-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathaggs.c
1029 lines (854 loc) · 28 KB
/
aggs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* aggs.c
*
* PKDGRAV Source Code for Aggregate Handling
*
* Author: Kenneth W. Flynn
* flynnk@astro.umd.edu
* Mods: Derek C. Richardson
* dcr@astro.umd.edu
*
* Modified: 01/28/01; DCR: 07/10/02, 5/29/03, 7/14/05
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "aggs.h"
#include "collision.h" /* for COLLIDER struct */
#ifdef AGGS
void pkdAggsFind(PKD pkd,int *iMaxIdx)
{
/*
** Returns largest aggregate index found on local processor.
*/
PARTICLE *p;
int i,n,iAggIdx;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (IS_AGG(p)) {
iAggIdx = AGG_IDX(p);
if (iAggIdx > *iMaxIdx)
*iMaxIdx = iAggIdx;
}
}
}
void pkdAggsConfirm(PKD pkd,int iAggIdx,int *bAssigned)
{
/*
** Sets flag if particle belonging to aggregate found on
** local processor.
*/
PARTICLE *p;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
*bAssigned = 1;
return;
}
}
}
void pkdAggsMerge(PKD pkd,int iOldIdx,int iNewIdx)
{
/*
** "Merges" two aggregates by assigning aggregate index of each
** particle in old aggregate to index of new aggregate. A call
** to msrAggsUpdate() is needed to compute new dynamical
** quantities (COM, spin, etc.; this is done in msrAggsMerge()).
*/
/*DEBUG for now, the color of the old aggregate is preserved */
PARTICLE *p;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iOldIdx) {
AGG_SET_IDX(p,iNewIdx);
}
}
}
void pkdAggsBackDrift(PKD pkd,int iAggIdx,double dt)
{
/*
** Drifts aggregate particle space positions back interval dt
** (should be to start of step) so that collision prediction
** (which assumes particle positions are at start of step) will
** work properly. Also sets SMOOTHACTIVE for all particles in
** aggregate to force recomputation of collision circumstances.
** Particle "accelerations" are taken to be second-order terms
** in velocity expression, as computed in pkdAggsSetSpaceVel().
*/
PARTICLE *p;
int i,k,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
for (k=0;k<3;k++)
p->r[k] -= (p->v[k] + 0.5*p->a[k]*dt)*dt;
TYPESet(p,TYPE_SMOOTHACTIVE);
}
}
}
void pkdAggsGetCOM(PKD pkd,int iAggIdx,Scalar *m,Vector mr,Vector mv)
{
/*
** Computes contribution (moments) of local particles to center-
** of-mass position and velocity of specified aggregate.
*/
PARTICLE *p;
int i,k,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
*m += p->fMass;
for (k=0;k<3;k++) {
mr[k] += p->fMass*p->r[k];
mv[k] += p->fMass*p->v[k];
}
}
}
}
void pkdAggsGetAxesAndSpin(PKD pkd,int iAggIdx,const Vector r_com,
const Vector v_com,Matrix I,Vector L)
{
/*
** Computes contribution of local particles to inertia tensor
** and angular momentum vector relative to center of mass of
** specified aggregate. Particles belonging to the aggregate
** have a copy of their positions relative to the aggregate COM
** stored in p->r_agg (in space coordinates, not body coordinates,
** since the transformation matrix isn't availble yet---we're
** building it now!; to transform later, see pkdAggsToBodyAxes()).
*/
PARTICLE *p;
Vector r,v;
Scalar m,R;
double q;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
/* get pos & vel wrt COM */
vectorSub(p->r,r_com,r);
vectorSub(p->v,v_com,v);
m = p->fMass;
R = RADIUS(p); /* twice softening length */
q = AGGS_PARTICLE_INERTIA_PREFACTOR*R*R; /* for convenience */
/* add inertia tensor contributions */
/* note caller must fill symmetric elements; Cf. msrAggsGetAxesAndSpin() */
I[0][0] += m*(q + r[1]*r[1] + r[2]*r[2]);
I[0][1] -= m*r[0]*r[1];
I[0][2] -= m*r[0]*r[2];
I[1][1] += m*(q + r[0]*r[0] + r[2]*r[2]);
I[1][2] -= m*r[1]*r[2];
I[2][2] += m*(q + r[0]*r[0] + r[1]*r[1]);
/* add angular momentum contributions, L = m (r x v) + I w */
/* note w for aggregate particles should equal w of aggregate as a whole */
L[0] += m*(r[1]*v[2] - r[2]*v[1] + p->w[0]*q);
L[1] += m*(r[2]*v[0] - r[0]*v[2] + p->w[1]*q);
L[2] += m*(r[0]*v[1] - r[1]*v[0] + p->w[2]*q);
/* store pos wrt COM */
vectorCopy(r,p->r_agg);
}
}
}
void pkdAggsSetBodyPos(PKD pkd,int iAggIdx,Matrix spaceToBody)
