dim // n_heads
base = params.get("rope_theta", 10000.0)
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
if base > 10000.0:
max_position_embeddings = 32768 if "mistral" in model_size else 16384
else:
max_position_embeddings = 4096
if "llama2" in model_size:
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
else:
raise AttributeError(f"model_size={model_size} not supported")
if tokenizer_path is not None:
if "llama2" in model_size:
tokenizer = tokenizer_class(tokenizer_path)
tokenizer.save_pretrained(model_path)
vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000
else:
raise AttributeError(f"model_size={model_size} is not supported")
if params.get("n_kv_heads", None) is not None:
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
num_local_key_value_heads = n_heads_per_shard // num_key_value_heads
key_value_dim = dim // num_key_value_heads
else: # compatibility with other checkpoints
num_key_value_heads = n_heads
num_local_key_value_heads = n_heads_per_shard
key_value_dim = dim
# permute for sliced rotary
def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
# Load weights
if num_shards == 1:
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
else:
# Sharded
loaded = [
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
for i in range(num_shards)
]
param_count = 0
index_dict = {"weight_map": {}}
for layer_i in range(n_layers):
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
if num_shards == 1:
# Unsharded
q_proj = loaded[f"layers.{layer_i}.attention.wq.weight"]
k_proj = loaded[f"layers.{layer_i}.attention.wk.weight"]
if ("llama2" in model_size) or ("mistral" in model_size):
q_proj = permute(q_proj)
k_proj = permute(k_proj)
state_dict = {
f"model.layers.{layer_i}.self_attn.q_proj.weight": q_proj,
f"model.layers.{layer_i}.self_attn.k_proj.weight": k_proj,
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
state_dict = {
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
f"layers.{layer_i}.attention_norm.weight"
].clone(),
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
f"layers.{layer_i}.ffn_norm.weight"
].clone(),
}
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
)
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
num_local_key_value_heads, dims_per_head, dim
)
for i in range(num_shards)
],
dim=0,
).reshape(key_value_dim, dim),
num_key_value_heads,
key_value_dim,
dim,
)
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
num_local_key_value_heads, dims_per_head, dim
)
for i in range(num_shards)
],
dim=0,
).reshape(key_value_dim, dim)
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
)
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
)
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
)
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
)
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(model_path, filename))
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
if num_shards == 1:
# Unsharded
state_dict = {
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
"model.norm.weight": loaded["norm.weight"],
"lm_head.weight": loaded["output.weight"],
}
else:
d = 0 if "llama3" in model_size else 1
state_dict = {
"model.norm.weight": loaded[0]["norm.weight"],
"model.embed_tokens.weight": torch.cat(
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=d
),
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
}
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(model_path, filename))
# Write configs
index_dict["metadata"] = {"total_size": param_count * 2}
write_json(index_dict, os.path.join(model_path, "pytorch_model.bin.index.json"))
ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
multiple_of = params["multiple_of"] if "multiple_of" in params else 256
config = ModelConfig(
hidden_size=dim,
intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
num_attention_heads=params["n_heads"],
num_hidden_layers=params["n_layers"],
rms_norm_eps=params["norm_eps"],
num_key_value_heads=num_key_value_heads,
vocab_size=vocab_size,
rope_theta=base,
max_position_embeddings=max_position_embeddings,
)
config.save_pretrained(model_path)
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
return model_path
def load_args_from_checkpoint(args, model_size):
# Read Llama args.
model_args_path = os.path.join(args.load, "config.json")
with open(model_args_path) as f:
model_args = json.load(f)
# Update Megatron args.
args.seq_length = 4096
if "llama2" in model_size:
# Correct bug in earlier conversion script.
args.max_position_embeddings = 4096
else:
args.max_position_embeddings = model_args["max_position_embeddings"]
args.hidden_size = model_args["hidden_size"]
args.num_attention_heads = model_args["num_attention_heads"]
args.num_layers = model_args["num_hidden_layers"]
args.global_batch_size = 1024
args.norm_epsilon = model_args["rms_norm_eps"]
args.iteration = 1 # '0', 'release' don't work
args.position_embedding_type = "rope"
args.swiglu = True
args.normalization = "RMSNorm"
args.add_bias_linear = False
args.untie_embeddings_and_output_weights = not model_args.get("tie_word_embeddings", False)
args.vocab_size = model_args["vocab_size"]
args.padded_vocab_size = model_args["vocab_size"]
args.ffn_hidden_size = model_args["intermediate_size"]
if "num_key_value_heads" in model_args:
args.group_query_attention = True
args.num_query_groups = model_args["num_key_value_heads"]
def set_preprocess_state(args, model, hf_model):
'''Set embedding params.'''
