+# -*- coding: utf-8 -*-
+"""
+Base class to handle collection of datasets across multiple .h5 files
+"""
+import sys
+import time
+import shutil
+import logging
+from pathlib import Path
+from warnings import warn
+
+import numpy as np
+import psutil
+import pandas as pd
+
+from rex import Resource, Outputs
+from gaps.log import log_versions
+from gaps.warnings import gapsCollectionWarning
+from gaps.exceptions import gapsRuntimeError
+from gaps.utilities import project_points_from_container_or_slice
+
+logger = logging.getLogger(__name__)
+
+
+class _OutputsWithAliases(Outputs):
+ """Helper class that exposes and aliases some functions."""
+
+ def create_dataset(self, *args, **kwargs):
+ """Expose `_create_dset` call.""" # cspell:disable-line
+ return self._create_dset(*args, **kwargs) # cspell:disable-line
+
+ def get_dataset_properties(self, *args, **kwargs):
+ """Alias for `get_dset_properties`.""" # cspell:disable-line
+ return self.get_dset_properties(*args, **kwargs) # cspell:disable-line
+
+ def get_time_index(self, *args, **kwargs):
+ """Expose `_get_time_index` call."""
+ return self._get_time_index(*args, **kwargs)
+
+ def set_meta(self, *args, **kwargs):
+ """Expose `_set_meta` call."""
+ return self._set_meta(*args, **kwargs)
+
+ def set_time_index(self, *args, **kwargs):
+ """Expose `_set_time_index` call."""
+ return self._set_time_index(*args, **kwargs)
+
+
+
+
[docs]
+
class DatasetCollector:
+
"""Collector for a single dataset."""
+
+
def __init__(
+
self,
+
h5_file,
+
source_files,
+
gids,
+
dataset_in,
+
dataset_out=None,
+
memory_utilization_limit=0.7,
+
pass_through=False,
+
):
+
"""
+
Parameters
+
----------
+
h5_file : path-like
+
Path to h5_file into which dataset is to be collected.
+
source_files : list
+
List of source filepaths.
+
gids : list
+
List of gids to be collected.
+
dataset_in : str
+
Name of dataset to collect.
+
dataset_out : str, optional
+
Name of dataset into which collected data is to be written.
+
If `None` the name of the output dataset is assumed to match
+
the dataset input name. By default, `None`.
+
memory_utilization_limit : float, optional
+
Memory utilization limit (fractional). This sets how many
+
sites will be collected at a time. By default, `0.7`.
+
pass_through : bool, optional
+
Flag to just pass through dataset from one of the source
+
files, assuming all of the source files have identical
+
copies of this dataset. By default, `False`.
+
"""
+
self._h5_file = h5_file
+
self._source_files = source_files
+
self._gids = gids
+
self._pass_through = pass_through
+
self._dataset_in = dataset_in
+
self._file_gid_map = {
+
fp: parse_meta(fp)["gid"].values.tolist()
+
for fp in self._source_files
+
}
+
if dataset_out is None:
+
dataset_out = dataset_in
+
self._dataset_out = dataset_out
+
+
tot_mem = psutil.virtual_memory().total
+
self._mem_avail = memory_utilization_limit * tot_mem
+
self._axis, self._site_mem_req = self._pre_collect()
+
+
logger.debug(
+
"Available memory for collection is %.2f bytes", self._mem_avail
+
)
+
logger.debug(
+
"Site memory requirement is: %.2f bytes", self._site_mem_req
+
)
+
+
@property
+
def gids(self):
+
"""list: List of gids corresponding to all sites to be combined."""
+
return self._gids
+
+
@property
+
def duplicate_gids(self):
+
"""bool: `True` if there are duplicate gids being collected."""
+
return len(self.gids) > len(set(self.gids))
+
+
def _pre_collect(self):
+
"""Run a pre-collection check and get relevant dataset attrs.
+
+
Returns
+
-------
+
axis : int
+
Axis size (1 is 1D array, 2 is 2D array).
+
site_mem_req : float
+
Memory requirement in bytes to collect a single site from
+
one source file.