{
/*
** Transforms positions of local particles (belonging
** to specified aggregate) from space to body coordinates
** relative to center of mass. Note pkdAggsGetAxes() must
** be called first.
*/
PARTICLE *p;
Vector tmp;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
matrixTransform(spaceToBody,p->r_agg,tmp);
vectorCopy(tmp,p->r_agg);
}
}
}
void pkdAggsSetSpacePos(PKD pkd,int iAggIdx,const Vector r_com,Matrix lambda)
{
/*
** Transforms positions of local particles (belonging to
** specified aggregate) from body to space coordinates.
** Called by msrAggsAdvance() during drift step.
*/
PARTICLE *p;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
/* transform positions from body to space coords wrt COM */
matrixTransform(lambda,p->r_agg,p->r);
/* add center of mass component */
vectorAdd(p->r,r_com,p->r);
}
}
}
void pkdAggsSetSpaceVel(PKD pkd,int iAggIdx,const Vector v_com,
const Vector omega,Matrix lambda)
{
/*
** Computes space velocities of local particles (belonging
** to specified aggregate) to 2nd order. Called after a
** kick by msrAggsKick() and before back drifting by
** msrAggsBackDrift().
*/
PARTICLE *p;
Vector v,a;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
/* compute aggregate spin component of particle velocities */
vectorCross(omega,p->r_agg,v);
/* transform to space frame */
matrixTransform(lambda,v,p->v);
/* add center of mass component */
vectorAdd(p->v,v_com,p->v);
/* compute 2nd-order (centripetal) term */
vectorCross(omega,v,a);
/* convenient to store this in particle's "a" vector */
matrixTransform(lambda,v,p->a);
}
}
}
void pkdAggsSetSpaceSpins(PKD pkd,int iAggIdx,const Vector omega)
{
/* sets particle spins to aggregate spin */
PARTICLE *p;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx)
vectorCopy(omega,p->w);
}
}
void pkdAggsDelete(PKD pkd,int iAggIdx,int *bFound)
{
PARTICLE *p;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
assert(*bFound == 0);
p->iOrgIdx = INT_MAX; /*DEBUG for now--same as above*/
p->iColor = 3; /*ditto*/
*bFound = 1; /* could return, but keep looping as sanity check */
}
}
}
void pkdAggsGetAccel(PKD pkd,int iAggIdx,Scalar *m,Vector ma)
{
/*
** Computes contribution (moments) of local particles to center
** of mass acceleration of specified aggregate. Must be called
** after computing interparticle gravitational accelerations.
*/
PARTICLE *p;
int i,k,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
*m += p->fMass; /* used as a check in msrAggsGetAccel() */
for (k=0;k<3;k++)
ma[k] += p->fMass*p->a[k];
}
}
}
void pkdAggsCheckStress(PKD pkd,int iAggIdx,const Vector r_com,const Vector a_com,
const Vector omega,FLOAT fTensileStrength,FLOAT fShearStrength,
int *nLost,int *nLeft)
{
/*DEBUG COMMENT
*/
PARTICLE *p;
Vector r,r_hat,a,a_rad,a_tan,v,a_cen;
double adotr;
FLOAT fTensileStress,fShearStress;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
/* particle position relative to com */
vectorSub(p->r,r_com,r);
/* unit radial vector from com to particle */
vectorCopy(r,r_hat);
vectorNorm(r_hat);
/* differential acceleration wrt com */
vectorSub(p->a,a_com,a);
/* construct radial and tangential components */
adotr = vectorDot(a,r_hat);
vectorScale(r_hat,adotr,a_rad);
vectorSub(a,a_rad,a_tan); /* same as r-hat x a */
/* now add centrifugal term to radial component */
vectorCross(omega,r,v);
vectorCross(omega,v,a_cen);
