diff --git a/llama.cpp/base64.h b/llama.cpp/base64.h index 563247a6e5..52d423518f 100644 --- a/llama.cpp/base64.h +++ b/llama.cpp/base64.h @@ -61,21 +61,23 @@ class base64 }; /** - Encodes all the elements from `in_begin` to `in_end` to `out`. - - @warning The source and destination cannot overlap. The destination must be able to hold at least - `required_encode_size(std::distance(in_begin, in_end))`, otherwise the behavior depends on the output iterator. - - @tparam Input_iterator the source; the returned elements are cast to `std::uint8_t` and should not be greater than - 8 bits - @tparam Output_iterator the destination; the elements written to it are from the type `char` - @param in_begin the beginning of the source - @param in_end the ending of the source - @param out the destination iterator - @param alphabet which alphabet should be used - @returns the iterator to the next element past the last element copied - @throws see `Input_iterator` and `Output_iterator` - */ + * Encodes all the elements from `in_begin` to `in_end` to `out`. + * + * @warning The source and destination cannot overlap. The + * destination must be able to hold at least + * `required_encode_size(std::distance(in_begin, in_end))`, + * otherwise the behavior depends on the output iterator. + * + * @tparam Input_iterator the source; the returned elements are cast + * to `std::uint8_t` and should not be greater than 8 bits + * @tparam Output_iterator the destination; the elements written to it are from the type `char` + * @param in_begin the beginning of the source + * @param in_end the ending of the source + * @param out the destination iterator + * @param alphabet which alphabet should be used + * @returns the iterator to the next element past the last element copied + * @throws see `Input_iterator` and `Output_iterator` + */ template static Output_iterator encode(Input_iterator in_begin, Input_iterator in_end, Output_iterator out, alphabet alphabet = alphabet::standard) @@ -142,60 +144,59 @@ class base64 return out; } + /** - Encodes a string. - - @param str the string that should be encoded - @param alphabet which alphabet should be used - @returns the encoded base64 string - @throws see base64::encode() - */ - static std::string encode(const std::string& str, alphabet alphabet = alphabet::standard) + * Encodes a string. + * + * @param str the string that should be encoded + * @param alphabet which alphabet should be used + * @returns the encoded base64 string + * @throws see base64::encode() + */ + static std::string encode(const std::string_view& str, alphabet alphabet = alphabet::standard) { std::string result; - result.reserve(required_encode_size(str.length()) + 1); - encode(str.begin(), str.end(), std::back_inserter(result), alphabet); - return result; } - /** - Encodes a char array. - @param buffer the char array - @param size the size of the array - @param alphabet which alphabet should be used - @returns the encoded string - */ + /** + * Encodes a char array. + * + * @param buffer the char array + * @param size the size of the array + * @param alphabet which alphabet should be used + * @returns the encoded string + */ static std::string encode(const char* buffer, std::size_t size, alphabet alphabet = alphabet::standard) { std::string result; - result.reserve(required_encode_size(size) + 1); - encode(buffer, buffer + size, std::back_inserter(result), alphabet); - return result; } + /** - Decodes all the elements from `in_begin` to `in_end` to `out`. `in_begin` may point to the same location as `out`, - in other words: inplace decoding is possible. - - @warning The destination must be able to hold at least `required_decode_size(std::distance(in_begin, in_end))`, - otherwise the behavior depends on the output iterator. - - @tparam Input_iterator the source; the returned elements are cast to `char` - @tparam Output_iterator the destination; the elements written to it are from the type `std::uint8_t` - @param in_begin the beginning of the source - @param in_end the ending of the source - @param out the destination iterator - @param alphabet which alphabet should be used - @param behavior the behavior when an error was detected - @returns the iterator to the next element past the last element copied - @throws base64_error depending on the set behavior - @throws see `Input_iterator` and `Output_iterator` - */ + * Decodes all the elements from `in_begin` to `in_end` to `out`. + * `in_begin` may point to the same location as `out`, in other + * words: inplace decoding is possible. + * + * @warning The destination must be able to hold at least + * `required_decode_size(std::distance(in_begin, in_end))`, + * otherwise the behavior depends on the output iterator. + * + * @tparam Input_iterator the source; the returned elements are cast to `char` + * @tparam Output_iterator the destination; the elements written to it are from the