-
Notifications
You must be signed in to change notification settings - Fork 7
/
erf.c
146 lines (126 loc) · 2.75 KB
/
erf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
* Copyright (c) 1985 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.
*/
#ifdef __crayx1
#pragma _CRI inline (erf,erfc,erfc_inner)
#endif
/*
C program for floating point error function
erf(x) returns the error function of its argument
erfc(x) returns 1.0-erf(x)
erf(x) is defined by
${2 over sqrt(pi)} int from 0 to x e sup {-t sup 2} dt$
the entry for erfc is provided because of the
extreme loss of relative accuracy if erf(x) is
called for large x and the result subtracted
from 1. (e.g. for x= 10, 12 places are lost).
There are no error returns.
Calls exp.
Coefficients for large x are #5667 from Hart & Cheney (18.72D).
*/
#include <math.h>
#define M 7
#define N 9
static double torp = 1.1283791670955125738961589031;
static double p1[] = {
0.804373630960840172832162e5,
0.740407142710151470082064e4,
0.301782788536507577809226e4,
0.380140318123903008244444e2,
0.143383842191748205576712e2,
-.288805137207594084924010e0,
0.007547728033418631287834e0,
};
static double q1[] = {
0.804373630960840172826266e5,
0.342165257924628539769006e5,
0.637960017324428279487120e4,
0.658070155459240506326937e3,
0.380190713951939403753468e2,
0.100000000000000000000000e1,
0.0,
};
static double p2[] = {
0.18263348842295112592168999e4,
0.28980293292167655611275846e4,
0.2320439590251635247384768711e4,
0.1143262070703886173606073338e4,
0.3685196154710010637133875746e3,
0.7708161730368428609781633646e2,
0.9675807882987265400604202961e1,
0.5641877825507397413087057563e0,
0.0,
};
static double q2[] = {
0.18263348842295112595576438e4,
0.495882756472114071495438422e4,
0.60895424232724435504633068e4,
0.4429612803883682726711528526e4,
0.2094384367789539593790281779e4,
0.6617361207107653469211984771e3,
0.1371255960500622202878443578e3,
0.1714980943627607849376131193e2,
1.0,
};
double
erf(double arg)
{
int sign;
double argsq;
double d, n;
int i;
sign = 1;
if(arg < 0.){
arg = -arg;
sign = -1;
}
if(arg < 0.5){
argsq = arg*arg;
for(n=0,d=0,i=M-1; i>=0; i--){
n = n*argsq + p1[i];
d = d*argsq + q1[i];
}
return(sign*torp*arg*n/d);
}
if(arg >= 10.)
return(sign*1.);
return(sign*(1. - erfc(arg)));
}
double
erfc_inner(double arg)
{
double n, d;
int i;
/*
if(arg < 0.5)
return(1. - erf(arg));
*/
if(arg >= 10.)
return(0.);
for(n=0,d=0,i=N-1; i>=0; i--){
n = n*arg + p2[i];
d = d*arg + q2[i];
}
return(exp(-arg*arg)*n/d);
}
double
erfc(double arg)
{
double n, d;
int i;
if(arg < 0.)
return(2. - erfc_inner(-arg));
/*
if(arg < 0.5)
return(1. - erf(arg));
*/
if(arg >= 10.)
return(0.);
for(n=0,d=0,i=N-1; i>=0; i--){
n = n*arg + p2[i];
d = d*arg + q2[i];
}
return(exp(-arg*arg)*n/d);
}