vectorSub(a_rad,a_cen,v); /* minus: centripetal --> centrifugal */
/* compute stress */
fTensileStress = vectorDot(v,r_hat); /* net radial component */
fShearStress = vectorMag(a_tan); /* tangential component */
if (fTensileStress > fTensileStrength ||
fShearStress > fShearStrength) {
if (fTensileStress > fTensileStrength) {
/*
** For this instant, apply the excess radial
** acceleration to the particle. This ensures it
** will separate without immediately recolliding.
*/
vectorSub(a,a_rad,a);
vectorScale(r_hat,fTensileStress - fTensileStrength,v);
vectorAdd(a,v,a);
vectorAdd(a_com,a,p->a);
}
if (fShearStress > fShearStrength) {
/*DEBUG do nothing for now!*/
}
p->iOrgIdx = INT_MAX; /*DEBUG for now*/
p->iColor = 3; /*ditto*/
++(*nLost);
/*DEBUG! release all particles*/
printf("STRESS = %g i=%i\n",fTensileStress,p->iOrder);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
p->iOrgIdx = 9999;
p->iColor = 3;
}
*nLost = n; *nLeft = 0; return;
}
else
++(*nLeft);
}
}
}
void pkdAggsGetTorque(PKD pkd,int iAggIdx,const Vector r_com,const Vector a_com,
Vector torque)
{
/*
** Computes contribution of local particles to torque of
** specified aggregate in space coordinates relative to center of
** mass. Note that the COM position is passed, rather than the
** rotation matrix, since it's simpler this way...
*/
PARTICLE *p;
Vector da,dr,cross,dN;
int i,n;
n = pkdLocal(pkd);
for (i=0;i<n;i++) {
p = &pkd->pStore[i];
if (AGG_IDX(p) == iAggIdx) {
vectorSub(p->r,r_com,dr); /* or could xform body to space */
vectorSub(p->a,a_com,da);
vectorCross(dr,da,cross);
vectorScale(cross,p->fMass,dN);
/* N += m (a x r) */
vectorAdd(torque,dN,torque);
}
}
}
static void aggsSingleParticleToAgg(const COLLIDER *c,Aggregate *a)
{
double inertia;
a->bAssigned = 1;
a->mass = c->fMass;
vectorCopy(c->r,a->r_com);
vectorCopy(c->v,a->v_com);
vectorZero(a->a_com); /* unused */
vectorZero(a->torque); /* unused */
vectorCopy(c->w,a->omega);
inertia = AGGS_PARTICLE_INERTIA_PREFACTOR*c->fMass*c->fRadius*c->fRadius;
vectorSet(a->moments,inertia,inertia,inertia);
matrixIdentity(a->lambda);
a->dLastUpdate = 0.0;
}
static void aggsAggToSingleParticle(const Aggregate *a,COLLIDER *c)
{
/* id, fRadius, iColor, dt, iRung, bTinyStep, agg unchanged */
c->fMass = a->mass; /* unchanged in aggsBounce() */
vectorCopy(a->r_com,c->r); /* unchanged in aggsBounce() */
vectorCopy(a->v_com,c->v);
vectorCopy(a->omega,c->w);
}
static void aggsBounce(const COLLIDER *pc1,const COLLIDER *pc2,
const COLLISION_PARAMS *CP,COLLIDER *pcOut[],
int *pnOut)
{
/*
** Collision between aggregates of spheres, from Richardson 1995:
** dv1 = gamma (1 + en) (m2/M) un n;
** dv2 = - (m1/m2) dv1;
** dw1 = m1 I1inv (c1 cross dv1);
** dw2 = - m1 I2inv (c2 cross dv1);
** where M = m1 + m2, un = normal of total relative velocity at
** impact point, and gamma depends on the reduced mass and elements
** of I1inv and I2inv in the ntp basis.
**
** NOTE: method assumes NO sliding friction (et = 1).
*/
Aggregate *agg1,*agg2;
Matrix ntpT,ntp,mtmp1,mtmp2,Ibody,spaceToBody1,spaceToBody2,Ispace1,Ispace2,a,b;
Vector v,n,a1,a2,b1,b2,c1,c2,w1,w2,s1,s2,s,u,t,p,dv1,dv2,dw1,dw2,vtmp;
double en,m1,m2,M,mu,R1,R2,R,un,c1t,c1p,c2t,c2p,gamma;
*pnOut = 2;
*pcOut = (COLLIDER *) malloc((*pnOut)*sizeof(COLLIDER));
assert(*pcOut != NULL);
(*pcOut)[0] = *pc1; /* struct copy */
(*pcOut)[1] = *pc2;
