-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcooling_planet.c
314 lines (251 loc) · 8.38 KB
/
cooling_planet.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#include "mode.h"
#ifdef GASOLINE
#ifndef NOCOOLING
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
/* General accuracy target */
#define EPS 1e-5
#define MAXABUNDITERATIONS 20
/* Accuracy for Temperature estimation for E,rho assuming eqm abundances */
#define EPSTEMP 1e-5
#define ETAMINTIMESTEP 1e-4
#include "stiff.h"
#if defined(COOLDEBUG) || defined(STARFORM) || defined(SIMPLESF)
#include "pkd.h"
#else
#include "cooling.h"
#endif
#include "outtype.h"
/* Integrator constants */
/* When to use to just do a first order step and quit */
/* Good value to use I think */
#define ECHANGEFRACSMALL 1e-4
/* Accuracy target for intergrators */
#define EPSINTEG 1e-5
#define MAXINTEGITS 20000
#define EMUL (1.01)
COOL *CoolInit( )
{
COOL *cl;
cl = (COOL *) malloc(sizeof(COOL));
assert(cl!=NULL);
cl->nTableRead = 0; /* Internal Tables read from Files */
cl->DerivsData = malloc(sizeof(clDerivsData));
assert(cl->DerivsData != NULL);
((clDerivsData *) (cl->DerivsData))->IntegratorContext =
StiffInit( EPSINTEG, 1, cl->DerivsData, clDerivs);
return cl;
}
void CoolFinalize(COOL *cl )
{
StiffFinalize( ((clDerivsData *) (cl->DerivsData))->IntegratorContext );
free(cl->DerivsData);
free(cl);
}
void clInitConstants( COOL *cl, double dGmPerCcUnit, double dComovingGmPerCcUnit,
double dErgPerGmUnit, double dSecUnit, double dKpcUnit, COOLPARAM CoolParam)
{
assert(cl!=NULL);
cl->dGmPerCcUnit = dGmPerCcUnit;
cl->dComovingGmPerCcUnit = dComovingGmPerCcUnit;
cl->dErgPerGmUnit = dErgPerGmUnit;
cl->dSecUnit = dSecUnit;
cl->dErgPerGmPerSecUnit = cl->dErgPerGmUnit / cl->dSecUnit;
cl->diErgPerGmUnit = 1./dErgPerGmUnit;
cl->dKpcUnit = dKpcUnit;
cl->dParam1 = CoolParam.dParam1;
cl->dParam2 = CoolParam.dParam2;
cl->dParam3 = CoolParam.dParam3;
cl->dParam4 = CoolParam.dParam4;
cl->Y_Total = CoolParam.Y_Total;
cl->Tmin = CoolParam.dCoolingTmin;
cl->Tmax = CoolParam.dCoolingTmax;
/* Derivs Data Struct */
{
clDerivsData *Data = cl->DerivsData;
assert(Data != NULL);
Data->cl = cl;
Data->dlnE = (log(EMUL)-log(1/EMUL));
}
}
#define CL_Rgascode 8.2494e7
#define CL_Eerg_gm_degK CL_Rgascode
#define CL_ev_degK 1.0/1.1604e4
#define CL_Eerg_gm_ev CL_Eerg_gm_degK/CL_ev_degK
#define CL_Eerg_gm_degK3_2 1.5*CL_Eerg_gm_degK
/*
* Though 13.6eV is lost to the Gas as radiation during H recombination, calculating the
* Energy using u = E per unit mass = 3/2 n/rho k T requires we don't subtract it there.
* This formulation is useful because then pressure = 2/3 u rho.
* Instead we subtract the 13.6eV for H collisional ionization which actually
* removes no energy from the Gas ( similarly for Helium )
* It also means photoionization doesn't add the 13.6eV, only the excess.
*/
double clThermalEnergy( double Y_Total, double T ) {
return Y_Total*CL_Eerg_gm_degK3_2*T;
}
double clTemperature( double Y_Total, double E ) {
return E/(Y_Total*CL_Eerg_gm_degK3_2);
}
double clEdotInstant( COOL *cl, double E, double T, double rho, double rFactor,
double *dEdotHeat, double *dEdotCool)
{
double Edot;
*dEdotHeat = 0.0;
*dEdotCool = (T < cl->Tmin ? 0 : E*rFactor);
return *dEdotHeat - *dEdotCool;
}
/*
* We solve the implicit equation:
* Eout = Ein + dt * Cooling ( Yin, Yout, Ein, Eout )
*
* E erg/gm, PdV erg/gm/s, rho gm/cc, dt sec
*
*/
void clDerivs(void *Data, double x, const double *y, double *dHeat,
double *dCool) {
clDerivsData *d = Data;
d->E = y[0];
d->T = clTemperature( d->Y_Total, d->E );
clEdotInstant( d->cl, d->E, d->T, d->rho, d->rFactor, dHeat, dCool );
if(d->PdV > 0.0)
*dHeat += d->PdV;
else
*dCool -= d->PdV;
}
void clIntegrateEnergy(COOL *cl, double *E,
double PdV, double rho, double Y_Total, double radius, double tStep ) {
double dEdt,dE,Ein = *E,EMin;
double t=0,dtused,dtnext,tstop = tStep*(1-1e-8),dtEst;
clDerivsData *d = cl->DerivsData;
STIFF *sbs = d->IntegratorContext;
if (tStep <= 0) return;
d->rho = rho;
d->PdV = PdV;
d->Y_Total = Y_Total;
d->rFactor = cl->dParam1*pow(radius,-3./2.);