type `std::uint8_t` + * @param in_begin the beginning of the source + * @param in_end the ending of the source + * @param out the destination iterator + * @param alphabet which alphabet should be used + * @param behavior the behavior when an error was detected + * @returns the iterator to the next element past the last element copied + * @throws base64_error depending on the set behavior + * @throws see `Input_iterator` and `Output_iterator` + */ template static Output_iterator decode(Input_iterator in_begin, Input_iterator in_end, Output_iterator out, alphabet alphabet = alphabet::auto_, @@ -242,99 +243,99 @@ class base64 return out; } + /** - Decodes a string. - - @param str the base64 encoded string - @param alphabet which alphabet should be used - @param behavior the behavior when an error was detected - @returns the decoded string - @throws see base64::decode() - */ - static std::string decode(const std::string& str, alphabet alphabet = alphabet::auto_, + * Decodes a string. + * + * @param str the base64 encoded string + * @param alphabet which alphabet should be used + * @param behavior the behavior when an error was detected + * @returns the decoded string + * @throws see base64::decode() + */ + static std::string decode(const std::string_view& str, alphabet alphabet = alphabet::auto_, decoding_behavior behavior = decoding_behavior::moderate) { std::string result; - result.reserve(max_decode_size(str.length())); - decode(str.begin(), str.end(), std::back_inserter(result), alphabet, behavior); - return result; } + /** - Decodes a string. - - @param buffer the base64 encoded buffer - @param size the size of the buffer - @param alphabet which alphabet should be used - @param behavior the behavior when an error was detected - @returns the decoded string - @throws see base64::decode() - */ + * Decodes a string. + * + * @param buffer the base64 encoded buffer + * @param size the size of the buffer + * @param alphabet which alphabet should be used + * @param behavior the behavior when an error was detected + * @returns the decoded string + * @throws see base64::decode() + */ static std::string decode(const char* buffer, std::size_t size, alphabet alphabet = alphabet::auto_, decoding_behavior behavior = decoding_behavior::moderate) { std::string result; - result.reserve(max_decode_size(size)); - decode(buffer, buffer + size, std::back_inserter(result), alphabet, behavior); - return result; } - /** - Decodes a string inplace. - @param[in,out] str the base64 encoded string - @param alphabet which alphabet should be used - @param behavior the behavior when an error was detected - @throws base64::decode_inplace() - */ + /** + * Decodes a string inplace. + * + * @param[in,out] str the base64 encoded string + * @param alphabet which alphabet should be used + * @param behavior the behavior when an error was detected + * @throws base64::decode_inplace() + */ static void decode_inplace(std::string& str, alphabet alphabet = alphabet::auto_, decoding_behavior behavior = decoding_behavior::moderate) { str.resize(decode(str.begin(), str.end(), str.begin(), alphabet, behavior) - str.begin()); } + /** - Decodes a char array inplace. - - @param[in,out] str the string array - @param size the length of the array - @param alphabet which alphabet should be used - @param behavior the behavior when an error was detected - @returns the pointer to the next element past the last element decoded - @throws base64::decode_inplace() - */ + * Decodes a char array inplace. + * + * @param[in,out] str the string array + * @param size the length of the array + * @param alphabet which alphabet should be used + * @param behavior the behavior when an error was detected + * @returns the pointer to the next element past the last element decoded + * @throws base64::decode_inplace() + */ static char* decode_inplace(char* str, std::size_t size, alphabet alphabet = alphabet::auto_, decoding_behavior behavior = decoding_behavior::moderate) { return decode(str, str + size, str, alphabet, behavior); } - /** - Returns the required decoding size for a given size. The value is calculated with the following formula: - - $$ - \lceil \frac{size}{4} \rceil \cdot 3 - $$ - @param size the size of the encoded input - @returns the size of the resulting decoded buffer; this the absolute maximum - */ + /** + * Returns the required decoding size for a given size. The value is calculated with the following formula: + * + * $$ + * \lceil \frac{size}{4} \rceil \cdot 3 + * $$ + * + * @param size the size of the encoded input + * @returns the size of the resulting decoded buffer; this the absolute maximum + */ static std::size_t max_decode_size(std::size_t size) noexcept { return (size / 4 + (size % 4 ? 