+
"""
+
with _OutputsWithAliases(self._source_files[0], mode="r") as out:
+
shape, dtype, chunks = out.get_dataset_properties(self._dataset_in)
+
attrs = out.get_attrs(self._dataset_in)
+
axis = len(out[self._dataset_in].shape)
+
+
with _OutputsWithAliases(self._h5_file, mode="a") as out:
+
if axis == 1:
+
dataset_shape = (len(out),)
+
elif axis == 2:
+
if "time_index" in out.datasets:
+
dataset_shape = out.shape
+
else:
+
msg = (
+
"'time_index' must be combined before profiles can "
+
"be combined."
+
)
+
raise gapsRuntimeError(msg)
+
else:
+
msg = (
+
f"Cannot collect dataset {self._dataset_in!r} with "
+
f"axis {axis}"
+
)
+
raise gapsRuntimeError(msg)
+
+
if self._dataset_out not in out.datasets:
+
out.create_dataset(
+
self._dataset_out,
+
dataset_shape,
+
dtype,
+
chunks=chunks,
+
attrs=attrs,
+
)
+
+
site_mem_req = _get_site_mem_req(shape, dtype)
+
+
return axis, site_mem_req
+
+
def _get_source_gid_chunks(self, f_source):
+
"""Split gids from a source file into chunks based on memory req.
+
+
Parameters
+
----------
+
f_source : :class:`rex.Outputs`
+
Source file handler.
+
+
Returns
+
-------
+
all_source_gids : list
+
List of all source gids to be collected.
+
source_gid_chunks : list
+
List of source gid chunks to collect.
+
"""
+
+
all_source_gids = f_source.get_meta_arr("gid")
+
mem_req = len(all_source_gids) * self._site_mem_req
+
+
if mem_req > self._mem_avail:
+
num_chunks = 2
+
while True:
+
source_gid_chunks = np.array_split(all_source_gids, num_chunks)
+
new_mem_req = len(source_gid_chunks[0]) * self._site_mem_req
+
if new_mem_req > self._mem_avail:
+
num_chunks += 1
+
else:
+
logger.debug(
+
"Collecting dataset %r in %d chunks with "
+
"an estimated %.2f bytes in each chunk "
+
"(mem avail limit is %.2f bytes).",
+
self._dataset_in,
+
num_chunks,
+
new_mem_req,
+
self._mem_avail,
+
)
+
break
+
else:
+
source_gid_chunks = [all_source_gids]
+
+
return all_source_gids, source_gid_chunks
+
+
def _collect_chunk(
+
self, all_source_gids, source_gids, f_out, f_source, fp_source
+
):
+
"""Collect one set of source gids from f_source to f_out.
+
+
Parameters
+
----------
+
all_source_gids : list
+
List of all source gids to be collected.
+
source_gids : np.ndarray | list
+
Source gids to be collected.
+
f_out : rex.Outputs
+
Output file handler.
+
f_source : rex.Outputs
+
Source file handler.
+
fp_source : str
+
Source filepath.
+
"""
+
+
out_slice, source_slice, source_indexer = self._get_chunk_indices(
+
all_source_gids, source_gids, fp_source
+
)
+
+
try:
+
if self._axis == 1:
+
data = f_source[self._dataset_in, source_slice]
+
if not all(source_indexer):
+
data = data[source_indexer]
+
f_out[self._dataset_out, out_slice] = data
+
+
elif self._axis == 2:
+
data = f_source[self._dataset_in, :, source_slice]
+
if not all(source_indexer):
+
data = data[:, source_indexer]
+
f_out[self._dataset_out, :, out_slice] = data
+
+
except Exception as exc:
+
msg = (
+
f"Failed to collect {self._dataset_in!r} from source file "
+
f"{fp_source.name!r}."
+
)
+
raise gapsRuntimeError(msg) from exc
+
+
def _get_chunk_indices(self, all_source_gids, source_gids, fp_source):
+
"""Slices and indices used for selecting source gids.
+
+
Parameters
+
----------
+
all_source_gids : list
+
List of all source gids to be collected.
