-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsimdrive_impl.rs
1856 lines (1757 loc) · 76.3 KB
/
simdrive_impl.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Module containing implementations for [simdrive](crate::simdrive).
use crate::cycle::{RustCycle, RustCycleCache};
use crate::imports::*;
use crate::params;
use crate::simdrive::{RustSimDrive, RustSimDriveParams};
use crate::utils::{arrmax, first_grtr, max, min, ndarrmax, ndarrmin};
use crate::vehicle::*;
pub struct RendezvousTrajectory {
pub found_trajectory: bool,
pub idx: usize,
pub n: usize,
pub full_brake_steps: usize,
pub jerk_m_per_s3: f64,
pub accel0_m_per_s2: f64,
pub accel_spread: f64,
}
pub struct CoastTrajectory {
pub found_trajectory: bool,
pub distance_to_stop_via_coast_m: f64,
pub start_idx: usize,
pub speeds_m_per_s: Option<Vec<f64>>,
pub distance_to_brake_m: Option<f64>,
}
impl RustSimDrive {
pub fn new(cyc: RustCycle, veh: RustVehicle) -> Self {
let hev_sim_count: usize = 0;
let cyc0: RustCycle = cyc.clone();
let sim_params = RustSimDriveParams::default();
let props = params::RustPhysicalProperties::default();
let i: usize = 1; // 1 # initialize step counter for possible use outside sim_drive_walk()
let cyc_len = cyc.time_s.len(); //get_len() as usize;
let cur_max_fs_kw_out = Array::zeros(cyc_len);
let fc_trans_lim_kw = Array::zeros(cyc_len);
let fc_fs_lim_kw = Array::zeros(cyc_len);
let fc_max_kw_in = Array::zeros(cyc_len);
let cur_max_fc_kw_out = Array::zeros(cyc_len);
let ess_cap_lim_dischg_kw = Array::zeros(cyc_len);
let cur_ess_max_kw_out = Array::zeros(cyc_len);
let cur_max_avail_elec_kw = Array::zeros(cyc_len);
let ess_cap_lim_chg_kw = Array::zeros(cyc_len);
let cur_max_ess_chg_kw = Array::zeros(cyc_len);
let cur_max_elec_kw = Array::zeros(cyc_len);
let mc_elec_in_lim_kw = Array::zeros(cyc_len);
let mc_transi_lim_kw = Array::zeros(cyc_len);
let cur_max_mc_kw_out = Array::zeros(cyc_len);
let ess_lim_mc_regen_perc_kw = Array::zeros(cyc_len);
let ess_lim_mc_regen_kw = Array::zeros(cyc_len);
let cur_max_mech_mc_kw_in = Array::zeros(cyc_len);
let cur_max_trans_kw_out = Array::zeros(cyc_len);
let cyc_trac_kw_req = Array::zeros(cyc_len);
let cur_max_trac_kw = Array::zeros(cyc_len);
let spare_trac_kw = Array::zeros(cyc_len);
let cyc_whl_rad_per_sec = Array::zeros(cyc_len);
let cyc_tire_inertia_kw = Array::zeros(cyc_len);
let cyc_whl_kw_req = Array::zeros(cyc_len);
let regen_contrl_lim_kw_perc = Array::zeros(cyc_len);
let cyc_regen_brake_kw = Array::zeros(cyc_len);
let cyc_fric_brake_kw = Array::zeros(cyc_len);
let cyc_trans_kw_out_req = Array::zeros(cyc_len);
let cyc_met = Array::from_vec(vec![false; cyc_len]);
let trans_kw_out_ach = Array::zeros(cyc_len);
let trans_kw_in_ach = Array::zeros(cyc_len);
let cur_soc_target = Array::zeros(cyc_len);
let min_mc_kw_2help_fc = Array::zeros(cyc_len);
let mc_mech_kw_out_ach = Array::zeros(cyc_len);
let mc_elec_kw_in_ach = Array::zeros(cyc_len);
let aux_in_kw = Array::zeros(cyc_len);
let impose_coast = Array::from_vec(vec![false; cyc_len]);
let roadway_chg_kw_out_ach = Array::zeros(cyc_len);
let min_ess_kw_2help_fc = Array::zeros(cyc_len);
let ess_kw_out_ach = Array::zeros(cyc_len);
let fc_kw_out_ach = Array::zeros(cyc_len);
let fc_kw_out_ach_pct = Array::zeros(cyc_len);
let fc_kw_in_ach = Array::zeros(cyc_len);
let fs_kw_out_ach = Array::zeros(cyc_len);
let fs_kwh_out_ach = Array::zeros(cyc_len);
let ess_cur_kwh = Array::zeros(cyc_len);
let soc = Array::zeros(cyc_len);
let regen_buff_soc = Array::zeros(cyc_len);
let ess_regen_buff_dischg_kw = Array::zeros(cyc_len);
let max_ess_regen_buff_chg_kw = Array::zeros(cyc_len);
let ess_accel_buff_chg_kw = Array::zeros(cyc_len);
let accel_buff_soc = Array::zeros(cyc_len);
let max_ess_accell_buff_dischg_kw = Array::zeros(cyc_len);
let ess_accel_regen_dischg_kw = Array::zeros(cyc_len);
let mc_elec_in_kw_for_max_fc_eff = Array::zeros(cyc_len);
let elec_kw_req_4ae = Array::zeros(cyc_len);
let can_pwr_all_elec = Array::from_vec(vec![false; cyc_len]);
let desired_ess_kw_out_for_ae = Array::zeros(cyc_len);
let ess_ae_kw_out = Array::zeros(cyc_len);
let er_ae_kw_out = Array::zeros(cyc_len);
let ess_desired_kw_4fc_eff = Array::zeros(cyc_len);
let ess_kw_if_fc_req = Array::zeros(cyc_len);
let cur_max_mc_elec_kw_in = Array::zeros(cyc_len);
