-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEcoFOCI_eof.py
executable file
·344 lines (281 loc) · 11.5 KB
/
EcoFOCI_eof.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#!/usr/bin/env python
"""
Purpose:
Run Emperical Orthogonal Function Analyisis on Arbitrary EcoFOCI Timeseries data
Input:
EPIC files:
TODO: CF files
Output:
EPIC EOF files (netcdf)
Summary file (txt)
TODO: Plots of EOF vs original Timeseries
Additional requirements for this example:
* netCDF4 (http://unidata.github.io/netcdf4-python/)
* matplotlib (http://matplotlib.org/)
* eofs
eofs: package developed and available:
- https://github.com/ajdawson/eofs
- http://ajdawson.github.io/eofs/
- http://doi.org/10.5334/jors.122 (journal article)
- developed using V 1.3.0 (updated to 1.4.0)
Addtional Notes:
Tested on python=3.8
No longer supporting 2.x
"""
import argparse
import datetime
import sys
# must be python 3.7+
try:
assert sys.version_info > (3, 7)
except AssertionError:
sys.exit("Must be running python 3.7+")
import matplotlib.pyplot as plt
import numpy as np
from calc.EPIC2Datetime import Datetime2EPIC, EPIC2Datetime, get_UDUNITS
from eofs.standard import Eof
from io_utils.ConfigParserLocal import get_config
from io_utils.EcoFOCI_netCDF_write import NetCDF_Create_Timeseries
from netCDF4 import Dataset
__author__ = 'Shaun Bell'
__email__ = 'shaun.bell@noaa.gov'
__created__ = datetime.datetime(2018, 6, 13)
__modified__ = datetime.datetime(2018, 6, 13)
__version__ = "0.1.0"
__status__ = "Development"
"""----------------------------------MAIN-----------------------------------"""
# parse incoming command line options
parser = argparse.ArgumentParser(description='Analyze timeseries EOF')
parser.add_argument('pfile',
metavar='pfile',
type=str,
help='pointer file with full paths on each line')
parser.add_argument('varname',
metavar='varname',
type=str,
help='name of variable, may be EPIC name')
parser.add_argument('config_file_name',
metavar='config_file_name',
type=str,
help='full path to config file - eof_config.yaml')
parser.add_argument('-o','--outfile',
type=str,
default='data/eof_results',
help='name of output file data/{run-name} defaults to data/eof_results')
parser.add_argument('-s', '--start_date',
type=str,
help='yyyymmddhhmmss')
parser.add_argument('-e', '--end_date',
type=str,
help='yyyymmddhhmmss')
parser.add_argument('--eof_num',
type=int,
default=10000,
help='number of eofs. default is all (arbitrarily large number)')
parser.add_argument('--epic',
action="store_true",
help='assume EPIC time format')
parser.add_argument('--plots',
action="store_true",
help='output some basic plots - TODO')
parser.add_argument('--summary',
action="store_true",
help='output summary only')
parser.add_argument('--normalize',
action="store_true",
help='normalize each timeseries by dividing by the standard deviation')
args = parser.parse_args()
### Watch for missing dates
if not args.start_date:
sys.exit("Exiting: No start data was specified.")