1 : 0)) * 3; } - /** - Returns the required encoding size for a given size. The value is calculated with the following formula: - - $$ - \lceil \frac{size}{3} \rceil \cdot 4 - $$ - @param size the size of the decoded input - @returns the size of the resulting encoded buffer - */ + /** + * Returns the required encoding size for a given size. The value is calculated with the following formula: + * + * $$ + * \lceil \frac{size}{3} \rceil \cdot 4 + * $$ + * + * @param size the size of the decoded input + * @returns the size of the resulting encoded buffer + */ static std::size_t required_encode_size(std::size_t size) noexcept { return (size / 3 + (size % 3 ? 1 : 0)) * 4; diff --git a/llama.cpp/common.cpp b/llama.cpp/common.cpp index 75ee12bc5f..9d0b185cce 100644 --- a/llama.cpp/common.cpp +++ b/llama.cpp/common.cpp @@ -225,6 +225,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa FLAG_ascii = true; return true; } + if (arg == "--nologo") { + FLAG_nologo = true; + return true; + } if (arg == "--precise") { FLAG_precise = true; return true; @@ -261,6 +265,9 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa fprintf(stderr, "error: invalid --gpu flag value: %s\n", argv[i]); exit(1); } + if (FLAG_gpu >= 0 && params.n_gpu_layers == -1) { + params.n_gpu_layers = 999; + } return true; } diff --git a/llama.cpp/imatrix/imatrix.1 b/llama.cpp/imatrix/imatrix.1 index f4d995b610..8a8f0bf0fb 100644 --- a/llama.cpp/imatrix/imatrix.1 +++ b/llama.cpp/imatrix/imatrix.1 @@ -46,6 +46,15 @@ tensor. Experience indicates that it is better to not utilize the importance matrix when quantizing .Pa output.weight , so this is set to false by default. +.It Fl Fl chunks Ar N +Max number of chunks to process. +.Pp +.Bl -dash -compact +.It +-1 = all +.El +.Pp +Default: -1 .El .Sh PROTIPS For faster computation, pass the diff --git a/llama.cpp/llama-bench/main.1 b/llama.cpp/llama-bench/main.1 index d2f51bfcd3..ad30680d74 100644 --- a/llama.cpp/llama-bench/main.1 +++ b/llama.cpp/llama-bench/main.1 @@ -489,8 +489,6 @@ How to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1 .It Fl mg Ar i , Fl Fl main-gpu Ar i The GPU to use for scratch and small tensors. -.It Fl nommq , Fl Fl no-mul-mat-q -Use cuBLAS instead of custom mul_mat_q CUDA kernels. Not recommended since this is both slower and uses more VRAM. .It Fl Fl verbose-prompt Print prompt before generation. .It Fl Fl simple-io diff --git a/llama.cpp/main/main.1 b/llama.cpp/main/main.1 index 20775dc070..7e14f67a63 100644 --- a/llama.cpp/main/main.1 +++ b/llama.cpp/main/main.1 @@ -104,6 +104,91 @@ this flag is supplied, then the and .Fl Fl image flags should also be supplied. +.It Fl ngl Ar N , Fl Fl n-gpu-layers Ar N +Enables GPU by specifying number of layers to store in VRAM. +.Pp +By default, llamafile runs in CPU mode. The only exception is Apple +Metal, which is reliable enough to be enabled by default. So if you have +an NVIDIA or AMD GPU in your system, then you need to pass this flag to +enable GPU support. The simplest way to do this is to say: +.Pp +.Dl "llamafile -ngl 999 -m model.gguf" +.Pp +Which will cause llamafile to offload as many layers to the GPU as +possible. If you get an out of memory error, then you may tune this to a +smaller number, e.g. 10, to ask llamafile to use both CPU and GPU when +running your model. +.It Fl Fl gpu Ar GPU +Specifies which brand of GPU should be used. Valid choices are: +.Pp +.Bl -dash +.It +.Ar AUTO : +Use any GPU if possible, otherwise fall back to CPU inference +.It +.Ar APPLE : +Use Apple Metal GPU. This is only available on MacOS ARM64. If Metal +could not be used for any reason, then a fatal error will be raised. +.It +.Ar AMD : +Use AMD GPUs. The AMD HIP ROCm SDK should be installed in which case we +assume the HIP_PATH environment variable has been defined. The set of +gfx microarchitectures needed to run on the host machine is determined +automatically based on the output of the hipInfo command. On Windows, +.Nm +release binaries are distributed with a tinyBLAS DLL so it'll work out +of the box without requiring the HIP SDK to be installed. However, +tinyBLAS is slower than rocBLAS for batch and image processing, so it's +recommended that the SDK be installed anyway. If an AMD GPU could not be +used for any reason, then a fatal error will be raised. +.It +.Ar NVIDIA : +Use NVIDIA GPUs. If an NVIDIA GPU could not be used for any reason, a +fatal error will be raised. On Windows, NVIDIA GPU support will use our +tinyBLAS library, since it works on stock Windows installs. However, +tinyBLAS goes slower for batch and image processing. It's possible to +use NVIDIA's closed-source cuBLAS library instead. To do that, both MSVC +and CUDA need to be installed and the +.Nm +command should be run once from the x64 MSVC command prompt with the +.Fl Fl recompile +flag passed. The GGML library will then be compiled and saved to +.Pa ~/.llamafile/ +so the special process only needs to happen a single time. +.It +.Ar DISABLE : +Never use GPU and instead use CPU inference. This setting is implied