let fc_kw_gap_fr_eff = Array::zeros(cyc_len);
let er_kw_if_fc_req = Array::zeros(cyc_len);
let mc_elec_kw_in_if_fc_req = Array::zeros(cyc_len);
let mc_kw_if_fc_req = Array::zeros(cyc_len);
let fc_forced_on = Array::from_vec(vec![false; cyc_len]);
let fc_forced_state = Array::zeros(cyc_len);
let mc_mech_kw_4forced_fc = Array::zeros(cyc_len);
let fc_time_on = Array::zeros(cyc_len);
let prev_fc_time_on = Array::zeros(cyc_len);
let mps_ach = Array::zeros(cyc_len);
let mph_ach = Array::zeros(cyc_len);
let dist_m = Array::zeros(cyc_len);
let dist_mi = Array::zeros(cyc_len);
let high_acc_fc_on_tag = Array::from_vec(vec![false; cyc_len]);
let reached_buff = Array::from_vec(vec![false; cyc_len]);
let max_trac_mps = Array::zeros(cyc_len);
let add_kwh = Array::zeros(cyc_len);
let dod_cycs = Array::zeros(cyc_len);
let ess_perc_dead = Array::zeros(cyc_len);
let drag_kw = Array::zeros(cyc_len);
let ess_loss_kw = Array::zeros(cyc_len);
let accel_kw = Array::zeros(cyc_len);
let ascent_kw = Array::zeros(cyc_len);
let rr_kw = Array::zeros(cyc_len);
let cur_max_roadway_chg_kw = Array::zeros(cyc_len);
let trace_miss_iters = Array::zeros(cyc_len);
let newton_iters = Array::zeros(cyc_len);
let fuel_kj: f64 = 0.0;
let ess_dischg_kj: f64 = 0.0;
let energy_audit_error: f64 = 0.0;
let mpgge: f64 = 0.0;
let roadway_chg_kj: f64 = 0.0;
let battery_kwh_per_mi: f64 = 0.0;
let electric_kwh_per_mi: f64 = 0.0;
let ess2fuel_kwh: f64 = 0.0;
let drag_kj: f64 = 0.0;
let ascent_kj: f64 = 0.0;
let rr_kj: f64 = 0.0;
let brake_kj: f64 = 0.0;
let trans_kj: f64 = 0.0;
let mc_kj: f64 = 0.0;
let ess_eff_kj: f64 = 0.0;
let aux_kj: f64 = 0.0;
let fc_kj: f64 = 0.0;
let net_kj: f64 = 0.0;
let ke_kj: f64 = 0.0;
let trace_miss = false;
let trace_miss_dist_frac: f64 = 0.0;
let trace_miss_time_frac: f64 = 0.0;
let trace_miss_speed_mps: f64 = 0.0;
let coast_delay_index = Array::zeros(cyc_len);
let idm_target_speed_m_per_s = Array::zeros(cyc_len);
let cyc0_cache = RustCycleCache::new(&cyc0);
RustSimDrive {
hev_sim_count,
veh,
cyc,
cyc0,
sim_params,
props,
i, // 1 # initialize step counter for possible use outside sim_drive_walk()
cur_max_fs_kw_out,
fc_trans_lim_kw,
fc_fs_lim_kw,
fc_max_kw_in,
cur_max_fc_kw_out,
ess_cap_lim_dischg_kw,
cur_ess_max_kw_out,
cur_max_avail_elec_kw,
ess_cap_lim_chg_kw,
cur_max_ess_chg_kw,
cur_max_elec_kw,
mc_elec_in_lim_kw,
mc_transi_lim_kw,
cur_max_mc_kw_out,
ess_lim_mc_regen_perc_kw,
ess_lim_mc_regen_kw,
cur_max_mech_mc_kw_in,
cur_max_trans_kw_out,
cyc_trac_kw_req,
cur_max_trac_kw,
spare_trac_kw,
cyc_whl_rad_per_sec,
cyc_tire_inertia_kw,
cyc_whl_kw_req,
regen_contrl_lim_kw_perc,
cyc_regen_brake_kw,
cyc_fric_brake_kw,
cyc_trans_kw_out_req,
cyc_met,
trans_kw_out_ach,
trans_kw_in_ach,
cur_soc_target,
min_mc_kw_2help_fc,
mc_mech_kw_out_ach,
mc_elec_kw_in_ach,
aux_in_kw,
impose_coast,
roadway_chg_kw_out_ach,
min_ess_kw_2help_fc,
ess_kw_out_ach,
fc_kw_out_ach,
fc_kw_out_ach_pct,
fc_kw_in_ach,
fs_kw_out_ach,
fs_kwh_out_ach,
ess_cur_kwh,
soc,
regen_buff_soc,
ess_regen_buff_dischg_kw,
max_ess_regen_buff_chg_kw,
ess_accel_buff_chg_kw,
accel_buff_soc,
max_ess_accell_buff_dischg_kw,
ess_accel_regen_dischg_kw,
mc_elec_in_kw_for_max_fc_eff,
elec_kw_req_4ae,
can_pwr_all_elec,
desired_ess_kw_out_for_ae,
ess_ae_kw_out,
er_ae_kw_out,
ess_desired_kw_4fc_eff,
ess_kw_if_fc_req,
cur_max_mc_elec_kw_in,
fc_kw_gap_fr_eff,
er_kw_if_fc_req,
mc_elec_kw_in_if_fc_req,
mc_kw_if_fc_req,
fc_forced_on,
fc_forced_state,
mc_mech_kw_4forced_fc,
fc_time_on,
prev_fc_time_on,
mps_ach,
mph_ach,
dist_m,
dist_mi,
high_acc_fc_on_tag,
reached_buff,
max_trac_mps,
add_kwh,
dod_cycs,
ess_perc_dead,
drag_kw,
ess_loss_kw,
accel_kw,
ascent_kw,
rr_kw,
cur_max_roadway_chg_kw,
trace_miss_iters,
newton_iters,
fuel_kj,
ess_dischg_kj,
energy_audit_error,
mpgge,
roadway_chg_kj,
battery_kwh_per_mi,
electric_kwh_per_mi,
ess2fuel_kwh,
drag_kj,
ascent_kj,
rr_kj,
brake_kj,
trans_kj,
mc_kj,
ess_eff_kj,
aux_kj,
fc_kj,
net_kj,
ke_kj,
trace_miss,
trace_miss_dist_frac,
trace_miss_time_frac,
trace_miss_speed_mps,
orphaned: false,
coast_delay_index,
idm_target_speed_m_per_s,
cyc0_cache,
aux_in_kw_override: None,
}
}
/// Return length of time arrays
pub fn len(&self) -> usize {
self.cyc.time_s.len()
}
// TODO: probably shouldn't be public...?
