-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMaximum growth environment.py
117 lines (89 loc) · 4.12 KB
/
Maximum growth environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# CTGAN
import os
import warnings
import pandas as pd
import numpy as np
from sdv.tabular import CTGAN
from sdv.sampling import Condition
from autogluon.tabular import TabularDataset, TabularPredictor
from feature.preprocessing import preprocess_day0, preprocess_day_other
from feature.gan_preprocessing import make_traindata_ctgan, make_raw
from config import Settings
warnings.filterwarnings('ignore')
class CreateGE:
def __init__(self):
self.gan_model = CTGAN(verbose=True, epochs=500, cuda=True)
self.predict_model = TabularPredictor.load(
Settings.predict_model_path, require_version_match=False)
@property
def generated_data(self):
"""CTGAN을 이용한 데이터 생성
Returns:
100 sample generated data
"""
print("Start generated_data")
for i in range(28):
print(f"=======Start Day{i}===========")
raw_data1 = make_traindata_ctgan(Settings.case11)
raw_day1 = raw_data1.iloc[i:i + 1]
raw_data2 = make_traindata_ctgan(Settings.case13)
raw_day2 = raw_data2.iloc[i:i + 1]
raw_data3 = make_traindata_ctgan(Settings.case14)
raw_day3 = raw_data3.iloc[i:i + 1]
raw_day = pd.concat([raw_day1, raw_day2, raw_day3], axis=0)
self.gan_model.fit(raw_day)
ctgan_data = self.gan_model.sample(100, randomize_samples=True)
ctgan_data = make_raw(ctgan_data, i)
ctgan_data.to_csv(os.path.join(
Settings.generated_path, f'generate_day{i}.csv'), index=False)
print(f"========End Day{i}=========\n\n")
return None
def growth_env(self, mode):
"""0 ~ 28일의 최대 생육환경 조성
Args:
mode (str): "0" => 0일의 생육환경
"other" => 1 ~ 28일의 생육환경
"""
folder_list = ["./max_data", "./generate_data"]
for folder in folder_list:
if os.path.isdir(folder) == False:
os.makedirs(folder)
if mode == "0":
gen_data = pd.read_csv('./generate_data/generate_day0.csv')
max_list = []
for i in range(100):
gen_data_new = gen_data[i * 24:(i + 1) * 24]
gan_data = preprocess_day0(gen_data_new)
y_pred = self.predict_model.predict(gan_data)
max_list.append(y_pred.max())
max_list = pd.DataFrame(max_list)
idx_max = max_list.idxmax()
print(f'idx_max: {idx_max}번째 index')
gen_dat = gen_data[int(idx_max.values) * 24:(int(idx_max.values) + 1) * 24]
gen_dat['DAT'] = 0
gen_dat.to_csv("./max_data/day_0max.csv", index=False)
if mode == "other":
for day in range(1, 28):
max_0 = pd.read_csv('./max_data/day_0max.csv')
print(f'{day}일차 Start')
gen_data = pd.read_csv(f"./generate_data/generate_day{day}.csv") # 동적변경
max_list = []
for i in range(100):
gen_data_new = gen_data[i * 24:(i + 1) * 24]
gen_data_new = gen_data_new.reset_index(drop=True)
max_0['Case'] = i
gen_data_new['Case'] = i
gen_data_new['DAT'] = day
gan_data = preprocess_day_other(gen_data_new, max_0, day)
y_pred = self.predict_model.predict(gan_data)
max_list.append(y_pred.max())
max_list = pd.DataFrame(max_list)
idx_max = max_list.idxmax()
print('idx_max: %d번째 index' % idx_max)
gen_dat = gen_data[int(idx_max.values) * 24:(int(idx_max.values) + 1) * 24]
gen_dat['DAT'] = day
con_dat = pd.concat([max_0, gen_dat], axis=0)
con_dat.to_csv("./max_data/day_0max.csv", index=False)
print(f'{day}일차 End')
if __name__ == '__main__':
cls = CreateGE()