-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path1.train.py
123 lines (102 loc) · 5.05 KB
/
1.train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import pickle
import argparse
import time
import torch
import torch.nn as nn
from tqdm.auto import tqdm
from torch.utils.data import DataLoader
from pytorch_lightning import seed_everything
from dataset import Evaluate_Dataset
from models import Evaluate4rec, Kiosk4Rec, ALBert4Rec, Bert4Rec, GRU4Rec, SASRec
def load_model(args, vocab_size):
model = None
if args.name == 'kiosk4rec':
model = Kiosk4Rec(args=args, vocab_size=vocab_size)
elif args.name == 'albert4rec':
model = ALBert4Rec(args=args, vocab_size=vocab_size)
elif args.name == 'bert4rec':
model = Bert4Rec(args=args, vocab_size=vocab_size)
elif args.name == 'gru4rec':
model = GRU4Rec(args=args, vocab_size=vocab_size)
elif args.name == 'sasrec':
model = SASRec(args=args, vocab_size=vocab_size)
return model
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument('--name', default='kiosk4rec')
args.add_argument('--seed', default=42)
args.add_argument('--device', default=0)
args.add_argument('--runs', default=5)
args.add_argument('--epochs', default=100)
args.add_argument('--lr', default=0.0001)
args.add_argument('--batch_size', default=512)
args.add_argument('--embed_size', default=128)
args.add_argument('--num_layers', default=12)
args.add_argument('--num_heads', default=12)
args.add_argument('--hidden_size', default=768)
args.add_argument('--dropout', default=0.0)
args = args.parse_args()
seed_everything(args.seed)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
# Load DataLoader
vocab = pickle.load(open(os.getcwd() + '/dataset/transaction/vocab.pkl', 'rb'))
# Train & Valid
metric = {run: {'train_loss': [], 'valid_loss': []} for run in range(1, args.runs+1)}
for run in range(1, args.runs+1):
transaction = {
'train': pickle.load(open(os.getcwd() + f'/dataset/transaction/train/train_{run}.pkl', 'rb')),
'valid': pickle.load(open(os.getcwd() + f'/dataset/transaction/valid/valid_{run}.pkl', 'rb'))
}
dataloader = {
'train': DataLoader(
Evaluate_Dataset(transaction['train'], vocab, args.name),
batch_size=args.batch_size, shuffle=True, num_workers=8
),
'valid': DataLoader(
Evaluate_Dataset(transaction['valid'], vocab, args.name, train=False),
batch_size=args.batch_size, num_workers=8
)
}
# Load Model
# model = load_model(args=args, vocab_size=vocab['size']).to(device)
model = torch.load(os.getcwd()+f'/outputs/pretrain/model_1.pth').to(device)
if run == 1:
print(f'{args.name.upper():10s} #Params {sum([p.numel() for p in model.parameters()])}')
evaluater = Evaluate4rec(model).to(device)
optimizer = torch.optim.AdamW(params=evaluater.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=int(args.epochs/10))
print()
time.sleep(3)
for epoch in range(1, args.epochs+1):
for task in ['train']:
evaluater.train()
avg_loss = 0.
batch_iter = tqdm(enumerate(dataloader[task]), desc=f'RUN{run:02d}_EP{epoch:02d}_{task}', total=len(dataloader[task]))
for i, batch in batch_iter:
batch = {key: value.to(device) for key, value in batch.items()}
outputs = evaluater(batch)
loss = nn.CrossEntropyLoss(ignore_index=0)(outputs.transpose(1, 2), batch['t_label'])
avg_loss += loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_iter.set_postfix({'loss': loss.item(), 'avg_loss': avg_loss.item() / (i+1)})
metric[run][f'{task}_loss'].append(avg_loss.item() / len(batch_iter))
scheduler.step()
for task in ['valid']:
evaluater.eval()
avg_loss = 0.
batch_iter = tqdm(enumerate(dataloader[task]), desc=f'RUN{run:02d}_EP{epoch:02d}_{task}', total=len(dataloader[task]))
for i, batch in batch_iter:
batch = {key: value.to(device) for key, value in batch.items()}
with torch.no_grad():
outputs = evaluater(batch)
loss = nn.CrossEntropyLoss(ignore_index=0)(outputs.transpose(1, 2), batch['t_label'])
avg_loss += loss
batch_iter.set_postfix({'loss': loss.item(), 'avg_loss': avg_loss.item() / (i + 1)})
metric[run][f'{task}_loss'].append(avg_loss.item() / len(batch_iter))
if min(metric[run][f'{task}_loss']) == avg_loss.item() / len(batch_iter):
torch.save(evaluater.cpu(), os.getcwd()+f'/outputs/{args.name}/model_{run:02d}.pth')
evaluater.to(device)
torch.save(metric, os.getcwd()+f'/outputs/{args.name}/metric.tar')