pub fn init_arrays(&mut self) {
self.i = 1; // initialize step counter for possible use outside sim_drive_walk()
let cyc_len = self.cyc0.time_s.len(); //get_len() as usize;
// Component Limits -- calculated dynamically
self.cur_max_fs_kw_out = Array::zeros(cyc_len);
self.fc_trans_lim_kw = Array::zeros(cyc_len);
self.fc_fs_lim_kw = Array::zeros(cyc_len);
self.fc_max_kw_in = Array::zeros(cyc_len);
self.cur_max_fc_kw_out = Array::zeros(cyc_len);
self.ess_cap_lim_dischg_kw = Array::zeros(cyc_len);
self.cur_ess_max_kw_out = Array::zeros(cyc_len);
self.cur_max_avail_elec_kw = Array::zeros(cyc_len);
self.ess_cap_lim_chg_kw = Array::zeros(cyc_len);
self.cur_max_ess_chg_kw = Array::zeros(cyc_len);
self.cur_max_elec_kw = Array::zeros(cyc_len);
self.mc_elec_in_lim_kw = Array::zeros(cyc_len);
self.mc_transi_lim_kw = Array::zeros(cyc_len);
self.cur_max_mc_kw_out = Array::zeros(cyc_len);
self.ess_lim_mc_regen_perc_kw = Array::zeros(cyc_len);
self.ess_lim_mc_regen_kw = Array::zeros(cyc_len);
self.cur_max_mech_mc_kw_in = Array::zeros(cyc_len);
self.cur_max_trans_kw_out = Array::zeros(cyc_len);
// Drive Train
self.cyc_trac_kw_req = Array::zeros(cyc_len);
self.cur_max_trac_kw = Array::zeros(cyc_len);
self.spare_trac_kw = Array::zeros(cyc_len);
self.cyc_whl_rad_per_sec = Array::zeros(cyc_len);
self.cyc_tire_inertia_kw = Array::zeros(cyc_len);
self.cyc_whl_kw_req = Array::zeros(cyc_len);
self.regen_contrl_lim_kw_perc = Array::zeros(cyc_len);
self.cyc_regen_brake_kw = Array::zeros(cyc_len);
self.cyc_fric_brake_kw = Array::zeros(cyc_len);
self.cyc_trans_kw_out_req = Array::zeros(cyc_len);
self.cyc_met = Array::from_vec(vec![false; cyc_len]);
self.trans_kw_out_ach = Array::zeros(cyc_len);
self.trans_kw_in_ach = Array::zeros(cyc_len);
self.cur_soc_target = Array::zeros(cyc_len);
self.min_mc_kw_2help_fc = Array::zeros(cyc_len);
self.mc_mech_kw_out_ach = Array::zeros(cyc_len);
self.mc_elec_kw_in_ach = Array::zeros(cyc_len);
self.aux_in_kw = Array::zeros(cyc_len);
self.roadway_chg_kw_out_ach = Array::zeros(cyc_len);
self.min_ess_kw_2help_fc = Array::zeros(cyc_len);
self.ess_kw_out_ach = Array::zeros(cyc_len);
self.fc_kw_out_ach = Array::zeros(cyc_len);
self.fc_kw_out_ach_pct = Array::zeros(cyc_len);
self.fc_kw_in_ach = Array::zeros(cyc_len);
self.fs_kw_out_ach = Array::zeros(cyc_len);
self.fs_kwh_out_ach = Array::zeros(cyc_len);
self.ess_cur_kwh = Array::zeros(cyc_len);
self.soc = Array::zeros(cyc_len);
// Vehicle Attributes, Control Variables
self.regen_buff_soc = Array::zeros(cyc_len);
self.ess_regen_buff_dischg_kw = Array::zeros(cyc_len);
self.max_ess_regen_buff_chg_kw = Array::zeros(cyc_len);
self.ess_accel_buff_chg_kw = Array::zeros(cyc_len);
self.accel_buff_soc = Array::zeros(cyc_len);
self.max_ess_accell_buff_dischg_kw = Array::zeros(cyc_len);
self.ess_accel_regen_dischg_kw = Array::zeros(cyc_len);
self.mc_elec_in_kw_for_max_fc_eff = Array::zeros(cyc_len);
self.elec_kw_req_4ae = Array::zeros(cyc_len);
self.can_pwr_all_elec = Array::from_vec(vec![false; cyc_len]);
self.desired_ess_kw_out_for_ae = Array::zeros(cyc_len);
self.ess_ae_kw_out = Array::zeros(cyc_len);
self.er_ae_kw_out = Array::zeros(cyc_len);
self.ess_desired_kw_4fc_eff = Array::zeros(cyc_len);
self.ess_kw_if_fc_req = Array::zeros(cyc_len);
self.cur_max_mc_elec_kw_in = Array::zeros(cyc_len);
self.fc_kw_gap_fr_eff = Array::zeros(cyc_len);
self.er_kw_if_fc_req = Array::zeros(cyc_len);
self.mc_elec_kw_in_if_fc_req = Array::zeros(cyc_len);
self.mc_kw_if_fc_req = Array::zeros(cyc_len);
self.fc_forced_on = Array::from_vec(vec![false; cyc_len]);
self.fc_forced_state = Array::zeros(cyc_len);