by +.Fl ngl Ar 0 . +.El +.Pp +This flag is useful on systems that have multiple kinds of GPUs. For +example, if you have two graphics cards in your computer, one being AMD +and the other is NVIDIA, then you can use this flag to force llamafile +to use a particular brand. +.Pp +This flag is also useful for preventing CPU fallback. For example, if +you pass +.Fl Fl gpu Ar metal +and llamafile is running on a PC with an NVIDIA card, then the process +will print an error and exit. +.Pp +The default behavior is +.Ar AUTO +however it should be noted that GPU support isn't enabled by default, +since the +.Fl ngl +flag is normally used to enable GPU offloading. As a convenience, if the +.Fl Fl gpu +flag is explicitly passed on the command line, and it's set to +.Ar AUTO , +.Ar AMD , +.Ar APPLE , +or +.Ar NVIDIA , +but the +.Fl ngl +flag is not passed, then the number of GPU layers will be automatically +set to 999. .It Fl s Ar SEED , Fl Fl seed Ar SEED Random Number Generator (RNG) seed. A random seed is used if this is less than zero. @@ -117,72 +202,6 @@ Default: $(nproc)/2 max 20 Number of threads to use during prompt processing. .Pp Default: $(nproc)/2 -.It Fl Fl in-prefix-bos -Prefix BOS to user inputs, preceding the -.Fl Fl in-prefix -string. -.It Fl Fl in-prefix Ar STRING -This flag is used to add a prefix to your input, primarily, this is used -to insert a space after the reverse prompt. Here's an example of how to -use the -.Fl Fl in-prefix -flag in conjunction with the -.Fl Fl reverse-prompt -flag: -.Pp -.Dl "./main -r \[dq]User:\[dq] --in-prefix \[dq] \[dq]" -.Pp -Default: empty -.It Fl Fl in-suffix Ar STRING -This flag is used to add a suffix after your input. This is useful for -adding an \[dq]Assistant:\[dq] prompt after the user's input. It's added -after the new-line character (\[rs]n) that's automatically added to the -end of the user's input. Here's an example of how to use the -.Fl Fl in-suffix -flag in conjunction with the -.Fl Fl reverse-prompt -flag: -.Pp -.Dl "./main -r \[dq]User:\[dq] --in-prefix \[dq] \[dq] --in-suffix \[dq]Assistant:\[dq]" -.Pp -Default: empty -.It Fl n Ar N , Fl Fl n-predict Ar N -Sets number of tokens to predict when generating text. -.Pp -This option controls the number of tokens the model generates in -response to the input prompt. By adjusting this value, you can influence -the length of the generated text. A higher value will result in longer -text, while a lower value will produce shorter text. -.Pp -A value of -1 will enable infinite text generation, even though we have -a finite context window. When the context window is full, some of the -earlier tokens (half of the tokens after -.Fl Fl n-keep ) -will be discarded. The context must then be re-evaluated before -generation can resume. On large models and/or large context windows, -this will result in significant pause in output. -.Pp -If the pause is undesirable, a value of -2 will stop generation -immediately when the context is filled. -.Pp -It is important to note that the generated text may be shorter than the -specified number of tokens if an End-of-Sequence (EOS) token or a -reverse prompt is encountered. In interactive mode text generation will -pause and control will be returned to the user. In non-interactive mode, -the program will end. In both cases, the text generation may stop before -reaching the specified `n-predict` value. If you want the model to keep -going without ever producing End-of-Sequence on its own, you can use the -.Fl Fl ignore-eos -parameter. -.Pp -.Bl -dash -compact -.It --1 = infinity -.It --2 = until context filled -.El -.Pp -Default: -1 .It Fl c Ar N , Fl Fl ctx-size Ar N Sets the maximum context size, in tokens. In .Fl Fl chat @@ -361,11 +380,6 @@ or .Fl Fl logit-bias Ar 15043-1 to decrease likelihood of token .Ar ' Hello' . -.It Fl md Ar FNAME , Fl Fl model-draft Ar FNAME -Draft model for speculative decoding. -.Pp -Default: -.Pa models/7B/ggml-model-f16.gguf .It Fl Fl cfg-negative-prompt Ar PROMPT Negative prompt to use for guidance.. .Pp @@ -430,9 +444,6 @@ Default: 1.0 YaRN: low correction dim or beta. .Pp Default: 32.0 -.It Fl Fl ignore-eos -Ignore end of stream token and continue generating (implies -.Fl Fl logit-bias Ar 2-inf ) .It Fl Fl temp Ar N Adjust the randomness of the generated text. .Pp @@ -445,46 +456,11 @@ is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run. .Pp -Default: 0.8 +Default: 0.8 in cli and server mode, and 0.0 in chat mode .It Fl Fl logits-all Return logits for all tokens in the batch. .Pp Default: disabled -.It Fl Fl hellaswag -Compute HellaSwag score over random tasks from datafile supplied with -f -.It Fl Fl hellaswag-tasks Ar N -Number of tasks to use when computing the HellaSwag score. -.Pp -Default: 400 -.It Fl Fl keep Ar N -This flag allows users to retain the original prompt when the model runs -out of context, ensuring a connection