else:
start_date=datetime.datetime.strptime(args.start_date,'%Y%m%d%H%M%S')
if not args.end_date:
print("No end date was specified. Setting end date to now")
end_date=datetime.datetime.today()
else:
end_date=datetime.datetime.strptime(args.end_date,'%Y%m%d%H%M%S')
### Associate key variables names
if args.varname in ['u_1205']:
altvarname = 'U_320'
elif args.varname in ['U_320']:
altvarname = 'u_1205'
elif args.varname in ['wu']:
args.varname = 'U_320'
altvarname = 'u_1205'
elif args.varname in ['v_1206']:
altvarname = 'V_321'
elif args.varname in ['V_321']:
altvarname = 'v_1206'
elif args.varname in ['wv']:
args.varname = 'V_321'
altvarname = 'v_1206'
else:
altvarname = ''
fcount = 0
files = {}
with open(args.pfile) as fp:
for line in fp:
files.update({fcount:line.strip()})
fcount +=1
### EPIC Flavored time word
if args.epic:
for key,filename in (files.items()):
print("Reading file for {}".format(filename))
ncin = Dataset(str(filename), 'r')
try:
data = ncin.variables[args.varname][:,0,0,0]
except KeyError:
data = ncin.variables[altvarname][:,0,0,0]
ncdata = {'time':ncin.variables['time'][:],
'time2':ncin.variables['time2'][:]}
ncin.close()
#Convert two word EPIC time to python datetime.datetime
# representation and then format for CF standards
dt_from_epic = np.array(EPIC2Datetime(ncdata['time'], ncdata['time2']))
#Find relevant chuck of times to keep based on arguments
dt_index = np.where((dt_from_epic >= start_date) &
(dt_from_epic <= end_date) )
if key == 0:
eof_data = data[dt_index]
else:
try:
eof_data = np.vstack((eof_data,data[dt_index]))
except ValueError:
sys.exit("Exiting: timeseries have different lengths")
if args.normalize:
eof_data_std = np.std(eof_data, axis=1)
eof_data = eof_data.T / np.std(eof_data, axis=1)
else:
#transpose so time is first dimension
eof_data = eof_data.T
# Crete an EOF solver to do the EOF analysis. No weights
# First dimension is assumed time by program... not true if timseries is of interest,
print("Solving for n={} modes".format(args.eof_num))
solver = Eof(eof_data, center=False)
pcs = solver.pcs(npcs=args.eof_num)
eigval = solver.eigenvalues(neigs=args.eof_num)
varfrac = solver.varianceFraction(neigs=args.eof_num)
eofs = solver.eofs(neofs=args.eof_num)
eofcorr = solver.eofsAsCorrelation(neofs=args.eof_num)
eofcov = solver.eofsAsCovariance(neofs=args.eof_num)
"""---------------------------------Report-----------------------------------"""
### Print Select Results to file
outfile = args.outfile+'.txt'
print("EOF Results:", file=open(outfile,"w"))
print("------------", file=open(outfile,"a"))
print("File path: {}".format("/".join(filename.split('/')[:-1])),
file=open(outfile,"a"))
for key,filename in (files.items()):
print("Files input: {}".format(filename.split('/')[-1]),
file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("Variables used: ", file=open(outfile,"a"))
print("----------------", file=open(outfile,"a"))
print("{}, {}".format(args.varname,altvarname), file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("Start/Stop Date: ", file=open(outfile,"a"))
print("-----------------", file=open(outfile,"a"))
print("{}, {}".format(start_date,end_date), file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("mode file names:", file=open(outfile,"a"))
print("---------------", file=open(outfile,"a"))
print("\n", file=open(outfile,"a"))
for index in range(0,eofs.shape[0],1):
print("File output: {0}_eof{1}.nc".format(args.outfile,str(index+1).zfill(3)),
file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("Timeseries Normalized by:", file=open(outfile,"a"))
print("-------------------------", file=open(outfile,"a"))
if args.normalize:
print(",\t".join([str(x) for x in eof_data_std]), file=open(outfile,"a"))
else:
print("***Timeseries not normalized***", file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("EOFs :", file=open(outfile,"a"))