model.language_model.embedding.word_embeddings.weight.data.copy_(
hf_model.model.embed_tokens.weight)
def set_postprocess_state(args, model, hf_model):
'''Set output layer & norm params.'''
model.language_model.encoder.final_norm.weight.data.copy_(hf_model.model.norm.weight)
if args.untie_embeddings_and_output_weights:
model.language_model.output_layer.weight.data.copy_(hf_model.lm_head.weight)
def set_attn_state(args, layer, hf_layer):
'''Set self-attention params.'''
# Get attention layer & state.
attn = layer.self_attention
hf_attn = hf_layer.self_attn
# Reshape loaded weights.
tp = args.tensor_model_parallel_size
nh = args.num_attention_heads // tp
ng = (args.num_query_groups if args.group_query_attention \
else args.num_attention_heads) // tp
dim = args.kv_channels
assert nh % ng == 0
# Copy weights (re-order dimensions for Megatron).
attn.query_key_value.weight.data.copy_(torch.cat([
hf_attn.q_proj.weight.reshape((ng, dim*nh//ng, -1)),
hf_attn.k_proj.weight.reshape((ng, dim, -1)),
hf_attn.v_proj.weight.reshape((ng, dim, -1)),
], dim=1).reshape((-1, args.hidden_size)))
if args.add_qkv_bias:
attn.query_key_value.bias.data.copy_(torch.cat([
hf_attn.q_proj.bias.reshape((ng, dim*nh//ng)),
hf_attn.k_proj.bias.reshape((ng, dim)),
hf_attn.v_proj.bias.reshape((ng, dim)),
], dim=1).reshape(-1))
attn.dense.weight.data.copy_(hf_attn.o_proj.weight)
def set_mlp_state(args, layer, hf_layer):
'''Set MLP params.'''
mlp = layer.mlp
hf_mlp = hf_layer.mlp
mlp.dense_h_to_4h.weight.data.copy_(torch.cat([
hf_mlp.gate_proj.weight,
hf_mlp.up_proj.weight,
], dim=0))
mlp.dense_4h_to_h.weight.data.copy_(hf_mlp.down_proj.weight)
def set_layer_state(args, model, hf_model, layer_idx):
'''Set transformer layer params.'''
layer = model.language_model.encoder.layers[layer_idx]
hf_layer = hf_model.model.layers[layer_idx]
set_attn_state(args, layer, hf_layer)
set_mlp_state(args, layer, hf_layer)
layer.input_norm.weight.data.copy_(hf_layer.input_layernorm.weight)
layer.post_attention_norm.weight.data.copy_(hf_layer.post_attention_layernorm.weight)
def load_checkpoint_to_model(args):
'''Set model params.'''
from pretrain_gpt import model_provider
from transformers import AutoModelForCausalLM
# Load Huggingface model.
hf_model = AutoModelForCausalLM.from_pretrained(args.load, torch_dtype=args.params_dtype, low_cpu_mem_usage=True, device_map="cpu")
# Init Megatron model.
model = model_provider(True, True).to(args.params_dtype)
# Set model state.
set_preprocess_state(args, model, hf_model)
set_postprocess_state(args, model, hf_model)
for layer_idx in tqdm(range(args.num_layers), "set layer states"):
set_layer_state(args, model, hf_model, layer_idx)
return model
def _load_checkpoint(queue, args):
verify_transformers_version()
# Search in directory above this.
sys.path.append(os.path.abspath(
os.path.join(os.path.dirname(__file__),
os.path.pardir,
os.path.pardir)))
if args.megatron_path is not None:
sys.path.insert(0, args.megatron_path)
# Convert Meta checkpoint to HF format as an intermediate step
if args.checkpoint_type == "meta":
model_tmp_path = convert_to_hf(model_path=os.path.join(args.save_dir, 'tmp'), input_base_path=args.load_dir, model_size=args.model_size, tokenizer_path=args.tokenizer_model)
args.load_dir = model_tmp_path
args.tokenizer_model = model_tmp_path # point to HF tokenizer model
try:
from megatron.training.arguments import parse_args, validate_args
from megatron.training.global_vars import set_args, set_global_variables
from megatron.legacy.model import module
from megatron.core import mpu
from megatron.core.enums import ModelType
from megatron.legacy import fused_kernels
except ModuleNotFoundError:
print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
queue.put("exit")
exit(1)