+
source_gids : np.ndarray | list
+
Source gids to be collected. This is the same as
+
`all_source_gids` if collection is not being done in chunks.
+
f_out : :class:`rex.Outputs`
+
Output file handler.
+
f_source : :class:`rex.Outputs`
+
Source file handler.
+
fp_source : str
+
Source filepath.
+
+
Returns
+
-------
+
out_slice : slice | ndarray
+
Slice specifying location of source data in output file.
+
This can also be a boolean array if source gids are not
+
sequential in the output file.
+
source_slice : slice
+
Slice specifying index range of source data in input file.
+
If collection is not being done in chunks this is just
+
slice(None).
+
source_indexer : ndarray
+
boolean array specifying which source gids (not just a
+
range) should be stored in output.
+
"""
+
source_indexer = np.isin(source_gids, self._gids)
+
out_slice = _get_gid_slice(
+
self._gids, source_gids, Path(fp_source).name
+
)
+
+
if self.duplicate_gids:
+
msg = "Cannot collect duplicate gids in multiple chunks"
+
assert len(all_source_gids) == len(source_gids), msg
+
out_i0 = 0
+
for source_file in self._source_files:
+
if source_file == fp_source:
+
break
+
out_i0 += len(self._file_gid_map[source_file])
+
out_i1 = out_i0 + len(self._file_gid_map[fp_source])
+
out_slice = slice(out_i0, out_i1)
+
source_slice = slice(None)
+
+
elif all(sorted(source_gids) == source_gids):
+
source_i0 = np.where(all_source_gids == np.min(source_gids))[0][0]
+
source_i1 = np.where(all_source_gids == np.max(source_gids))[0][0]
+
source_slice = slice(source_i0, source_i1 + 1)
+
+
elif all(source_gids == all_source_gids):
+
source_slice = slice(None)
+
+
else:
+
source_slice = np.isin(all_source_gids, source_gids)
+
msg = (
+
"source_gids is not in ascending order or equal to "
+
"all_source_gids. This can cause issues with the "
+
"collection ordering. Please check your data carefully."
+
)
+
warn(msg, gapsCollectionWarning)
+
+
return out_slice, source_slice, source_indexer
+
+
def _collect(self):
+
"""Simple & robust serial collection optimized for low memory usage."""
+
logger.info("Collecting %s...", self._dataset_in)
+
with _OutputsWithAliases(self._h5_file, mode="a") as f_out:
+
if self._pass_through:
+
with Resource(self._source_files[0]) as f_source:
+
f_out[self._dataset_out] = f_source[self._dataset_in]
+
+
else:
+
for f_ind, file_path in enumerate(self._source_files, start=1):
+
with Resource(file_path) as f_source:
+
chunks = self._get_source_gid_chunks(f_source)
+
all_source_gids, source_gid_chunks = chunks
+
+
for source_gids in source_gid_chunks:
+
self._collect_chunk(
+
all_source_gids,
+
source_gids,
+
f_out,
+
f_source,
+
file_path,
+
)
+
+
mem = psutil.virtual_memory()
+
logger.debug(
+
"Finished collecting %r from %d out of %d "
+
"files. Memory utilization is %.3f GB out "
+
"of %.3f GB total (%.1f%% used)",
+
self._dataset_in,
+
f_ind,
+
len(self._source_files),
+
mem.used / (1024.0**3),
+
mem.total / (1024.0**3),
+
100 * mem.used / mem.total,
+
)
+
+
+
[docs]
+
@classmethod
+
def collect_dataset(
+
cls,
+
h5_file,
+
source_files,
+
gids,
+
dataset_in,
+
dataset_out=None,
+
memory_utilization_limit=0.7,
+
pass_through=False,
+
):
+
"""Collect a dataset from multiple source files into a single file.
+
+
Parameters
+
----------
+
h5_file : path-like
+
Path to h5_file into which dataset is to be collected.
+
source_files : list
+
List of source filepaths.
+
gids : list
+
List of gids to be collected.
+
dataset_in : str
+
Name of dataset to collect.
+
dataset_out : str, optional
+
Name of dataset into which collected data is to be written.