/*
** Handy pointers.
** NOTE: point to *output* here because we want to change values.
*/
agg1 = &((*pcOut)[0].agg);
agg2 = &((*pcOut)[1].agg);
/*
** Rather than handle single particles as special cases, we turn
** them into single-particle aggregates for the purpose of solving
** the restitution equations. They're turned back into single
** particles at the end.
*/
if (!COLLIDER_IS_AGG(pc1))
aggsSingleParticleToAgg(pc1,agg1);
if (!COLLIDER_IS_AGG(pc2))
aggsSingleParticleToAgg(pc2,agg2);
/* sanity check */
assert(agg1->bAssigned);
assert(agg2->bAssigned);
/* convenient shorthand */
en = CP->dEpsN; /*DEBUG no vel-dep coef/slide/collapse adjust for now*/
m1 = agg1->mass;
m2 = agg2->mass;
M = m1 + m2;
mu = m1*m2/M;
R1 = pc1->fRadius;
R2 = pc2->fRadius;
R = R1 + R2;
/* v: relative linear velocity of agg centers of mass */
vectorSub(agg2->v_com,agg1->v_com,v);
/*
** n: vector perpendicular to tangent plane at impact site, pointing
** from contact sphere of aggregate 1 to contact sphere of aggregate 2.
*/
vectorSub(pc2->r,pc1->r,n);
/*
** a1,a2: positions of colliding spheres relative to agg centers of mass.
** Note agg rotation during drift will cause some error here...
*/
vectorSub(pc1->r,agg1->r_com,a1);
vectorSub(pc2->r,agg2->r_com,a2);
/* b1,b2: position of impact site relative to colliding sphere centers */
vectorScale(n, R1/R,b1);
vectorScale(n,-R2/R,b2);
/* c1,c2: position vectors of impact site relative to agg centers of mass */
vectorAdd(a1,b1,c1);
vectorAdd(a2,b2,c2);
/* w1,w2: angular velocities of aggs in space frame */
matrixTransform(agg1->lambda,agg1->omega,w1);
matrixTransform(agg2->lambda,agg2->omega,w2);
/* s1,s2: spin velocity of agg at impact site */
vectorCross(w1,c1,s1);
vectorCross(w2,c2,s2);
/* s: relative spin velocity at impact site */
vectorSub(s2,s1,s);
/* u: total relative velocity at impact site */
vectorAdd(v,s,u);
/* construct ntp basis */
vectorGetBasis(n,t,p);
/* un: normal component of u */
un = vectorDot(u,n);
/* c1t,c1p,c2t,c2p: transverse components of c1,c2 */
c1t = vectorDot(c1,t);
c1p = vectorDot(c1,p);
c2t = vectorDot(c2,t);
c2p = vectorDot(c2,p);
/* get inverse inertia tensors wrt ntp basis */
vectorCopy(n,ntpT[0]); /* ntpT: matrix whose rows are n, t, and p */
vectorCopy(t,ntpT[1]);
vectorCopy(p,ntpT[2]);
matrixTranspose(ntpT,ntp); /* ntp: matrix whose columns are n, t, and p */
matrixDiagonal(agg1->moments,Ibody); /* inertia tensor in body frame */
matrixMultiply(agg1->lambda,Ibody,mtmp1);
matrixTranspose(agg1->lambda,spaceToBody1);
matrixMultiply(mtmp1,spaceToBody1,Ispace1); /* Ispace1: inertia tensor of agg 1 in space frame */
matrixMultiply(ntpT,Ispace1,mtmp1);
matrixMultiply(mtmp1,ntp,mtmp2); /* inertia tensor in ntp basis */
matrixInverse(mtmp2,a); /* a: inverse of inertia tensor of agg 1 in ntp basis */