self.mc_mech_kw_4forced_fc = Array::zeros(cyc_len);
self.fc_time_on = Array::zeros(cyc_len);
self.prev_fc_time_on = Array::zeros(cyc_len);
// Additional Variables
self.mps_ach = Array::zeros(cyc_len);
self.mph_ach = Array::zeros(cyc_len);
self.dist_m = Array::zeros(cyc_len);
self.dist_mi = Array::zeros(cyc_len);
self.high_acc_fc_on_tag = Array::from_vec(vec![false; cyc_len]);
self.reached_buff = Array::from_vec(vec![false; cyc_len]);
self.max_trac_mps = Array::zeros(cyc_len);
self.add_kwh = Array::zeros(cyc_len);
self.dod_cycs = Array::zeros(cyc_len);
self.ess_perc_dead = Array::zeros(cyc_len);
self.drag_kw = Array::zeros(cyc_len);
self.ess_loss_kw = Array::zeros(cyc_len);
self.accel_kw = Array::zeros(cyc_len);
self.ascent_kw = Array::zeros(cyc_len);
self.rr_kw = Array::zeros(cyc_len);
self.cur_max_roadway_chg_kw = Array::zeros(cyc_len);
self.trace_miss_iters = Array::zeros(cyc_len);
self.newton_iters = Array::zeros(cyc_len);
self.coast_delay_index = Array::zeros(cyc_len);
self.impose_coast = Array::from_vec(vec![false; cyc_len]);
self.idm_target_speed_m_per_s = Array::zeros(cyc_len);
self.cyc0_cache = self.cyc0.build_cache();
}
/// Initialize and run sim_drive_walk as appropriate for vehicle attribute vehPtType.
/// Arguments
/// ------------
/// init_soc: initial SOC for electrified vehicles.
/// aux_in_kw: aux_in_kw override. Array of same length as cyc.time_s.
/// Default of None causes veh.aux_kw to be used.
pub fn sim_drive(
&mut self,
init_soc: Option<f64>,
aux_in_kw_override: Option<Array1<f64>>,
) -> Result<(), anyhow::Error> {
self.hev_sim_count = 0;
let init_soc = match init_soc {
Some(x) => x,
None => {
if self.veh.veh_pt_type == CONV {
// If no EV / Hybrid components, no SOC considerations.
(self.veh.max_soc + self.veh.min_soc) / 2.0
} else if self.veh.veh_pt_type == HEV {
// ####################################
// ### Charge Balancing Vehicle SOC ###
// ####################################
// Charge balancing SOC for HEV vehicle types. Iterating init_soc and comparing to final SOC.
// Iterating until tolerance met or 30 attempts made.
let mut init_soc = (self.veh.max_soc + self.veh.min_soc) / 2.0;
let mut ess_2fuel_kwh = 1.0;
while ess_2fuel_kwh > self.veh.ess_to_fuel_ok_error
&& self.hev_sim_count < self.sim_params.sim_count_max
{
self.hev_sim_count += 1;
self.walk(init_soc, aux_in_kw_override.clone())?;
let fuel_kj = (&self.fs_kw_out_ach * self.cyc.dt_s()).sum();
let roadway_chg_kj = (&self.roadway_chg_kw_out_ach * self.cyc.dt_s()).sum();
if (fuel_kj + roadway_chg_kj) > 0.0 {
ess_2fuel_kwh = ((self.soc[0] - self.soc.last().unwrap())
* self.veh.ess_max_kwh
* 3.6e3
/ (fuel_kj + roadway_chg_kj))
.abs();
} else {
ess_2fuel_kwh = 0.0;
}
init_soc = min(
self.veh.max_soc,
max(self.veh.min_soc, *self.soc.last().unwrap()),
);
}
init_soc
} else if self.veh.veh_pt_type == PHEV || self.veh.veh_pt_type == BEV {
// If EV, initializing initial SOC to maximum SOC.
self.veh.max_soc
} else {
bail!("Failed to properly initialize SOC.");
}
}
};
self.walk(init_soc, aux_in_kw_override)?;
self.set_post_scalars()?;
Ok(())
}
pub fn sim_drive_accel(
&mut self,
init_soc: Option<f64>,
aux_in_kw_override: Option<Array1<f64>>,
) -> Result<(), anyhow::Error> {
// Initialize and run sim_drive_walk as appropriate for vehicle attribute vehPtType.
let init_soc_auto: f64 = match self.veh.veh_pt_type.as_str() {
// If no EV / Hybrid components, no SOC considerations.
CONV => (self.veh.max_soc + self.veh.min_soc) / 2.0,
HEV => (self.veh.max_soc + self.veh.min_soc) / 2.0,
// If EV, initializing initial SOC to maximum SOC.