to the initial instruction or -conversation topic is maintained, where -.Ar N -is the number of tokens from the initial prompt to retain when the model -resets its internal context. -.Pp -.Bl -dash -compact -.It -0 = no tokens are kept from initial prompt -.It --1 = retain all tokens from initial prompt -.El -.Pp -Default: 0 -.It Fl Fl draft Ar N -Number of tokens to draft for speculative decoding. -.Pp -Default: 16 -.It Fl Fl chunks Ar N -Max number of chunks to process. -.Pp -.Bl -dash -compact -.It --1 = all -.El -.Pp -Default: -1 .It Fl ns Ar N , Fl Fl sequences Ar N Number of sequences to decode. .Pp @@ -516,53 +492,6 @@ and linked if possible. Otherwise, .Nm will skip any attempt to compile GPU support and simply fall back to using CPU inference. -.It Fl Fl gpu Ar GPU -Specifies which brand of GPU should be used. Valid choices are: -.Pp -.Bl -dash -.It -.Ar AUTO : -Use any GPU if possible, otherwise fall back to CPU inference (default) -.It -.Ar APPLE : -Use Apple Metal GPU. This is only available on MacOS ARM64. If Metal -could not be used for any reason, then a fatal error will be raised. -.It -.Ar AMD : -Use AMD GPUs. The AMD HIP ROCm SDK should be installed in which case we -assume the HIP_PATH environment variable has been defined. The set of -gfx microarchitectures needed to run on the host machine is determined -automatically based on the output of the hipInfo command. On Windows, -.Nm -release binaries are distributed with a tinyBLAS DLL so it'll work out -of the box without requiring the HIP SDK to be installed. However, -tinyBLAS is slower than rocBLAS for batch and image processing, so it's -recommended that the SDK be installed anyway. If an AMD GPU could not be -used for any reason, then a fatal error will be raised. -.It -.Ar NVIDIA : -Use NVIDIA GPUs. If an NVIDIA GPU could not be used for any reason, a -fatal error will be raised. On Windows, NVIDIA GPU support will use our -tinyBLAS library, since it works on stock Windows installs. However, -tinyBLAS goes slower for batch and image processing. It's possible to -use NVIDIA's closed-source cuBLAS library instead. To do that, both MSVC -and CUDA need to be installed and the -.Nm -command should be run once from the x64 MSVC command prompt with the -.Fl Fl recompile -flag passed. The GGML library will then be compiled and saved to -.Pa ~/.llamafile/ -so the special process only needs to happen a single time. -.It -.Ar DISABLE : -Never use GPU and instead use CPU inference. This setting is implied by -.Fl ngl Ar 0 . -.El -.Pp -.It Fl ngl Ar N , Fl Fl n-gpu-layers Ar N -Number of layers to store in VRAM. -.It Fl ngld Ar N , Fl Fl n-gpu-layers-draft Ar N -Number of layers to store in VRAM for the draft model. .It Fl sm Ar SPLIT_MODE , Fl Fl split-mode Ar SPLIT_MODE How to split the model across multiple GPUs, one of: .Bl -dash -compact @@ -586,12 +515,8 @@ How to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1 .It Fl mg Ar i , Fl Fl main-gpu Ar i The GPU to use for scratch and small tensors. -.It Fl nommq , Fl Fl no-mul-mat-q -Use cuBLAS instead of custom mul_mat_q CUDA kernels. Not recommended since this is both slower and uses more VRAM. .It Fl Fl verbose-prompt Print prompt before generation. -.It Fl Fl simple-io -Use basic IO for better compatibility in subprocesses and limited consoles. .It Fl Fl lora Ar FNAME Apply LoRA adapter (implies .Fl Fl no-mmap ) @@ -607,8 +532,6 @@ Samplers that will be used for generation in the order, separated by semicolon, for example: top_k;tfs;typical;top_p;min_p;temp .It Fl Fl samplers-seq Simplified sequence for samplers that will be used. -.It Fl cml , Fl Fl chatml -Run in chatml mode (use with ChatML-compatible models) .It Fl dkvc , Fl Fl dump-kv-cache Verbose print of the KV cache. .It Fl nkvo , Fl Fl no-kv-offload @@ -623,14 +546,6 @@ Group-attention width. Default: 512 .It Fl bf Ar FNAME , Fl Fl binary-file Ar FNAME Binary file containing multiple choice tasks. -.It Fl Fl winogrande -Compute Winogrande score over random tasks from datafile supplied by the -.Fl f -flag. -.It Fl Fl winogrande-tasks Ar N -Number of tasks to use when computing the Winogrande score. -.Pp -Default: 0 .It Fl Fl multiple-choice Compute multiple choice score over random tasks from datafile supplied by the @@ -666,19 +581,49 @@ cls .Pp The model default is used if unspecified. .El -.Sh CLI OPTIONS +.Sh CHAT OPTIONS The following options may be specified when .Nm is running in -.Fl Fl cli +.Fl Fl chat mode. .Bl -tag -width indent +.It Fl p Ar STRING , Fl Fl prompt Ar STRING +Specifies system prompt. +.Pp +The system prompt is used to give instructions to the LLM at the +beginning of the conversation. For many model architectures, this is +done under a special role. The system prompt also gets special treatment +when managing the context window. For example, the /clear command will +erase everything except the system prompt, and the /forget command will +erase the oldest chat message that isn't the system prompt. +.Pp +For example: +.Pp +.Dl "llamafile --chat -m model.gguf -p \[dq]You are Mosaic's Godzilla.