matrixDiagonal(agg2->moments,Ibody); /* inertia tensor in body frame */
matrixMultiply(agg2->lambda,Ibody,mtmp1);
matrixTranspose(agg2->lambda,spaceToBody2);
matrixMultiply(mtmp1,spaceToBody2,Ispace2); /* Ispace2: inertia tensor of agg 2 in space frame */
matrixMultiply(ntpT,Ispace2,mtmp1);
matrixMultiply(mtmp1,ntp,mtmp2); /* inertia tensor in ntp basis */
matrixInverse(mtmp2,b); /* b: inverse of inertia tensor of agg 2 in ntp basis */
/* useful factor */
gamma = 1.0/(1.0 + mu*(a[1][1]*c1p*c1p - 2.0*a[1][2]*c1p*c1t + a[2][2]*c1t*c1t +
b[1][1]*c2p*c2p - 2.0*b[1][2]*c2p*c2t + b[2][2]*c2t*c2t));
/*DEBUG verbose agg conservation check
{
Vector P1,P2,P,L1t,L1rb,L1r,L1,L2t,L2rb,L2r,L2,L;
Matrix inertia;
(void) printf("r1 = (%g,%g,%g) v1 = (%g,%g,%g) w1 = (%g,%g,%g)\n",
agg1->r_com[0],agg1->r_com[1],agg1->r_com[2],
agg1->v_com[0],agg1->v_com[1],agg1->v_com[2],
agg1->omega[0],agg1->omega[1],agg1->omega[2]);
(void) printf("r2 = (%g,%g,%g) v2 = (%g,%g,%g) w2 = (%g,%g,%g)\n",
agg2->r_com[0],agg2->r_com[1],agg2->r_com[2],
agg2->v_com[0],agg2->v_com[1],agg2->v_com[2],
agg2->omega[0],agg2->omega[1],agg2->omega[2]);
vectorScale(agg1->v_com,agg1->mass,P1);
vectorScale(agg2->v_com,agg2->mass,P2);
vectorAdd(P1,P2,P);
(void) printf("lin mom before = %g %g %g\n",P[0],P[1],P[2]);
vectorCross(agg1->r_com,agg1->v_com,L1t);
vectorScale(L1t,agg1->mass,L1t);
matrixDiagonal(agg1->moments,inertia);
matrixTransform(inertia,agg1->omega,L1rb);
matrixTransform(agg1->lambda,L1rb,L1r);
(void) printf("ang mom before L1t = %g %g %g\n",L1t[0],L1t[1],L1t[2]);
(void) printf("ang mom before L1r = %g %g %g\n",L1r[0],L1r[1],L1r[2]);
vectorAdd(L1t,L1r,L1);
vectorCross(agg2->r_com,agg2->v_com,L2t);
vectorScale(L2t,agg2->mass,L2t);
matrixDiagonal(agg2->moments,inertia);
matrixTransform(inertia,agg2->omega,L2rb);
matrixTransform(agg2->lambda,L2rb,L2r);
(void) printf("ang mom before L2t = %g %g %g\n",L2t[0],L2t[1],L2t[2]);
(void) printf("ang mom before L2r = %g %g %g\n",L2r[0],L2r[1],L2r[2]);
vectorAdd(L2t,L2r,L2);
vectorAdd(L1,L2,L);
(void) printf("ang mom before = %g %g %g\n",L[0],L[1],L[2]);
}
*/
/* compute final velocities and spins */
vectorScale(n,gamma*(1 + en)*(m2/M)*un,dv1);
vectorAdd(agg1->v_com,dv1,agg1->v_com);
vectorScale(dv1,-m1/m2,dv2);
vectorAdd(agg2->v_com,dv2,agg2->v_com);
vectorCross(c1,dv1,vtmp);
matrixInverse(Ispace1,a); /* no longer in ntp basis */
matrixTransform(a,vtmp,dw1);
vectorScale(dw1,m1,dw1);
vectorAdd(w1,dw1,w1);
matrixTransform(spaceToBody1,w1,agg1->omega); /* new spin in body frame */
vectorCross(c2,dv1,vtmp);
matrixInverse(Ispace2,b); /* no longer in ntp basis */
matrixTransform(b,vtmp,dw2);
vectorScale(dw2,-m1,dw2);
vectorAdd(w2,dw2,w2);
matrixTransform(spaceToBody2,w2,agg2->omega); /* new spin in body frame */
/*DEBUG verbose agg conservation check
{
Vector P1,P2,P,L1t,L1rb,L1r,L1,L2t,L2rb,L2r,L2,L;
