-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvector2d.py
158 lines (125 loc) · 4.24 KB
/
vector2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from math import sqrt
MIN_FLOAT = 1e-300
def is_equal(a, b):
return abs(a-b) < 1e-12
# Not needed, but fyi ...
#def PointToVector2D(pt):
# return Vector2D(pt.x, pt.y)
#
#def Vector2DToPoint(v):
# return Point2D(v.x, v.y)
class Vector2D(object):
__slots__ = ('x', 'y')
def __init__(self, x=0., y=0.):
self.x = x
self.y = y
def zero(self):
''' set x and y to zero '''
self.x = 0.
self.y = 0.
def is_zero(self):
''' return true if both x and y are zero '''
return (self.x**2 + self.y**2) < MIN_FLOAT
def length(self):
''' return the length of the vector '''
x = self.x
y = self.y
return sqrt(x*x + y*y)
def lengthSq(self):
''' return the squared length (avoid sqrt()) '''
x = self.x
y = self.y
return x*x + y*y
def normalise(self):
''' normalise self to a unit vector of length = 1.0 '''
x = self.x
y = self.y
l = sqrt(x*x + y*y)
try:
self.x = x/l
self.y = y/l
except ZeroDivisionError:
self.x = 0.
self.y = 0.
return self
def get_normalised(self):
''' return a normalised copy of self '''
result = self.copy()
result.normalise()
return result
def dot(self, v2):
''' The dot (inner) product of self and v2 vector '''
return self.x*v2.x + self.y*v2.y
def sign(self, v2):
''' return +1 if v2 is clockwise of self.
return -1 if v2 is anti-clockwise of self
Assumes Y axis points down and X points right '''
if self.y*v2.x > self.x*v2.y:
return -1
else:
return 1
def perp(self):
''' return a vector perpendicular to self. '''
return Vector2D(-self.y, self.x)
def truncate(self, maxlength):
''' limit the length (scale x and y) to maxlength '''
if self.length() > maxlength:
self.normalise() # unit vector length = 1.0
self *= maxlength # so length is 1.0 * maxlength
def distance(self, v2):
''' the distance between self and v2 vector '''
dx = v2.x - self.x
dy = v2.y - self.y
return sqrt(dx*dx + dy*dy)
def distanceSq(self, v2):
''' the squared distance between self and v2 vector '''
dx = v2.x - self.x
dy = v2.y - self.y
return dx*dx + dy*dy
def reflect(self, norm):
''' Reflect self around the norm vector provided. '''
# eg the path of a ball reflected off a wall
self += 2.0 * self.dot(norm) * norm.get_reverse()
def get_reverse(self):
''' return a new vector that is the reverse of self. '''
return Vector2D(-self.x, -self.y)
def __neg__(self): #
''' get_reverse(), but using - operator based instead. '''
return Vector2D(-self.x, -self.y)
def copy(self):
''' Simple copy Vector2D with self values '''
return Vector2D(self.x, self.y)
def __iadd__(self, rhs): # +=
self.x += rhs.x
self.y += rhs.y
return self
def __isub__(self, rhs): # -=
self.x -= rhs.x
self.y -= rhs.y
return self
def __imul__(self, rhs): # *=
self.x *= rhs
self.y *= rhs
return self
def __itruediv__(self, rhs): # /=
self.x /= rhs
self.y /= rhs
return self
def __eq__(self, rhs): # ==
return is_equal(self.x, rhs.x) and is_equal(self.y, rhs.y)
def __ne__(self, rhs): # !=
return (self.x != rhs.x) or (self.y != rhs.y)
def __add__(self, rhs): # self + rhs
return Vector2D(self.x+rhs.x, self.y+rhs.y)
def __sub__(self, rhs): # self - rhs
return Vector2D(self.x-rhs.x, self.y-rhs.y)
def __mul__(self, rhs): # self * rhs (scalar)
return Vector2D(self.x*rhs, self.y*rhs)
def __rmul__(self, lhs): # lhs * self
return Vector2D(self.x*lhs, self.y*lhs)
def __truediv__(self, rhs): # self / rhs (scalar)
return Vector2D(self.x/rhs, self.y/rhs)
def __rtruediv__(self, lhs): # lhs (scalar) / self
return Vector2D(lhs/self.x, lhs/self.y)
def __str__(self):
return '[%7.2f, %7.2f]' % (self.x, self.y)