_ => self.veh.max_soc,
};
let init_soc = init_soc.unwrap_or(init_soc_auto);
self.walk(init_soc, aux_in_kw_override)?;
self.set_post_scalars()
}
/// Receives second-by-second cycle information, vehicle properties,
/// and an initial state of charge and runs sim_drive_step to perform a
/// backward facing powertrain simulation. Method `sim_drive` runs this
/// iteratively to achieve correct SOC initial and final conditions, as
/// needed.
///
/// Arguments
/// ------------
/// init_soc: initial battery state-of-charge (SOC) for electrified vehicles
/// aux_in_kw: (Optional) aux_in_kw override. Array of same length as cyc.time_s.
/// None causes veh.aux_kw to be used.
pub fn walk(
&mut self,
init_soc: f64,
aux_in_kw_override: Option<Array1<f64>>,
) -> Result<(), anyhow::Error> {
self.init_for_step(init_soc, aux_in_kw_override)?;
while self.i < self.cyc.time_s.len() {
self.step()?;
}
// TODO: uncomment and implement logging
// if (self.cyc.dt_s > 5).any() and self.sim_params.verbose:
// if self.sim_params.missed_trace_correction:
// print('Max time dilation factor =', (round((self.cyc.dt_s / self.cyc0.dt_s).max(), 3)))
// print("Warning: large time steps affect accuracy significantly.")
// print("To suppress this message, view the doc string for simdrive.SimDriveParams.")
// print('Max time step =', (round(self.cyc.dt_s.max(), 3)))
Ok(())
}
/// This is a specialty method which should be called prior to using
/// sim_drive_step in a loop.
/// Arguments
/// ------------
/// init_soc: initial battery state-of-charge (SOC) for electrified vehicles
/// aux_in_kw: aux_in_kw override. Array of same length as cyc.time_s.
/// Default of None causes veh.aux_kw to be used.
pub fn init_for_step(
&mut self,
init_soc: f64,
aux_in_kw_override: Option<Array1<f64>>,
) -> Result<(), anyhow::Error> {
ensure!(
self.veh.veh_pt_type == CONV
|| (self.veh.min_soc..=self.veh.max_soc).contains(&init_soc),
"provided init_soc={} is outside range min_soc={} to max_soc={}",
init_soc,
self.veh.min_soc,
self.veh.max_soc
);
self.init_arrays();
// set `self.aux_in_kw_override` if it has been provided and not previously set
if let Some(arr) = aux_in_kw_override {
match self.aux_in_kw_override {
Some(_) => {}
None => self.aux_in_kw = arr,
}
}
self.cyc_met[0] = true;
self.cur_soc_target[0] = self.veh.max_soc;
self.ess_cur_kwh[0] = init_soc * self.veh.ess_max_kwh;
self.soc[0] = init_soc;
self.mps_ach[0] = self.cyc0.mps[0];
self.mph_ach[0] = self.cyc0.mph_at_i(0);
if self.sim_params.missed_trace_correction
|| self.sim_params.idm_allow
|| self.sim_params.coast_allow
{
self.cyc = self.cyc0.clone(); // reset the cycle in case it has been manipulated
}
self.i = 1; // time step counter
Ok(())
}
/// Step through 1 time step.
pub fn step(&mut self) -> Result<(), anyhow::Error> {
if self.sim_params.idm_allow {
self.idm_target_speed_m_per_s[self.i] =
match &self.sim_params.idm_v_desired_in_m_per_s_by_distance_m {
Some(vtgt_by_dist) => {
let mut found_v_target = vtgt_by_dist[0].1;
let current_d = self.cyc.dist_m().slice(s![0..self.i]).sum();
for (d, v_target) in vtgt_by_dist {
if ¤t_d >= d {
found_v_target = *v_target;
} else {
break;
}
}
found_v_target
}
None => self.sim_params.idm_v_desired_m_per_s,
};
self.set_speed_for_target_gap(self.i);
}
if self.sim_params.coast_allow {
self.set_coast_speed(self.i)?;
}
self.solve_step(self.i)?;
if self.sim_params.missed_trace_correction
&& (self.cyc0.dist_m().slice(s![0..self.i]).sum() > 0.0)
{
self.set_time_dilation(self.i)?;
}
// TODO: shouldn't the below code always set cyc? Whether coasting or not?
if self.sim_params.coast_allow || self.sim_params.idm_allow {
self.cyc.mps[self.i] = self.mps_ach[self.i];
self.cyc.grade[self.i] = self.lookup_grade_for_step(self.i, None);
}
self.i += 1; // increment time step counter
Ok(())
}
/// Perform all the calculations to solve 1 time step.
pub fn solve_step(&mut self, i: usize) -> Result<(), anyhow::Error> {
self.set_misc_calcs(i)?;
self.set_comp_lims(i)?;
self.set_power_calcs(i)?;
self.set_ach_speed(i)?;
self.set_hybrid_cont_calcs(i)?;
self.set_fc_forced_state_rust(i)?;
self.set_hybrid_cont_decisions(i)?;
self.set_fc_power(i)?;
Ok(())
}
/// Sets misc. calculations at time step 'i'
/// Arguments:
/// ----------
/// i: index of time step
pub fn set_misc_calcs(&mut self, i: usize) -> Result<(), anyhow::Error> {
// if cycle iteration is used, auxInKw must be re-zeroed to trigger the below if statement
// TODO: this is probably computationally expensive and was probably a workaround for numba
// figure out a way to not need this
if self.aux_in_kw.slice(s![i..]).iter().all(|&x| x == 0.0) {
// if all elements after i-1 are zero, trigger default behavior; otherwise, use override value
if self.veh.no_elec_aux {
self.aux_in_kw[i] = self.veh.aux_kw / self.veh.alt_eff;
} else {
self.aux_in_kw[i] = self.veh.aux_kw;
}
}
// Is SOC below min threshold?