EMin = clThermalEnergy( d->Y_Total, cl->Tmin );
{
int its = 0;
StiffStep( sbs, E, t, tStep);
if (*E < EMin) {
*E = EMin;
}
}
/*
Note Stored abundances are not necessary with
this eqm integrator therefore the following operations
could be moved to output routines
*/
d->E = *E;
d->T = clTemperature( d->Y_Total, d->E );
if (d->T < cl->Tmin ) {
d->T = cl->Tmin;
*E = clThermalEnergy( d->Y_Total, d->T );
}
}
/* Module Interface routines */
void CoolAddParams( COOLPARAM *CoolParam, PRM prm ) {
CoolParam->dParam1 = 0;
prmAddParam(prm,"CooldParam1",2,&CoolParam->dParam1,
sizeof(double),"dparam1",
"<Param1> = 0.0");
CoolParam->dParam2 = 0;
prmAddParam(prm,"CooldParam2",2,&CoolParam->dParam2,
sizeof(double),"dParam2",
"<Param2> = 0.0");
CoolParam->dParam3 = 0;
prmAddParam(prm,"CooldParam3",2,&CoolParam->dParam3,
sizeof(double),"dParam3",
"<Param3> = 0.0");
CoolParam->dParam4 = 0;
prmAddParam(prm,"CooldParam4",2,&CoolParam->dParam4,
sizeof(double),"dParam4",
"<Param4> = 0.0");
CoolParam->Y_Total = 2;
prmAddParam(prm,"dY_Total",2,&CoolParam->Y_Total,
sizeof(double),"Y_Total",
"<Y_Total> = 2");
CoolParam->dCoolingTmin = 10;
prmAddParam(prm,"dCoolingTmin",2,&CoolParam->dCoolingTmin,
sizeof(double),"ctmin",
"<Minimum Temperature for Cooling> = 10K");
CoolParam->dCoolingTmax = 1e9;
prmAddParam(prm,"dCoolingTmax",2,&CoolParam->dCoolingTmax,
sizeof(double),"ctmax",
"<Maximum Temperature for Cooling> = 1e9K");
}
void CoolLogParams( COOLPARAM *CoolParam, LOGGER *lgr) {
LogParams(lgr, "COOLING", "CooldParam1: %g",CoolParam->dParam1);
LogParams(lgr, "COOLING", "CooldParam2: %g",CoolParam->dParam2);
LogParams(lgr, "COOLING", "CooldParam3: %g",CoolParam->dParam3);
LogParams(lgr, "COOLING", "CooldParam4: %g",CoolParam->dParam4);
LogParams(lgr, "COOLING", "Y_Total: %g",CoolParam->Y_Total);
LogParams(lgr, "COOLING", "dCoolingTmin: %g",CoolParam->dCoolingTmin);
LogParams(lgr, "COOLING", "dCoolingTmax: %g",CoolParam->dCoolingTmax);
}
void CoolOutputArray( COOLPARAM *CoolParam, int cnt, int *type, char *suffix ) {
*type = OUT_NULL;
}
/* Initialization Routines */
void CoolTableReadInfo( COOLPARAM *CoolParam, int cntTable, int *nTableColumns, char *suffix )
{
int localcntTable = 0;
*nTableColumns = 0;
}
void CoolTableRead( COOL *Cool, int nData, void *vData)
{
fprintf(stderr," Attempt to initialize non-exitent table in cooling\n");
assert(0);
}
void CoolDefaultParticleData( COOLPARTICLE *cp )
{
cp->Y_Total = 2;
}
void CoolInitEnergyAndParticleData( COOL *cl, COOLPARTICLE *cp, double *E, double dDensity, double dTemp, double fMetal )
{
cp->Y_Total = cl->Y_Total;
*E = clThermalEnergy(cp->Y_Total,dTemp)*cl->diErgPerGmUnit;
}
void CoolInitRatesTable( COOL *cl, COOLPARAM CoolParam ) {
}
void CoolSetTime( COOL *cl, double dTime, double z ) {
cl->z = z;
cl->dTime = dTime;
}
/* Output Conversion Routines */
double CoolEnergyToTemperature( COOL *Cool, COOLPARTICLE *cp, double E ) {
return clTemperature( cp->Y_Total, E );
}
double CoolCodeEnergyToTemperature( COOL *Cool, COOLPARTICLE *cp, double E,
double fMetal) {
return CoolEnergyToTemperature( Cool, cp, E*Cool->dErgPerGmUnit );
}
/* Integration Routines */
#define CONVERT_CMPERKPC (3.0857e21)
void CoolIntegrateEnergyCode(COOL *cl, COOLPARTICLE *cp, double *ECode,
double PdVCode, double rhoCode, double ZMetal, double *posCode, double tStep ) {
double radius;
radius= sqrt(posCode[0]*posCode[0]+posCode[1]*posCode[1]+posCode[2]*posCode[2])
*cl->dKpcUnit*CONVERT_CMPERKPC;
*ECode = CoolCodeEnergyToErgPerGm( cl, *ECode );
clIntegrateEnergy(cl, ECode, CoolCodeWorkToErgPerGmPerSec( cl, PdVCode ),
CodeDensityToComovingGmPerCc(cl, rhoCode), cp->Y_Total, radius, tStep);
*ECode = CoolErgPerGmToCodeEnergy(cl, *ECode);
}
/* Star form function -- do not use */
double CoolHeatingRate( COOL *cl, COOLPARTICLE *cp, double T, double dDensity ) {
assert(0);
return 0;
}
/* Not implemented */
double CoolEdotInstantCode(COOL *cl, COOLPARTICLE *cp, double ECode,
double rhoCode, double ZMetal, double *posCode ) {
double T,E,rho,Edot;
assert(0);
return CoolErgPerGmPerSecToCodeWork( cl, Edot );
}
#endif /* NOCOOLING */
#endif /* GASOLINE */