Matrix inertia;
(void) printf("r1 = (%g,%g,%g) v1 = (%g,%g,%g) w1 = (%g,%g,%g)\n",
agg1->r_com[0],agg1->r_com[1],agg1->r_com[2],
agg1->v_com[0],agg1->v_com[1],agg1->v_com[2],
agg1->omega[0],agg1->omega[1],agg1->omega[2]);
(void) printf("r2 = (%g,%g,%g) v2 = (%g,%g,%g) w2 = (%g,%g,%g)\n",
agg2->r_com[0],agg2->r_com[1],agg2->r_com[2],
agg2->v_com[0],agg2->v_com[1],agg2->v_com[2],
agg2->omega[0],agg2->omega[1],agg2->omega[2]);
vectorScale(agg1->v_com,agg1->mass,P1);
vectorScale(agg2->v_com,agg2->mass,P2);
vectorAdd(P1,P2,P);
(void) printf("lin mom after = %g %g %g\n",P[0],P[1],P[2]);
vectorCross(agg1->r_com,agg1->v_com,L1t);
vectorScale(L1t,agg1->mass,L1t);
matrixDiagonal(agg1->moments,inertia);
matrixTransform(inertia,agg1->omega,L1rb);
matrixTransform(agg1->lambda,L1rb,L1r);
(void) printf("ang mom after L1t = %g %g %g\n",L1t[0],L1t[1],L1t[2]);
(void) printf("ang mom after L1r = %g %g %g\n",L1r[0],L1r[1],L1r[2]);
vectorAdd(L1t,L1r,L1);
vectorCross(agg2->r_com,agg2->v_com,L2t);
vectorScale(L2t,agg2->mass,L2t);
matrixDiagonal(agg2->moments,inertia);
matrixTransform(inertia,agg2->omega,L2rb);
matrixTransform(agg2->lambda,L2rb,L2r);
(void) printf("ang mom after L2t = %g %g %g\n",L2t[0],L2t[1],L2t[2]);
(void) printf("ang mom after L2r = %g %g %g\n",L2r[0],L2r[1],L2r[2]);
vectorAdd(L2t,L2r,L2);
vectorAdd(L1,L2,L);
(void) printf("ang mom after = %g %g %g\n",L[0],L[1],L[2]);
}
*/
/* revert back to single particles as needed */
if (!COLLIDER_IS_AGG(pc1))
aggsAggToSingleParticle(agg1,&((*pcOut)[0]));
if (!COLLIDER_IS_AGG(pc2))
aggsAggToSingleParticle(agg2,&((*pcOut)[1]));
}
static void aggsPutColliderInfo(const COLLIDER *c,PARTICLE *p,double dt,
int iAggIdx)
{
/* used for merging particles with aggs in pkdAggsDoCollision() */
int i;
for (i=0;i<3;i++)
p->r[i] = c->r[i]; /* position at contact */
AGG_SET_IDX(p,iAggIdx); /* particle now belongs to this agg */
p->iColor = 4 + iAggIdx%10; /*DEBUG a quick & dirty way to color aggs*/
}
void pkdAggsDoCollision(PKD pkd,double dt,const COLLIDER *pc1,
const COLLIDER *pc2,int bPeriodic,
const COLLISION_PARAMS *CP,int iAggNewIdx,
int *piOutcome,double *dT,
COLLIDER *cOut,int *pnOut)
{
COLLIDER c1,c2;
double v2,ve2;
int bReturnOutput,k;
assert(bPeriodic == 0); /* for now */
/*DEBUG verbose collision output*/
/*
(void) printf("COLLISION %i (%i) & %i (%i) (dt = %.16e)\n",
pc1->id.iOrder,pc1->id.iOrgIdx,pc2->id.iOrder,pc2->id.iOrgIdx,dt);
*/
/* get local copies of collider data for manipulation */
c1 = *pc1; /* struct copy */
c2 = *pc2;
/*
** To prevent overwriting data in parallel, only store results
** in output variables if collider 1 is local to this processor.
*/
bReturnOutput = (c1.id.iPid == pkd->idSelf);
if (bReturnOutput && dT != NULL) *dT = 0.0; /*DEBUG not used (change in energy not computed for aggs)*/
