-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy path__main__.py
46 lines (41 loc) · 1.69 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from typing import List, Tuple
DIRECTIONS = [(-1, 0), (1, 0), (0, -1), (0, 1)]
class Solution:
def maximumSafenessFactor(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
queue: List[Tuple[int, int, int]] = []
distances = [[-1] * n for _ in range(m)]
for i in range(m):
for j in range(n):
if grid[i][j]:
queue.append((i, j, 0))
distances[i][j] = 0
while queue:
i, j, distance = queue.pop(0)
for di, dj in DIRECTIONS:
ii, jj = i + di, j + dj
if 0 <= ii < m and 0 <= jj < n and distances[ii][jj] == -1:
queue.append((ii, jj, distance + 1))
distances[ii][jj] = distance + 1
# print(distances)
min_distances = [[-1] * n for _ in range(m)]
min_distances[0][0] = distances[0][0]
queue: List[Tuple[int, int]] = [(0, 0)]
while queue:
i, j = queue.pop(0)
for di, dj in DIRECTIONS:
ii, jj = i + di, j + dj
if not (0 <= ii < m and 0 <= jj < n):
continue
curr = min(min_distances[i][j], distances[ii][jj])
if min_distances[ii][jj] == -1 or curr > min_distances[ii][jj]:
min_distances[ii][jj] = curr
queue.append((ii, jj))
return min_distances[-1][-1]
print(Solution().maximumSafenessFactor([[1, 0, 0], [0, 0, 0], [0, 0, 1]]))
print(Solution().maximumSafenessFactor([[0, 0, 1], [0, 0, 0], [0, 0, 0]]))
print(
Solution().maximumSafenessFactor(
[[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0]]
)
)