print("-----", file=open(outfile,"a"))
print('\n'.join(["Mode {}:".format(y+1)+' '.join(['{:6.2f}'.format(item) for item in row])
for y,row in enumerate(eofs)]), file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("EOF as Covariance :", file=open(outfile,"a"))
print("------------------", file=open(outfile,"a"))
print('\n'.join(["Mode {}:".format(y+1)+' '.join(['{:6.2f}'.format(item) for item in row])
for y,row in enumerate(eofcov)]), file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("EOFs as Correlation :", file=open(outfile,"a"))
print("--------------------", file=open(outfile,"a"))
print('\n'.join(["Mode {}:".format(y+1)+' '.join(['{:6.2f}'.format(item) for item in row])
for y,row in enumerate(eofcorr)]), file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("EigenValues: (largest to smallest)", file=open(outfile,"a"))
print("---------------------------------", file=open(outfile,"a"))
print(",\t".join([str(x) for x in eigval]), file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
print("Total Variance fraction for each EOF mode: (0 to 1)", file=open(outfile,"a"))
print("---------------------------------------------------", file=open(outfile,"a"))
print("\n".join(["Mode {y}:{x}".format(y=y,x=x) for y,x in enumerate(varfrac)]),
file=open(outfile,"a"))
print("\n\n", file=open(outfile,"a"))
"""---------------------------------NetCDF-----------------------------------"""
### Create EOF nc files
if args.epic and not args.summary:
# From config file, get variable attribute definitions
EPIC_VARS_dict = get_config(args.config_file_name,'yaml')
for index in range(0,eofs.shape[0],1):
print("Creating EPIC file for {0}_eof{1}.nc".format(args.outfile,str(index+1).zfill(3)))
# Link data to a dictionary to match variable names
data_dic = {'PCS_6001':pcs.T[index]}
time1,time2 = np.array(Datetime2EPIC(list(dt_from_epic[dt_index])), dtype='f8')
ncinstance = NetCDF_Create_Timeseries(
savefile="{0}_eof{1}.nc".format(args.outfile,str(index+1).zfill(3)))
ncinstance.file_create()
ncinstance.sbeglobal_atts(History='Run name: {}'.format(args.outfile),
Software='EcoFOCI_eof.py ' + __version__)
ncinstance.dimension_init(time_len=len(time1))
ncinstance.variable_init(EPIC_VARS_dict)
ncinstance.add_coord_data(time1=time1, time2=time2)
ncinstance.add_data(EPIC_VARS_dict,data_dic=data_dic)
ncinstance.close()
if args.plots:
if args.eof_num < 5:
nmax = args.eof_num
else:
nmax = 5
#plot PCs
fig = plt.figure()
ax = plt.subplot(111)
for index in range(0,nmax,1):
plt.plot(dt_from_epic[dt_index],pcs.T[index],label='PC mode:{}'.format(index+1))
plt.legend()
fig.set_size_inches( (22, 8.5) )
plt.savefig("{0}_pcs{1}".format(args.outfile,str(index+1).zfill(3))+'.png',bbox_inches='tight', dpi=(300))
#plot eigenvectors / EOF maps as corr
fig = plt.figure()
ax = plt.subplot(111)
for index in range(0,nmax,1):
plt.plot(eofcorr[index],range(0,len(eof_data[1])),
label='EOF Corr. mode:{}'.format(index+1))
ax.invert_yaxis()
plt.legend()
fig.set_size_inches( (4.25, 11) )
plt.savefig("{0}_eofcor{1}".format(args.outfile,str(index+1).zfill(3))+'.png',bbox_inches='tight', dpi=(300))
#plot eigenvectors / EOF maps as cov
fig = plt.figure()
ax = plt.subplot(111)
for index in range(0,nmax,1):
plt.plot(eofcov[index],range(0,len(eof_data[1])),
label='EOF Cov. mode:{}'.format(index+1))
ax.invert_yaxis()
plt.legend()
fig.set_size_inches( (4.25, 11) )
plt.savefig("{0}_eofcov{1}".format(args.outfile,str(index+1).zfill(3))+'.png',bbox_inches='tight', dpi=(300))
#plot eigenvectors / EOF maps
fig = plt.figure()
ax = plt.subplot(111)
for index in range(0,nmax,1):
plt.plot(eofs[index],range(0,len(eof_data[1])),
label='EOFs mode:{}'.format(index+1))
ax.invert_yaxis()
plt.legend()
fig.set_size_inches( (4.25, 11) )
plt.savefig("{0}_eofs{1}".format(args.outfile,str(index+1).zfill(3))+'.png',bbox_inches='tight', dpi=(300))