/*
** Advance coordinates of non-aggregate particles to impact time.
** (Aggregate particles already advanced in msrAggsAdvance().)
** Note that the aggregate advance step actually integrates the
** Euler equations of motions to the impact time, taking into
** account gravitational torques on each aggregate, whereas
** collision prediction in CheckForCollision() uses a simpler
** expression good to second order assuming the aggregate spin
** vector(s) remain unchanged over the interval. This means the
** collision circumstances may be slightly off here (particles
** either overlapping or not touching). To minimize these
** problems, the timestep should be SHORT. Even so, it may be
** necessary to turn on the "fix collapse" feature, particularly
** if bouncing is allowed, to circumvent overlap errors.
*/
if (!COLLIDER_IS_AGG(&c1)) {
for (k=0;k<3;k++)
c1.r[k] += c1.v[k]*dt;
}
if (!COLLIDER_IS_AGG(&c2)) {
for (k=0;k<3;k++)
c2.r[k] += c2.v[k]*dt;
}
/* determine collision outcome */
v2 = ve2 = 0.0;
if ((CP->iOutcomes & MERGE) && (CP->iOutcomes & BOUNCE)) {
/*
** If both merging and bouncing are allowed, determine
** outcome based on rough estimate of mutual escape
** speed of colliders. Aggregates are treated as giant
** spherical particles for this purpose.
*/
Vector r1,r2;
double m1,m2,d2=0.0;
if (COLLIDER_IS_AGG(&c1)) {
m1 = c1.agg.mass;
vectorCopy(c1.agg.r_com,r1);
}
else {
m1 = c1.fMass;
vectorCopy(c1.r,r1);
}
if (COLLIDER_IS_AGG(&c2)) {
m2 = c2.agg.mass;
vectorCopy(c2.agg.r_com,r2);
}
else {
m2 = c2.fMass;
vectorCopy(c2.r,r2);
}
for (k=0;k<3;k++) {
d2 += (r2[k] - r1[k])*(r2[k] - r1[k]);
/*DEBUG following ignores 2nd-order terms in v for aggs*/
v2 += (c2.v[k] - c1.v[k])*(c2.v[k] - c1.v[k]);
}
/*
** Since aggregates can have arbitrarily bizarre shapes,
** it's possible (though unlikely) for particles and/or
** aggregates to have exactly overlapping mass centers.
** So we impose a minimum separation for the escape speed
** calculation of the sum of the touching particle radii.
*/
if (d2 < c1.fRadius*c1.fRadius + c2.fRadius*c2.fRadius)
d2 = c1.fRadius*c1.fRadius + c2.fRadius*c2.fRadius;
assert(d2 > 0.0);
ve2 = 2*(m1 + m2)/sqrt(d2);
}
if (CP->iOutcomes == MERGE ||
((CP->iOutcomes & MERGE) &&
v2 <= CP->dBounceLimit*CP->dBounceLimit*ve2)) {
/*
** Most of the work of merging aggregates is actually done
** at the master level. Here we're just concerned with
** updating any unaggregated particles to reflect their new
** aggregate member status.
*/
if (bReturnOutput) {
*piOutcome = MERGE;
*pnOut = 1;
/* nothing stored in cOut -- master will take care of this */
}
if (COLLIDER_IS_AGG(&c1) && COLLIDER_IS_AGG(&c2)) {
/* do nothing -- handled in msrAggsMerge() */
assert(COLLIDER_AGG_IDX(&c1) != COLLIDER_AGG_IDX(&c2));
}
else if (COLLIDER_IS_AGG(&c1) && !COLLIDER_IS_AGG(&c2)) {
/* add single particle at current position to aggregate */
if (c2.id.iPid == pkd->idSelf) /* only if particle is local */
aggsPutColliderInfo(&c2,&pkd->pStore[c2.id.iIndex],dt,
COLLIDER_AGG_IDX(&c1));
}
else if (COLLIDER_IS_AGG(&c2) && !COLLIDER_IS_AGG(&c1)) {
/* ditto */
if (c1.id.iPid == pkd->idSelf)
aggsPutColliderInfo(&c1,&pkd->pStore[c1.id.iIndex],dt,
COLLIDER_AGG_IDX(&c2));
}
else { /* i.e., !COLLIDER_IS_AGG(&c1) && !COLLIDER_IS_AGG(&c2) */
/* make new aggregate from single particles at current positions */
if (c1.id.iPid == pkd->idSelf)
aggsPutColliderInfo(&c1,&pkd->pStore[c1.id.iIndex],dt,
iAggNewIdx);
if (c2.id.iPid == pkd->idSelf)
aggsPutColliderInfo(&c2,&pkd->pStore[c2.id.iIndex],dt,
iAggNewIdx);
}
}
else if (CP->iOutcomes & BOUNCE) {
/* bounce */
COLLIDER *c;
int i,n;
aggsBounce(&c1,&c2,CP,&c,&n);
assert(n == 2);
if (bReturnOutput) {
*piOutcome = BOUNCE;
for (i=0;i<n;i++)
cOut[i] = c[i]; /* struct copy */
*pnOut = n;