+
If `None` the name of the output dataset is assumed to match
+
the dataset input name. By default, `None`.
+
memory_utilization_limit : float, optional
+
Memory utilization limit (fractional). This sets how many
+
sites will be collected at a time. By default, `0.7`.
+
pass_through : bool, optional
+
Flag to just pass through dataset from one of the source
+
files, assuming all of the source files have identical
+
copies of this dataset. By default, `False`.
+
"""
+
collector = cls(
+
h5_file,
+
source_files,
+
gids,
+
dataset_in,
+
dataset_out=dataset_out,
+
memory_utilization_limit=memory_utilization_limit,
+
pass_through=pass_through,
+
)
+
collector._collect()
+
+
+
+
+
+
[docs]
+
class Collector:
+
"""Collector of multiple source files into a single output file."""
+
+
def __init__(
+
self, h5_file, collect_pattern, project_points, clobber=False
+
):
+
"""
+
Parameters
+
----------
+
h5_file : path-like
+
Path to output HDF5 file into which data will be collected.
+
collect_pattern : str
+
Unix-style /filepath/pattern*.h5 representing a list of
+
input files to be collected into a single HDF5 file.
+
project_points : str | slice | list | pandas.DataFrame | None
+
Project points that correspond to the full collection of
+
points contained in the HDF5 files to be collected. `None`
+
if points list is to be ignored (i.e. collect all data in
+
the input HDF5 files without checking that all gids are
+
there).
+
clobber : bool, optional
+
Flag to purge output HDF5 file if it already exists.
+
By default, `False`.
+
"""
+
log_versions()
+
self.h5_out = Path(h5_file)
+
self.collect_pattern = collect_pattern
+
if clobber and self.h5_out.exists():
+
warn(
+
f"{h5_file} already exists and is being replaced",
+
gapsCollectionWarning,
+
)
+
self.h5_out.unlink()
+
+
self._h5_files = find_h5_files(
+
self.collect_pattern, ignore=self.h5_out.name
+
)
+
if project_points is not None:
+
logger.debug("Parsing project points...")
+
self._gids = parse_project_points(project_points)
+
else:
+
self._gids = parse_gids_from_files(self._h5_files)
+
+
self.combine_meta()
+
+
+
[docs]
+
def get_dataset_shape(self, dataset_name):
+
"""Extract dataset shape from the first file in the collection list.
+
+
Parameters
+
----------
+
dataset_name : str
+
Dataset to be collected whose shape is in question.
+
+
Returns
+
-------
+
shape : tuple
+
Dataset shape tuple.
+
"""
+
with Resource(self.h5_files[0]) as file_:
+
shape = file_.shapes[dataset_name]
+
+
return shape
+
+
+
@property
+
def h5_files(self):
+
"""list: List of paths to HDF5 files to be combined."""
+
return self._h5_files
+
+
@property
+
def gids(self):
+
"""list: List of gids corresponding to all sites to be combined."""
+
return self._gids
+
+
+
+
+
+
[docs]
+
def combine_time_index(self):
+
"""Combine `time_index` from input HDF5 files and write to out file.
+
+
If `time_index` is not given in the input HDF5 files, the
+
`time_index` in the output file is set to `None`.
+
"""
+
# If we ever become Python 3.10+ exclusive, we can use parenthesis here
+
# fmt: off
+
with _OutputsWithAliases(self.h5_files[0], mode="r") as f_source, \
+
_OutputsWithAliases(self.h5_out, mode="a") as f_out:
+
time_index_datasets = [
+
d for d in list(f_source) if d.startswith("time_index")
+
]
+
time_index = None
+
for name in time_index_datasets:
+
time_index = f_source.get_time_index(name, slice(None))
+
attrs = f_source.get_attrs(name)
+
f_out.set_time_index(name, time_index, attrs=attrs)
+
+
+
def _check_meta(self, meta):
+
"""Validate meta.
+
+
In particular, this method checks the combined meta against
+
`self._gids` to make sure all sites are present in
+
`self.h5_files`.
