diff --git a/digits/standard-networks/caffe/lenet.prototxt b/digits/standard-networks/caffe/lenet.prototxt index 6ad30e9ce..14fc05438 100644 --- a/digits/standard-networks/caffe/lenet.prototxt +++ b/digits/standard-networks/caffe/lenet.prototxt @@ -3,12 +3,8 @@ name: "LeNet" layer { name: "train-data" type: "Data" - top: "scaled" + top: "data" top: "label" - transform_param { - # 1/(standard deviation) - scale: 0.0125 - } data_param { batch_size: 64 } @@ -17,28 +13,23 @@ layer { layer { name: "val-data" type: "Data" - top: "scaled" + top: "data" top: "label" - transform_param { - # 1/(standard deviation) - scale: 0.0125 - } data_param { batch_size: 32 } include { stage: "val" } } layer { - # Use Power layer in deploy phase for input scaling + # Use Power layer for input scaling name: "scale" bottom: "data" top: "scaled" type: "Power" power_param { - # 1/(standard deviation) + # 1/(standard deviation on MNIST dataset) scale: 0.0125 } - include { stage: "deploy" } } layer { name: "conv1" diff --git a/digits/standard-networks/torch/lenet.lua b/digits/standard-networks/torch/lenet.lua index c171a56bc..ec4b83486 100644 --- a/digits/standard-networks/torch/lenet.lua +++ b/digits/standard-networks/torch/lenet.lua @@ -33,7 +33,7 @@ return function(params) -- -- This is a LeNet model. For more information: http://yann.lecun.com/exdb/lenet/ local lenet = nn.Sequential() - lenet:add(nn.MulConstant(0.00390625)) + lenet:add(nn.MulConstant(0.0125)) -- 1/(standard deviation on MNIST dataset) lenet:add(backend.SpatialConvolution(channels,20,5,5,1,1,0)) -- channels*28*28 -> 20*24*24 lenet:add(backend.SpatialMaxPooling(2, 2, 2, 2)) -- 20*24*24 -> 20*12*12 lenet:add(backend.SpatialConvolution(20,50,5,5,1,1,0)) -- 20*12*12 -> 50*8*8