if self.soc[i - 1] < (self.veh.min_soc + self.veh.perc_high_acc_buf) {
self.reached_buff[i] = false;
} else {
self.reached_buff[i] = true;
}
// Does the engine need to be on for low SOC or high acceleration
if self.soc[i - 1] < self.veh.min_soc
|| (self.high_acc_fc_on_tag[i - 1] && !(self.reached_buff[i]))
{
self.high_acc_fc_on_tag[i] = true
} else {
self.high_acc_fc_on_tag[i] = false
}
self.max_trac_mps[i] =
self.mps_ach[i - 1] + (self.veh.max_trac_mps2 * self.cyc.dt_s_at_i(i));
Ok(())
}
/// Sets component limits for time step 'i'
/// Arguments
/// ------------
/// i: index of time step
/// initSoc: initial SOC for electrified vehicles
pub fn set_comp_lims(&mut self, i: usize) -> Result<(), anyhow::Error> {
// max fuel storage power output
self.cur_max_fs_kw_out[i] = min(
self.veh.fs_max_kw,
self.fs_kw_out_ach[i - 1]
+ self.veh.fs_max_kw / self.veh.fs_secs_to_peak_pwr * self.cyc.dt_s_at_i(i),
);
// maximum fuel storage power output rate of change
self.fc_trans_lim_kw[i] = self.fc_kw_out_ach[i - 1]
+ (self.veh.fc_max_kw / self.veh.fc_sec_to_peak_pwr * self.cyc.dt_s_at_i(i));
self.fc_max_kw_in[i] = min(self.cur_max_fs_kw_out[i], self.veh.fs_max_kw);
self.fc_fs_lim_kw[i] = self.veh.fc_max_kw;
self.cur_max_fc_kw_out[i] = min(
self.veh.fc_max_kw,
min(self.fc_fs_lim_kw[i], self.fc_trans_lim_kw[i]),
);
if self.veh.ess_max_kwh == 0.0 || self.soc[i - 1] < self.veh.min_soc {
self.ess_cap_lim_dischg_kw[i] = 0.0;
} else {
self.ess_cap_lim_dischg_kw[i] = self.veh.ess_max_kwh
* self.veh.ess_round_trip_eff.sqrt()
* 3.6e3
* (self.soc[i - 1] - self.veh.min_soc)
/ self.cyc.dt_s_at_i(i);
}
self.cur_ess_max_kw_out[i] = min(self.veh.ess_max_kw, self.ess_cap_lim_dischg_kw[i]);
if self.veh.ess_max_kwh == 0.0 || self.veh.ess_max_kw == 0.0 {
self.ess_cap_lim_chg_kw[i] = 0.0;
} else {
self.ess_cap_lim_chg_kw[i] = max(
(self.veh.max_soc - self.soc[i - 1]) * self.veh.ess_max_kwh
/ self.veh.ess_round_trip_eff.sqrt()
/ (self.cyc.dt_s_at_i(i) / 3.6e3),
0.0,
);
}
self.cur_max_ess_chg_kw[i] = min(self.ess_cap_lim_chg_kw[i], self.veh.ess_max_kw);
// Current maximum electrical power that can go toward propulsion, not including motor limitations
if self.veh.fc_eff_type == H2FC {
self.cur_max_elec_kw[i] = self.cur_max_fc_kw_out[i]
+ self.cur_max_roadway_chg_kw[i]
+ self.cur_ess_max_kw_out[i]
- self.aux_in_kw[i];
} else {
self.cur_max_elec_kw[i] =
self.cur_max_roadway_chg_kw[i] + self.cur_ess_max_kw_out[i] - self.aux_in_kw[i];
}
// Current maximum electrical power that can go toward propulsion, including motor limitations
self.cur_max_avail_elec_kw[i] = min(self.cur_max_elec_kw[i], self.veh.mc_max_elec_in_kw);
if self.cur_max_elec_kw[i] > 0.0 {
// limit power going into e-machine controller to
if self.cur_max_avail_elec_kw[i] == arrmax(&self.veh.mc_kw_in_array) {
self.mc_elec_in_lim_kw[i] = min(
*self.veh.mc_kw_out_array.last().unwrap(),
self.veh.mc_max_kw,
);
} else {
self.mc_elec_in_lim_kw[i] = min(
self.veh.mc_kw_out_array[first_grtr(
&self.veh.mc_kw_in_array,
min(
arrmax(&self.veh.mc_kw_in_array) * 0.9999,
self.cur_max_avail_elec_kw[i],
),
)
.unwrap()
- 1_usize],
self.veh.mc_max_kw,