# We want all arguments to come from us.
sys.argv = ['script.py',
'--no-masked-softmax-fusion',
'--no-bias-gelu-fusion',
'--no-bias-dropout-fusion',
'--no-async-tensor-model-parallel-allreduce',
'--use-cpu-initialization',
'--micro-batch-size', '1',
'--no-load-optim',
'--no-load-rng',
'--no-save-optim',
'--no-save-rng',
'--mock-data', # To pass the "blend data checks" in arguments.py
'--no-initialization',
'--load', args.load_dir,
'--no-one-logger',
]
if args.make_vocab_size_divisible_by is not None:
sys.argv.extend(["--make-vocab-size-divisible-by", str(args.make_vocab_size_divisible_by)])
margs = parse_args()
margs.tokenizer_model = args.tokenizer_model
load_args_from_checkpoint(margs, args.model_size)
if "llama2" in args.model_size:
margs.tokenizer_type = "Llama2Tokenizer"
elif "yi" in args.model_size:
margs.tokenizer_type = "HuggingFaceTokenizer"
elif "llama3" in args.model_size:
margs.tokenizer_type = "HuggingFaceTokenizer"
elif "mistral" in args.model_size:
margs.tokenizer_type = "HuggingFaceTokenizer"
elif "qwen2.5" in args.model_size:
margs.tokenizer_type = "HuggingFaceTokenizer"
margs.add_qkv_bias = True
# Arguments do sanity checks on the world size, but we don't care,
# so trick it into thinking we are plenty of processes.
margs.world_size = margs.tensor_model_parallel_size * margs.pipeline_model_parallel_size
margs = validate_args(margs)
margs.use_legacy_models = True
margs.transformer_impl = args.loader_transformer_impl
margs.position_embedding_type = "rope"
def check_for_arg(arg_name, default=None):
if getattr(margs, arg_name, None) is None:
if default is not None:
setattr(margs, arg_name, default)
else:
print(f"Checkpoint does not specify the argument {arg_name}. Exiting.")
print(f"Arguments: {margs}")
queue.put("exit")
exit(1)
check_for_arg('tensor_model_parallel_size')
check_for_arg('pipeline_model_parallel_size')
check_for_arg('num_layers')
check_for_arg('hidden_size')
check_for_arg('seq_length')
check_for_arg('num_attention_heads')
check_for_arg('max_position_embeddings')
check_for_arg('position_embedding_type')
check_for_arg('iteration')
check_for_arg('bert_binary_head')
check_for_arg('disable_bias_linear', False)
check_for_arg('params_dtype')
check_for_arg('swiglu', False)
# Determine how to make our models.
assert args.model_type == 'GPT', 'Llama-2, Llama-3 and Mistral are GPT models.'
margs.model_type = ModelType.encoder_or_decoder
margs.params_dtype = torch.bfloat16 if args.bf16 else torch.float16 if args.fp16 else torch.float32
# Suppress warning about torch.distributed not being initialized.
module.MegatronModule.embedding_warning_printed = True
set_global_variables(margs, build_tokenizer=False)
mpu.set_tensor_model_parallel_world_size(margs.tensor_model_parallel_size)
mpu.set_pipeline_model_parallel_world_size(margs.pipeline_model_parallel_size)
mpu.set_virtual_pipeline_model_parallel_world_size(margs.virtual_pipeline_model_parallel_size)
fused_kernels.load(margs)
# Short aliases.
tp_size = margs.tensor_model_parallel_size
pp_size = margs.pipeline_model_parallel_size
vp_size = margs.virtual_pipeline_model_parallel_size
if vp_size is None:
vp_size = 1
# Metadata.
md = types.SimpleNamespace()
md.model_type = args.model_type
md.num_layers = margs.num_layers
md.hidden_size = margs.hidden_size
md.seq_length = margs.seq_length
md.num_attention_heads = margs.num_attention_heads
md.max_position_embeddings = margs.max_position_embeddings
md.tokenizer_type = margs.tokenizer_type
md.iteration = margs.iteration
md.params_dtype = margs.params_dtype
md.bert_binary_head = margs.bert_binary_head
md.output_layer = margs.untie_embeddings_and_output_weights
md.position_embedding_type = margs.position_embedding_type
md.linear_bias = margs.add_bias_linear
md.qkv_bias = margs.add_qkv_bias
md.norm_has_bias = False
md.swiglu = margs.swiglu
md.previous_tensor_parallel_size = margs.tensor_model_parallel_size
md.previous_pipeline_parallel_size = margs.pipeline_model_parallel_size
md.make_vocab_size_divisible_by = margs.make_vocab_size_divisible_by
md.checkpoint_args = margs
md.consumed_train_samples = 0
md.consumed_valid_samples = 0
margs.model_size = args.model_size
# Get true (non-padded) vocab size
tokenizer = transformers.AutoTokenizer.from_pretrained(margs.tokenizer_model)
md.true_vocab_size = tokenizer._tokenizer.get_vocab_size(with_added_tokens=True)