\[dq]" +.Pp +may be used to instruct your llamafile to roleplay as Mozilla. +.It Fl f Ar FNAME , Fl Fl file Ar FNAME +Uses content of file as system prompt. +.It Fl Fl no-display-prompt , Fl Fl silent-prompt +Suppress printing of system prompt at beginning of conversation. +.It Fl Fl nologo +Disables printing the llamafile logo during chatbot startup. .It Fl Fl ascii This flag may be used in .Fl Fl chat mode to print the llamafile logo in ASCII rather than UNICODE. -.It Fl e , Fl Fl escape -Process prompt escapes sequences (\[rs]n, \[rs]r, \[rs]t, \[rs]\[aa], \[rs]\[dq], \[rs]\[rs]) +.It Fl Fl verbose +Enables verbose logger output in chatbot. This can be helpful for +troubleshooting issues. +.El +.Sh CLI OPTIONS +The following options may be specified when +.Nm +is running in +.Fl Fl cli +mode. +.Bl -tag -width indent .It Fl p Ar STRING , Fl Fl prompt Ar STRING Prompt to start text generation. Your LLM works by auto-completing this text. For example: @@ -698,6 +643,49 @@ In most cases, simply colons and newlines will work too: .Pp .It Fl f Ar FNAME , Fl Fl file Ar FNAME Prompt file to start generation. +.It Fl n Ar N , Fl Fl n-predict Ar N +Sets number of tokens to predict when generating text. +.Pp +This option controls the number of tokens the model generates in +response to the input prompt. By adjusting this value, you can influence +the length of the generated text. A higher value will result in longer +text, while a lower value will produce shorter text. +.Pp +A value of -1 will enable infinite text generation, even though we have +a finite context window. When the context window is full, some of the +earlier tokens (half of the tokens after +.Fl Fl n-keep ) +will be discarded. The context must then be re-evaluated before +generation can resume. On large models and/or large context windows, +this will result in significant pause in output. +.Pp +If the pause is undesirable, a value of -2 will stop generation +immediately when the context is filled. +.Pp +It is important to note that the generated text may be shorter than the +specified number of tokens if an End-of-Sequence (EOS) token or a +reverse prompt is encountered. In interactive mode text generation will +pause and control will be returned to the user. In non-interactive mode, +the program will end. In both cases, the text generation may stop before +reaching the specified `n-predict` value. If you want the model to keep +going without ever producing End-of-Sequence on its own, you can use the +.Fl Fl ignore-eos +parameter. +.Pp +.Bl -dash -compact +.It +-1 = infinity +.It +-2 = until context filled +.El +.Pp +Default: -1 +.It Fl Fl simple-io +Use basic IO for better compatibility in subprocesses and limited consoles. +.It Fl cml , Fl Fl chatml +Run in chatml mode (use with ChatML-compatible models) +.It Fl e , Fl Fl escape +Process prompt escapes sequences (\[rs]n, \[rs]r, \[rs]t, \[rs]\[aa], \[rs]\[dq], \[rs]\[rs]) .It Fl Fl grammar Ar GRAMMAR BNF-like grammar to constrain which tokens may be selected when generating text. For example, the grammar: @@ -811,6 +799,54 @@ and .Fl Fl interactive flags are passed, then a pretty-printed summary of embeddings along with a cosine similarity matrix will be printed to the terminal. +.It Fl Fl ignore-eos +Ignore end of stream token and continue generating (implies +.Fl Fl logit-bias Ar 2-inf ) +.It Fl Fl keep Ar N +This flag allows users to retain the original prompt when the model runs +out of context, ensuring a connection to the initial instruction or +conversation topic is maintained, where +.Ar N +is the number of tokens from the initial prompt to retain when the model +resets its internal context. +.Pp +.Bl -dash -compact +.It +0 = no tokens are kept from initial prompt +.It +-1 = retain all tokens from initial prompt +.El +.Pp +Default: 0 +.It Fl Fl in-prefix-bos +Prefix BOS to user inputs, preceding the +.Fl Fl in-prefix +string. +.It Fl Fl in-prefix Ar STRING +This flag is used to add a prefix to your input, primarily, this is used +to insert a space after the reverse prompt. Here's an example of how to +use the +.Fl Fl in-prefix +flag in conjunction with the +.Fl Fl reverse-prompt +flag: +.Pp +.Dl "./main -r \[dq]User:\[dq] --in-prefix \[dq] \[dq]" +.Pp +Default: empty +.It Fl Fl in-suffix Ar STRING +This flag is used to add a suffix after your input. This is useful for +adding an \[dq]Assistant:\[dq] prompt after the user's input. It's added +after the new-line character (\[rs]n) that's automatically added to the +end of the user's input. Here's an example of how to use the +.Fl Fl in-suffix +flag in conjunction with the +.Fl Fl reverse-prompt +flag: +.Pp +.Dl "./main -r \[dq]User:\[dq] --in-prefix \[dq] \[dq] --in-suffix \[dq]Assistant:\[dq]" +.Pp +Default: empty .El .Sh SERVER OPTIONS The following options may be specified when diff --git a/llama.cpp/main/main.1.asc b/llama.cpp/main/main.1.asc index c6d87fb12a..c3782058d2 100644 --- a/llama.cpp/main/main.1.asc +++ b/llama.cpp/main/main.1.asc @@ -63,87 +63,97 @@ mat. If this flag is supplied, then the --model and --image flags should also be supplied. - -s SEED, --seed SEED - Random Number Generator (RNG) seed. A random seed is used if - this is less than zero. + -ngl N, --n-gpu-layers N + Enables GPU by specifying number of layers to store in VRAM. - Default: -1 + By default, llamafile runs in CPU mode. The only exception is + Apple Metal, which is reliable enough to be enabled by default. + So if you have an NVIDIA or AMD GPU in your system, then you + need to pass this flag to enable GPU support. The simplest way + to do this is to say: - -t N, --threads N - Number of threads to use during generation. + llamafile -ngl 999 -m model.gguf - Default: $(nproc)/2 max 20 - - -tb N, --threads-batch N - Number of threads to use during prompt processing. + Which will cause llamafile to offload as many layers to the GPU + as possible. If you get an out of memory error, then you may + tune this to a smaller number, e.g. 10, to ask llamafile to use + both CPU and GPU when running your model. - Default: $(nproc)/2 + --gpu GPU + Specifies which brand of GPU should be used. Valid choices are: - --in-prefix-bos - Prefix BOS to user inputs, preceding the --in-prefix string. + - AUTO: Use any GPU if possible, otherwise fall back to CPU + inference - --in-prefix STRING - This flag is used to add a prefix to your input, primarily, - this is used to insert a space after the reverse prompt. Here's - an example of how to use the --in-prefix flag in conjunction - with the --reverse-prompt flag: + - APPLE: Use Apple Metal GPU. This is only available on MacOS + ARM64. If Metal could not be used for any reason, then a + fatal error will be raised. - ./main -r "User:" --in-prefix " " + - AMD: Use AMD GPUs. The AMD HIP ROCm SDK should be installed + in which case we assume the HIP_PATH environment variable + has been defined. The set of gfx microarchitectures needed + to run on the host machine is determined automatically + based on the output of the hipInfo command. On Windows, + llamafile release binaries are distributed with a tinyBLAS + DLL so it'll work out of the box without requiring the HIP + SDK to be installed. However, tinyBLAS is slower than + rocBLAS for batch and image processing, so it's recommended + that the SDK be installed anyway. If an AMD GPU could not + be used for any reason, then a fatal error will be raised. - Default: empty + - NVIDIA: Use NVIDIA GPUs. If an NVIDIA GPU could not be used + for any reason, a fatal error will be raised. On Windows, + NVIDIA GPU support will use our tinyBLAS library, since it + works on stock Windows installs. However, tinyBLAS goes + slower for batch and image processing. It's possible to use + NVIDIA's closed-source cuBLAS library instead. To do that, + both MSVC and CUDA need to be installed and the llamafile + command should be run once from the x64 MSVC command prompt + with the --recompile flag passed. The GGML library will + then be compiled and saved to ~/.llamafile/ so the special + process only needs to happen a single time. - --in-suffix STRING - This flag is used to add a suffix after your input. This is - useful for adding an "Assistant:" prompt after the user's in‐ - put. It's added after the new-line character (\n) that's auto‐ - matically added to the end of the user's input. Here's an exam‐ - ple of how to use the --in-suffix flag in conjunction with the - --reverse-prompt flag: + - DISABLE: Never use GPU and instead use CPU inference. This + setting is implied by -ngl 0. - ./main -r "User:" --in-prefix " " --in-suffix - "Assistant:" + This flag is useful on systems that have multiple kinds of + GPUs. For example, if you have two graphics cards in your com‐ + puter, one being AMD and the other is NVIDIA, then you can use + this flag to force llamafile to use a particular brand. - Default: empty + This flag is also useful for preventing CPU fallback. For exam‐ + ple, if you pass --gpu metal and llamafile is running on a PC + with an NVIDIA card, then the process will print an error and + exit. - -n N, --n-predict N - Sets number of tokens to predict when generating text. + The default behavior is AUTO however it should be noted that + GPU support isn't enabled by default, since the -ngl flag is + normally used to enable GPU offloading. As a convenience, if + the --gpu flag is explicitly passed on the command line, and + it's set to AUTO, AMD, APPLE, or NVIDIA, but the -ngl flag is + not passed, then the number of GPU layers will be automatically + set to 999. - This option controls the number