)
}
} else {
self.mc_elec_in_lim_kw[i] = 0.0;
}
// Motor transient power limit
self.mc_transi_lim_kw[i] = self.mc_mech_kw_out_ach[i - 1].abs()
+ self.veh.mc_max_kw / self.veh.mc_sec_to_peak_pwr * self.cyc.dt_s_at_i(i);
self.cur_max_mc_kw_out[i] = max(
min(
min(self.mc_elec_in_lim_kw[i], self.mc_transi_lim_kw[i]),
if self.veh.stop_start { 0.0 } else { 1.0 } * self.veh.mc_max_kw,
),
-self.veh.mc_max_kw,
);
if self.cur_max_mc_kw_out[i] == 0.0 {
self.cur_max_mc_elec_kw_in[i] = 0.0;
} else if self.cur_max_mc_kw_out[i] == self.veh.mc_max_kw {
self.cur_max_mc_elec_kw_in[i] =
self.cur_max_mc_kw_out[i] / self.veh.mc_full_eff_array.last().unwrap();
} else {
self.cur_max_mc_elec_kw_in[i] = self.cur_max_mc_kw_out[i]
/ self.veh.mc_full_eff_array[cmp::max(
1,
first_grtr(
&self.veh.mc_kw_out_array,
min(self.veh.mc_max_kw * 0.9999, self.cur_max_mc_kw_out[i]),
)
.unwrap()
- 1,
)]
}
if self.veh.mc_max_kw == 0.0 {
self.ess_lim_mc_regen_perc_kw[i] = 0.0;
} else {
self.ess_lim_mc_regen_perc_kw[i] = min(
(self.cur_max_ess_chg_kw[i] + self.aux_in_kw[i]) / self.veh.mc_max_kw,
1.0,
);
}
if self.cur_max_ess_chg_kw[i] == 0.0 {
self.ess_lim_mc_regen_kw[i] = 0.0;
} else if self.veh.mc_max_kw == self.cur_max_ess_chg_kw[i] - self.cur_max_roadway_chg_kw[i]
{
self.ess_lim_mc_regen_kw[i] = min(
self.veh.mc_max_kw,
self.cur_max_ess_chg_kw[i] / self.veh.mc_full_eff_array.last().unwrap(),
);
} else {
self.ess_lim_mc_regen_kw[i] = min(
self.veh.mc_max_kw,
self.cur_max_ess_chg_kw[i]
/ self.veh.mc_full_eff_array[cmp::max(
1,
first_grtr(
&self.veh.mc_kw_out_array,
min(
self.veh.mc_max_kw * 0.9999,
self.cur_max_ess_chg_kw[i] - self.cur_max_roadway_chg_kw[i],
),
)
.unwrap_or(0)
- 1,
)],
);
}
self.cur_max_mech_mc_kw_in[i] = min(self.ess_lim_mc_regen_kw[i], self.veh.mc_max_kw);
self.cur_max_trac_kw[i] = self.veh.wheel_coef_of_fric
* self.veh.drive_axle_weight_frac
* self.veh.veh_kg
* self.props.a_grav_mps2
/ (1.0 + self.veh.veh_cg_m * self.veh.wheel_coef_of_fric / self.veh.wheel_base_m)
/ 1e3
* self.max_trac_mps[i];
if self.veh.fc_eff_type == H2FC {
if self.veh.no_elec_sys || self.veh.no_elec_aux || self.high_acc_fc_on_tag[i] {
self.cur_max_trans_kw_out[i] = min(
(self.cur_max_mc_kw_out[i] - self.aux_in_kw[i]) * self.veh.trans_eff,
self.cur_max_trac_kw[i] / self.veh.trans_eff,
);
} else {
self.cur_max_trans_kw_out[i] = min(
(self.cur_max_mc_kw_out[i] - min(self.cur_max_elec_kw[i], 0.0))
* self.veh.trans_eff,
self.cur_max_trac_kw[i] / self.veh.trans_eff,
);
}
} else if self.veh.no_elec_sys || self.veh.no_elec_aux || self.high_acc_fc_on_tag[i] {
self.cur_max_trans_kw_out[i] = min(
(self.cur_max_mc_kw_out[i] + self.cur_max_fc_kw_out[i] - self.aux_in_kw[i])
* self.veh.trans_eff,
self.cur_max_trac_kw[i] / self.veh.trans_eff,
);
} else {
self.cur_max_trans_kw_out[i] = min(
(self.cur_max_mc_kw_out[i] + self.cur_max_fc_kw_out[i]
- min(self.cur_max_elec_kw[i], 0.0))
* self.veh.trans_eff,
self.cur_max_trac_kw[i] / self.veh.trans_eff,
);
}
if self.impose_coast[i] {
self.cur_max_trans_kw_out[i] = 0.0;
}
Ok(())
}
/// Calculate power requirements to meet cycle and determine if
/// cycle can be met.
