-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmoonloader\lib\matrix3x3.lua
70 lines (59 loc) · 2.02 KB
/
moonloader\lib\matrix3x3.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
-- This file is part of SA MoonLoader package.
-- Licensed under the MIT License.
-- Copyright (c) 2016, BlastHack Team <blast.hk>
-- Matrix3X3 class
-- authors: MTA Team (original MTA's CMatrix), FYP (lua implementation)
local Vector3D = require "vector3d"
Matrix3X3 = function(rightX, rightY, rightZ, frontX, frontY, frontZ, upX, upY, upZ)
local mt = {}
local obj = {}
if rightX ~= nil then
obj.right = Vector3D(rightX, rightY, rightZ)
obj.front = Vector3D(frontX, frontY, frontZ)
obj.up = Vector3D(upX, upY, upZ)
else
obj.right = Vector3D(1, 0, 0)
obj.front = Vector3D(0, 1, 0)
obj.up = Vector3D(0, 0, 1)
end
function obj:get()
return obj.right.x, obj.right.y, obj.right.z,
obj.front.x, obj.front.y, obj.front.z,
obj.up.x, obj.up.y, obj.up.z
end
function obj:vectorMul(v)
return Vector3D(
self.right.x * v.x + self.front.x * v.y + self.up.x * v.z,
self.right.y * v.x + self.front.y * v.y + self.up.y * v.z,
self.right.z * v.x + self.front.z * v.y + self.up.z * v.z)
end
function obj:rotate(v, theta)
local tsin, tcos = math.sin(theta), math.cos(theta)
local rightX, rightY, rightZ, frontX, frontY, frontZ, upX, upY, upZ
-- rotate Y
rightX = tcos + (1.0 - tcos) * v.x * v.x
rightY = (1.0 - tcos) * v.x * v.y - tsin * v.z
rightZ = (1.0 - tcos) * v.x * v.z + tsin * v.y
-- rotate Y
frontX = (1.0 - tcos) * v.y * v.x + tsin * v.z
frontY = tcos + (1.0 - tcos) * v.y * v.y
frontZ = (1.0 - tcos) * v.y * v.z - tsin * v.x
-- rotate Z
upX = (1.0 - tcos) * v.z * v.x - tsin * v.y
upY = (1.0 - tcos) * v.z * v.y + tsin * v.x
upZ = tcos + (1.0 - tcos) * v.z * v.z
return Matrix3X3(rightX, rightY, rightZ, frontX, frontY, frontZ, upX, upY, upZ) * self
end
obj.vector_mul = obj.vectorMul
-- meta
function mt:__mul(m)
local mat = Matrix3X3()
mat.right = self:vectorMul(m.right)
mat.front = self:vectorMul(m.front)
mat.up = self:vectorMul(m.up)
return mat
end
setmetatable(obj, mt)
return obj
end
return Matrix3X3