+
+
Parameters
+
----------
+
meta : :class:`pd.DataFrame`
+
DataFrame of combined meta from all files in
+
`self.h5_files`. Duplicate GIDs are dropped and a warning is
+
raised.
+
"""
+
meta_gids = meta["gid"].values
+
gids = np.array(self.gids)
+
missing = gids[~np.in1d(gids, meta_gids)]
+
if any(missing):
+
# TODO: Write missing gids to disk to allow for automated re-run
+
msg = f"gids: {missing} are missing"
+
raise gapsRuntimeError(msg)
+
+
if len(set(meta_gids)) != len(meta):
+
msg = (
+
f"Meta of length {len(meta)} has {len(set(meta_gids))} "
+
f"unique gids! There are duplicate gids in the source "
+
f"file list: {self.h5_files!r}"
+
)
+
warn(msg, gapsCollectionWarning)
+
+
if not all(sorted(meta["gid"].values) == meta["gid"].values):
+
msg = (
+
"Collection was run with non-ordered meta data GIDs! "
+
"This can cause issues with the collection ordering. "
+
"Please check your data carefully."
+
)
+
warn(msg, gapsCollectionWarning)
+
+
meta = meta.reset_index(drop=True)
+
+
return meta
+
+
+
[docs]
+
def purge_chunks(self):
+
"""Remove chunked files from a directory.
+
+
Warns
+
-----
+
gapsCollectionWarning
+
If some datasets have not been collected.
+
+
Warnings
+
--------
+
This function WILL NOT delete files if any datasets were not
+
collected.
+
"""
+
+
with Resource(self.h5_out) as out:
+
collected_datasets = out.datasets
+
+
with Resource(self.h5_files[0]) as out:
+
source_datasets = out.datasets
+
+
missing = [d for d in source_datasets if d not in collected_datasets]
+
+
if any(missing):
+
msg = (
+
f"Not purging chunked output files. These datasets "
+
f"have not been collected: {missing}"
+
)
+
warn(msg, gapsCollectionWarning)
+
return
+
+
for fpath in self.h5_files:
+
fpath.unlink()
+
+
logger.info("Purged chunk files from %s", self.collect_pattern)
+
+
+
+
[docs]
+
def move_chunks(self, sub_dir="chunk_files"):
+
"""Move chunked files from a directory to a sub-directory.
+
+
Parameters
+
----------
+
sub_dir : path-like, optional
+
Sub directory name to move chunks to. By default,
+
`"chunk_files"`.
+
"""
+
for fpath in self.h5_files:
+
new_dir = fpath.parent / sub_dir
+
new_dir.mkdir(parents=True, exist_ok=True)
+
shutil.move(fpath, new_dir / fpath.name)
+
+
logger.info(
+
"Moved chunk files from %s to sub_dir: %s",
+
self.collect_pattern,
+
sub_dir,
+
)
+
+
+
+
[docs]
+
def collect(
+
self,
+
dataset_in,
+
dataset_out=None,
+
memory_utilization_limit=0.7,
+
pass_through=False,
+
):
+
"""Collect a dataset from h5_dir to h5_file
+
+
Parameters
+
----------
+
dataset_in : str
+
Name of dataset to collect. If source shape is 2D,
+
time index will be collected as well.
+
dataset_out : str
+
Name of dataset into which collected data is to be written.
+
If `None` the name of the output dataset is assumed to match
+
the dataset input name. By default, `None`.
+
memory_utilization_limit : float
+
Memory utilization limit (fractional). This sets how many
+
sites will be collected at a time. By default, `0.7`.
+
pass_through : bool
+
Flag to just pass through dataset from one of the source
+
files, assuming all of the source files have identical
+
copies of this dataset. By default, `False`.
+
+
See Also
+
--------
+
Collector.add_dataset
+
Collect a dataset into an existing HDF5 file.