/// Arguments
/// ------------
/// i: index of time step
pub fn set_power_calcs(&mut self, i: usize) -> Result<(), anyhow::Error> {
let mps_ach = if self.newton_iters[i] > 0u32 {
self.mps_ach[i]
} else {
self.cyc.mps[i]
};
let grade = self.lookup_grade_for_step(i, Some(mps_ach));
self.drag_kw[i] = 0.5
* self.props.air_density_kg_per_m3
* self.veh.drag_coef
* self.veh.frontal_area_m2
* ((self.mps_ach[i - 1] + mps_ach) / 2.0).powf(3.0)
/ 1e3;
self.accel_kw[i] = self.veh.veh_kg / (2.0 * self.cyc.dt_s_at_i(i))
* (mps_ach.powf(2.0) - self.mps_ach[i - 1].powf(2.0))
/ 1e3;
self.ascent_kw[i] = self.props.a_grav_mps2
* grade.atan().sin()
* self.veh.veh_kg
* (self.mps_ach[i - 1] + mps_ach)
/ 2.0
/ 1e3;
self.cyc_trac_kw_req[i] = self.drag_kw[i] + self.accel_kw[i] + self.ascent_kw[i];
self.spare_trac_kw[i] = self.cur_max_trac_kw[i] - self.cyc_trac_kw_req[i];
self.rr_kw[i] = self.veh.veh_kg
* self.props.a_grav_mps2
* self.veh.wheel_rr_coef
* grade.atan().cos()
* (self.mps_ach[i - 1] + mps_ach)
/ 2.0
/ 1e3;
self.cyc_whl_rad_per_sec[i] = mps_ach / self.veh.wheel_radius_m;
self.cyc_tire_inertia_kw[i] = (0.5
* self.veh.wheel_inertia_kg_m2
* self.veh.num_wheels
* self.cyc_whl_rad_per_sec[i].powf(2.0)
/ self.cyc.dt_s_at_i(i)
- 0.5
* self.veh.wheel_inertia_kg_m2
* self.veh.num_wheels
* (self.mps_ach[i - 1] / self.veh.wheel_radius_m).powf(2.0)
/ self.cyc.dt_s_at_i(i))
/ 1e3;
self.cyc_whl_kw_req[i] =
self.cyc_trac_kw_req[i] + self.rr_kw[i] + self.cyc_tire_inertia_kw[i];
self.regen_contrl_lim_kw_perc[i] = self.veh.max_regen
/ (1.0
+ self.veh.regen_a
* (-self.veh.regen_b
* ((self.cyc.mph_at_i(i) + self.mps_ach[i - 1] * params::MPH_PER_MPS)
/ 2.0
+ 1.0))
.exp());
self.cyc_regen_brake_kw[i] = max(
min(
self.cur_max_mech_mc_kw_in[i] * self.veh.trans_eff,
self.regen_contrl_lim_kw_perc[i] * -self.cyc_whl_kw_req[i],
),
0.0,
);
self.cyc_fric_brake_kw[i] = -min(self.cyc_regen_brake_kw[i] + self.cyc_whl_kw_req[i], 0.0);
self.cyc_trans_kw_out_req[i] = self.cyc_whl_kw_req[i] + self.cyc_fric_brake_kw[i];
if self.cyc_trans_kw_out_req[i] <= self.cur_max_trans_kw_out[i] {
self.cyc_met[i] = true;
self.trans_kw_out_ach[i] = self.cyc_trans_kw_out_req[i];
} else {
self.cyc_met[i] = false;
self.trans_kw_out_ach[i] = self.cur_max_trans_kw_out[i];
}
if self.trans_kw_out_ach[i] > 0.0 {
self.trans_kw_in_ach[i] = self.trans_kw_out_ach[i] / self.veh.trans_eff;
} else {
self.trans_kw_in_ach[i] = self.trans_kw_out_ach[i] * self.veh.trans_eff;
}
if self.cyc_met[i] {
if self.veh.fc_eff_type == H2FC {
self.min_mc_kw_2help_fc[i] =
max(self.trans_kw_in_ach[i], -self.cur_max_mech_mc_kw_in[i]);
} else {
self.min_mc_kw_2help_fc[i] = max(
self.trans_kw_in_ach[i] - self.cur_max_fc_kw_out[i],
-self.cur_max_mech_mc_kw_in[i],
);
}
} else {
self.min_mc_kw_2help_fc[i] =
max(self.cur_max_mc_kw_out[i], -self.cur_max_mech_mc_kw_in[i]);
}
Ok(())
}
// Calculate actual speed achieved if vehicle hardware cannot achieve trace speed.
// Arguments
// ------------
// i: index of time step
pub fn set_ach_speed(&mut self, i: usize) -> Result<(), anyhow::Error> {
// Cycle is met
if self.cyc_met[i] {
self.mps_ach[i] = self.cyc.mps[i];
}
//Cycle is not met
else {
let mut grade_estimate = self.estimate_grade_for_step(i);
let mut grade: f64;
let grade_tol = 1e-4;
let mut grade_diff = grade_tol + 1.0;
let max_grade_iter = 3;
let mut grade_iter = 0;
while grade_diff > grade_tol && grade_iter < max_grade_iter {
grade_iter += 1;
grade = grade_estimate;
let drag3 = 1.0 / 16.0
* self.props.air_density_kg_per_m3
* self.veh.drag_coef
* self.veh.frontal_area_m2;
let accel2 = 0.5 * self.veh.veh_kg / self.cyc.dt_s_at_i(i);
let drag2 = 3.0 / 16.0
* self.props.air_density_kg_per_m3
* self.veh.drag_coef
* self.veh.frontal_area_m2
* self.mps_ach[i - 1];
let wheel2 = 0.5 * self.veh.wheel_inertia_kg_m2 * self.veh.num_wheels
/ (self.cyc.dt_s_at_i(i) * self.veh.wheel_radius_m.powf(2.0));
let drag1 = 3.0 / 16.0
* self.props.air_density_kg_per_m3
* self.veh.drag_coef
* self.veh.frontal_area_m2
* self.mps_ach[i - 1].powf(2.0);
let roll1 = 0.5
* self.veh.veh_kg
* self.props.a_grav_mps2
* self.veh.wheel_rr_coef
* grade.atan().cos();
let ascent1 = 0.5 * self.props.a_grav_mps2 * grade.atan().sin() * self.veh.veh_kg;
let accel0 =
-0.5 * self.veh.veh_kg * self.mps_ach[i - 1].powf(2.0) / self.cyc.dt_s_at_i(i);
let drag0 = 1.0 / 16.0
* self.props.air_density_kg_per_m3
* self.veh.drag_coef
* self.veh.frontal_area_m2
* self.mps_ach[i - 1].powf(3.0);
let roll0 = 0.5
* self.veh.veh_kg
* self.props.a_grav_mps2
* self.veh.wheel_rr_coef
* grade.atan().cos()
* self.mps_ach[i - 1];
let ascent0 = 0.5
* self.props.a_grav_mps2
* grade.atan().sin()
* self.veh.veh_kg
* self.mps_ach[i - 1];