# Get first pipe stage.
mpu.set_tensor_model_parallel_rank(0)
mpu.set_pipeline_model_parallel_rank(0)
model = load_checkpoint_to_model(margs)
queue.put(md)
def queue_put(name, msg):
print(f"sending {name}")
msg["name"] = name
queue.put(msg)
# Send embeddings.
message = {
"word embeddings": model.language_model.embedding.word_embeddings.weight.data
}
if md.position_embedding_type == 'learned_absolute':
message["position embeddings"] = model.language_model.embedding.position_embeddings.weight.data
else:
assert not hasattr(model.language_model.embedding, 'position_embeddings')
queue_put("embeddings", message)
for layer_num in range(margs.num_layers):
message = {}
# Get non-parallel tensors from tp_rank 0.
layer = model.language_model.encoder.layers[layer_num]
message["input norm weight"] = layer.input_norm.weight.data
message["post norm weight"] = layer.post_attention_norm.weight.data
if md.linear_bias:
message["dense bias"] = layer.self_attention.dense.bias.data
message["mlp l1 bias"] = layer.mlp.dense_4h_to_h.bias.data
# Grab all parallel tensors for this layer.
qkv_weight = []
qkv_bias = []
dense_weight = []
mlp_l0_weight = []
mlp_l0_bias = []
mlp_l1_weight = []
layer = model.language_model.encoder.layers[layer_num]
qkv_weight.append(layer.self_attention.query_key_value.weight.data)
dense_weight.append(layer.self_attention.dense.weight.data)
mlp_l0_weight.append(layer.mlp.dense_h_to_4h.weight.data)
mlp_l1_weight.append(layer.mlp.dense_4h_to_h.weight.data)
if md.qkv_bias:
qkv_bias.append(layer.self_attention.query_key_value.bias.data)
if md.linear_bias:
mlp_l0_bias.append(layer.mlp.dense_h_to_4h.bias.data)
# Handle gated linear units.
if md.swiglu:
# Concat all the first halves ('W's) and all the second halves ('V's).
for tp_rank in range(tp_size):
mlp_l0_weight[tp_rank] = torch.chunk(mlp_l0_weight[tp_rank], 2, dim=0)
message["mlp l0 weight W"] = torch.cat([w[0] for w in mlp_l0_weight], dim=0)
message["mlp l0 weight V"] = torch.cat([w[1] for w in mlp_l0_weight], dim=0)
else:
message["mlp l0 weight"] = torch.cat(mlp_l0_weight, dim=0)
# Simple concat of the rest.
message["qkv weight"] = torch.cat(qkv_weight, dim=0)
message["dense weight"] = torch.cat(dense_weight, dim=1)
message["mlp l1 weight"] = torch.cat(mlp_l1_weight, dim=1)
if md.qkv_bias:
message["qkv bias"] = torch.cat(qkv_bias, dim=0)
if md.linear_bias:
if md.swiglu:
for tp_rank in range(tp_size):
mlp_l0_bias[tp_rank] = torch.chunk(mlp_l0_bias[tp_rank], 2, dim=0)
message["mlp l0 bias W"] = torch.cat([b[0] for b in mlp_l0_bias],dim=0)
message["mlp l0 bias V"] = torch.cat([b[1] for b in mlp_l0_bias],dim=0)
else:
message["mlp l0 bias"] = torch.cat(mlp_l0_bias, dim=0)
queue_put(f"transformer layer {layer_num}", message)
# Send final norm from tp_rank 0.
message = {
"weight": model.language_model.encoder.final_norm.weight.data,
}
queue_put("final norm", message)
if md.output_layer:
message = {
"weight": model.language_model.output_layer.weight.data
}
queue_put("output layer", message)
queue.put("done")
if args.checkpoint_type == "meta":
shutil.rmtree(os.path.join(args.load_dir))
def load_checkpoint(queue, args):
try:
_load_checkpoint(queue, args)
except Exception:
queue.put("exit")
raise