}
/*
** Trace unaggregated particles back to start of step
** (particles in aggregates updated in msrAggsBounce()).
** The crazy (i+1)%2 business below is simply shorthand
** for storing the iOrder of the *other* collider, since
** for bouncing there can be only 2 particles involved.
*/
for (i=0;i<n;i++)
if (!COLLIDER_IS_AGG(&c[i]) && c[i].id.iPid == pkd->idSelf) {
for (k=0;k<3;k++)
c[i].r[k] -= c[i].v[k]*dt;
PutColliderInfo(&c[i],c[(i+1)%2].id.iOrder,
&pkd->pStore[c[i].id.iIndex],dt);
}
/* free resources */
free((void *) c);
}
else {
assert(0);/*DEBUG no other outcomes allowed yet*/
}
/*
** For aggs, need to set dtPrevCol and reset iPrevCol. (For
** non-aggregate particles, this is done in PutColliderInfo().)
** Note we have to set iPrevCol to INT_MAX (infinity) here
** because it's possible for particles inside different aggs to
** collide with one another more than once during the interval.
*/
if (COLLIDER_IS_AGG(&c1) && c1.id.iPid == pkd->idSelf) {
pkd->pStore[c1.id.iIndex].dtPrevCol = dt;
pkd->pStore[c1.id.iIndex].iPrevCol = INT_MAX;
}
if (COLLIDER_IS_AGG(&c2) && c2.id.iPid == pkd->idSelf) {
pkd->pStore[c2.id.iIndex].dtPrevCol = dt;
pkd->pStore[c2.id.iIndex].iPrevCol = INT_MAX;
}
}
/*** Following routines called (or passed) directly from master ***/
void aggsEulerDerivs(FLOAT t,FLOAT vars[],void *agg_as_void,FLOAT derivs[])
{
FLOAT *torque = ((Aggregate *) agg_as_void)->torque;
FLOAT *moments = ((Aggregate *) agg_as_void)->moments;
/* omega[0, 1, 2] */
derivs[0] = (torque[0] + vars[1]*vars[2]*(moments[1] - moments[2]))/moments[0];
derivs[1] = (torque[1] + vars[2]*vars[0]*(moments[2] - moments[0]))/moments[1];
derivs[2] = (torque[2] + vars[0]*vars[1]*(moments[0] - moments[1]))/moments[2];
/* q1[0, 1, 2] */
derivs[3] = vars[2]*vars[6] - vars[1]*vars[9];
derivs[4] = vars[2]*vars[7] - vars[1]*vars[10];
derivs[5] = vars[2]*vars[8] - vars[1]*vars[11];
/* q2 */
derivs[6] = vars[0]*vars[9] - vars[2]*vars[3];
derivs[7] = vars[0]*vars[10] - vars[2]*vars[4];
derivs[8] = vars[0]*vars[11] - vars[2]*vars[5];
/* q3 */
derivs[9] = vars[1]*vars[3] - vars[0]*vars[6];
derivs[10] = vars[1]*vars[4] - vars[0]*vars[7];
derivs[11] = vars[1]*vars[5] - vars[0]*vars[8];
}
void aggsRungeStep(FLOAT step_size,FLOAT x,FLOAT* y_vals,int n,
void* user_data,aggsRungeDerivs func,FLOAT* new_x,
FLOAT* new_y_vals)
{
/*DEBUG could be reconciled with RungeStep() in runge.c*/
const double one_sixth = 1.0/6.0,one_third = 1.0/3.0;
FLOAT *k1,*k2,*k3,*k4,*tmp;
int i;
k1 = (FLOAT *) malloc(n*sizeof(FLOAT));
assert(k1 != NULL);
k2 = (FLOAT *) malloc(n*sizeof(FLOAT));
assert(k2 != NULL);
k3 = (FLOAT *) malloc(n*sizeof(FLOAT));
assert(k3 != NULL);
k4 = (FLOAT *) malloc(n*sizeof(FLOAT));
assert(k4 != NULL);
tmp = (FLOAT *) malloc(n*sizeof(FLOAT));
assert(tmp != NULL);
(*func)(x,y_vals,user_data,k1);
for (i=0;i<n;i++) {
k1[i] *= step_size;
tmp[i] = y_vals[i] + 0.5*k1[i];
}