+
"""
+
+
logger.info(
+
"Collecting dataset %r from files based on pattern %r to output: "
+
"%s",
+
dataset_in,
+
self.collect_pattern,
+
self.h5_out,
+
)
+
start_time = time.time()
+
dataset_shape = self.get_dataset_shape(dataset_in)
+
if len(dataset_shape) > 1:
+
self.combine_time_index()
+
logger.debug("\t- 'time_index' collected")
+
+
DatasetCollector.collect_dataset(
+
self.h5_out,
+
self.h5_files,
+
self.gids,
+
dataset_in,
+
dataset_out=dataset_out,
+
memory_utilization_limit=memory_utilization_limit,
+
pass_through=pass_through,
+
)
+
+
logger.debug("\t- Collection of %r complete", dataset_in)
+
+
elapsed_time = (time.time() - start_time) / 60
+
logger.info("Collection complete")
+
logger.debug("\t- Collection took %.4f minutes", elapsed_time)
+
+
+
+
[docs]
+
@classmethod
+
def add_dataset(
+
cls,
+
h5_file,
+
collect_pattern,
+
dataset_in,
+
dataset_out=None,
+
memory_utilization_limit=0.7,
+
pass_through=False,
+
):
+
"""Collect and add a dataset to a single HDF5 file.
+
+
Parameters
+
----------
+
h5_file : path-like
+
Path to output HDF5 file into which data will be collected.
+
Note that this file must already exist and have a valid
+
`meta`.
+
collect_pattern : str
+
Unix-style /filepath/pattern*.h5 representing a list of
+
input files to be collected into a single HDF5 file.
+
dataset_in : str
+
Name of dataset to collect. If source shape is 2D,
+
time index will be collected as well.
+
dataset_out : str
+
Name of dataset into which collected data is to be written.
+
If `None` the name of the output dataset is assumed to match
+
the dataset input name. By default, `None`.
+
memory_utilization_limit : float
+
Memory utilization limit (fractional). This sets how many
+
sites will be collected at a time. By default, `0.7`.
+
pass_through : bool
+
Flag to just pass through dataset from one of the source
+
files, assuming all of the source files have identical
+
copies of this dataset. By default, `False`.
+
+
See Also
+
--------
+
Collector.collect
+
Collect a dataset into a file that does not yet exist.
+
"""
+
logger.info(
+
"Collecting dataset %r from files based on pattern %r and "
+
"adding to: %s",
+
dataset_in,
+
collect_pattern,
+
h5_file,
+
)
+
with Resource(h5_file) as res:
+
points = res.meta
+
+
collector = cls(h5_file, collect_pattern, points, clobber=False)
+
collector.collect(
+
dataset_in,
+
dataset_out=dataset_out,
+
memory_utilization_limit=memory_utilization_limit,
+
pass_through=pass_through,
+
)
+
+
+
+
+
+
[docs]
+
def parse_project_points(project_points):
+
"""Extract resource gids from project points.
+
+
Parameters
+
----------
+
project_points : str | slice | list | pandas.DataFrame
+
Reference to resource points that were processed and need
+
collecting.
+
+
Returns
+
-------
+
gids : list
+
List of resource gids that are to be collected.
+
"""
+
try:
+
project_points = pd.read_csv(project_points)
+
except (TypeError, ValueError):
+
pass
+
+
points = project_points_from_container_or_slice(project_points)
+
if not sorted(points) == points:
+
msg = (
+
"Project points contain non-ordered meta data GIDs! This "
+
"can cause issues with the collection ordering. Please "
+
"check your data carefully."
+
)
+
warn(msg, gapsCollectionWarning)
+
return points
+
+
+
+
+
[docs]
+
def find_h5_files(collect_pattern, ignore=None):
+
"""Search pattern for existing HDF5 files.
+
+
Parameters
+
----------
+
collect_pattern : str
+
Unix-style /filepath/pattern*.h5 representing a list of
+
input files to be collected into a single HDF5 file.
+
ignore : str | container | None, optional
+
File name(s) to ignore. By default, `None`.
+
+
Returns
+
-------
+
list
+
List of sorted filepaths.
+
+
Raises
+
------
+
gapsRuntimeError
+
If not all source files end in ".h5" (i.e. are not of type HDF5).
+
"""
+
ignore = ignore or []
+
if isinstance(ignore, str):
+
ignore = [ignore]
+
+
h5_files = []
+
logger.debug("Looking for source files based on %s", collect_pattern)
+
+
collect_pattern = Path(collect_pattern)
+
h5_files = [
+
fp
+
for fp in collect_pattern.parent.glob(collect_pattern.name)
+
if not fp.name in ignore
+
]
+
h5_files = sorted(h5_files, key=lambda fp: fp.name)
+
+
if not all(fp.name.endswith(".h5") for fp in h5_files):
+
msg = (
+
f"Source pattern resulted in non-h5 files that cannot "
+
f"be collected: {h5_files}, pattern: {collect_pattern}"
+
)
+
raise gapsRuntimeError(msg)
+
+
return h5_files
+
+
+
+
+
[docs]
+
def parse_gids_from_files(h5_files):
+
"""Extract a gid list from a list of h5_files.
+
+
Parameters
+
----------
+
h5_files : list
+
List of h5 files to be collected.
+
+
Returns
+
-------
+
gids : list
+
List of resource gids to be collected.
+
"""
+
logger.debug("Parsing gid list from files...")
+
meta = [parse_meta(h5_file) for h5_file in h5_files]
+
meta = pd.concat(meta, axis=0)
+
gids = list(meta["gid"].values.astype(int).tolist())
+
+
if len(gids) > len(set(gids)):
+
msg = "Duplicate GIDs were found in source files!"
+
warn(msg, gapsCollectionWarning)
+
+
if not sorted(gids) == gids:
+
msg = (
+
"Collection was run without project points file and with "
+
"non-ordered meta data GIDs! This can cause issues with "
+
"the collection ordering. Please check your data "
+
"carefully."
+
)
+
warn(msg, gapsCollectionWarning)
+
+
return gids
+
+
+
+
+
+
+
+def _get_site_mem_req(shape, dtype, num_prototype_sites=100):
+ """Calculate memory requirement to collect a dataset.
+
+ Parameters
+ ----------
+ shape : tuple
+ Shape of dataset to be collected (n_time, n_sites).
+ dtype : np.dtype
+ Numpy dtype of dataset (disk dtype).
+ num_prototype_sites : int, optional
+ Number of sites to prototype the memory req with. By default,
+ `100`.
+
+ Returns
+ -------
+ site_mem : float
+ Memory requirement in bytes to collect a dataset with shape and
+ dtype.
+ """
+ num_prototype_time_steps = shape[0] if len(shape) > 1 else 1
+ shape = (num_prototype_time_steps, num_prototype_sites)
+ site_mem = sys.getsizeof(np.ones(shape, dtype=dtype))
+ return site_mem / num_prototype_sites
+
+
+def _get_gid_slice(gids_out, source_gids, fn_source):
+ """Return site slice that the chunked set of source gids belongs to.
+
+ Parameters
+ ----------
+ gids_out : list
+ List of resource GIDS in the final output meta data f_out.
+ source_gids : list
+ List of resource GIDS in one chunk of source data.
+ fn_source : str
+ Source filename for warning printout.
+
+ Returns
+ -------
+ site_slice : slice | np.ndarray
+ Slice in the final output file to write data to from source
+ gids. If gids in destination file are non-sequential, a boolean
+ array of indexes is returned and a warning is thrown.
+ """
+ gid_in_source = np.isin(gids_out, source_gids)
+ locs = np.where(gid_in_source)[0]
+ if len(locs) == 0:
+ msg = (
+ f"DatasetCollector could not locate source gids in output "
+ f"gids.\n\tSource gids: {source_gids}"
+ f"\n\tOutput gids: {gids_out}"
+ )
+ raise gapsRuntimeError(msg)
+
+ sequential_locs = np.arange(locs.min(), locs.max() + 1)
+
+ if (locs != sequential_locs).any():
+ msg = (
+ f"GID indices for source file {fn_source!r} are not "
+ f"sequential in destination file!"
+ )
+ warn(msg, gapsCollectionWarning)
+ return gid_in_source
+
+ return slice(locs.min(), locs.max() + 1)
+
+
+