of tokens the model generates - in response to the input prompt. By adjusting this value, you - can influence the length of the generated text. A higher value - will result in longer text, while a lower value will produce - shorter text. + -s SEED, --seed SEED + Random Number Generator (RNG) seed. A random seed is used if + this is less than zero. - A value of -1 will enable infinite text generation, even though - we have a finite context window. When the context window is - full, some of the earlier tokens (half of the tokens after - --n-keep) will be discarded. The context must then be re-evalu‐ - ated before generation can resume. On large models and/or large - context windows, this will result in significant pause in out‐ - put. + Default: -1 - If the pause is undesirable, a value of -2 will stop generation - immediately when the context is filled. + -t N, --threads N + Number of threads to use during generation. - It is important to note that the generated text may be shorter - than the specified number of tokens if an End-of-Sequence (EOS) - token or a reverse prompt is encountered. In interactive mode - text generation will pause and control will be returned to the - user. In non-interactive mode, the program will end. In both - cases, the text generation may stop before reaching the speci‐ - fied `n-predict` value. If you want the model to keep going - without ever producing End-of-Sequence on its own, you can use - the --ignore-eos parameter. + Default: $(nproc)/2 max 20 - - -1 = infinity - - -2 = until context filled + -tb N, --threads-batch N + Number of threads to use during prompt processing. - Default: -1 + Default: $(nproc)/2 -c N, --ctx-size N - Sets the maximum context size, in tokens. In --chat mode, this - value sets a hard limit on how long your conversation can be. - The default is 8192 tokens. If this value is zero, then it'll + Sets the maximum context size, in tokens. In --chat mode, this + value sets a hard limit on how long your conversation can be. + The default is 8192 tokens. If this value is zero, then it'll be set to the maximum context size the model allows. -b N, --batch-size N @@ -154,26 +164,26 @@ --top-k N Limits next token selection to K most probable tokens. - Top-k sampling is a text generation method that selects the - next token only from the top k most likely tokens predicted by + Top-k sampling is a text generation method that selects the + next token only from the top k most likely tokens predicted by the model. It helps reduce the risk of generating low-probabil‐ - ity or nonsensical tokens, but it may also limit the diversity - of the output. A higher value for top-k (e.g., 100) will con‐ - sider more tokens and lead to more diverse text, while a lower - value (e.g., 10) will focus on the most probable tokens and + ity or nonsensical tokens, but it may also limit the diversity + of the output. A higher value for top-k (e.g., 100) will con‐ + sider more tokens and lead to more diverse text, while a lower + value (e.g., 10) will focus on the most probable tokens and generate more conservative text. Default: 40 --top-p N - Limits next token selection to a subset of tokens with a cumu‐ + Limits next token selection to a subset of tokens with a cumu‐ lative probability above a threshold P. Top-p sampling, also known as nucleus sampling, is another text - generation method that selects the next token from a subset of - tokens that together have a cumulative probability of at least + generation method that selects the next token from a subset of + tokens that together have a cumulative probability of at least p. This method provides a balance between diversity and quality - by considering both the probabilities of tokens and the number + by considering both the probabilities of tokens and the number of tokens to sample from. A higher value for top-p (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. @@ -183,12 +193,12 @@ --min-p N Sets minimum base probability threshold for token selection. - The Min-P sampling method was designed as an alternative to + The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The - parameter p represents the minimum probability for a token to - be considered, relative to the probability of the most likely - token. For example, with p=0.05 and the most likely token hav‐ - ing a probability of 0.9, logits with a value less than 0.045 + parameter p represents the minimum probability for a token to + be considered, relative to the probability of the most likely + token. For example, with p=0.05 and the most likely token hav‐ + ing a probability of 0.9, logits with a value less than 0.045 are filtered out. Default: 0.05 @@ -196,17 +206,17 @@ --tfs N Enables tail free sampling with parameter z. - Tail free sampling (TFS) is a text generation technique that - aims to reduce the impact of less likely tokens, which may be - less relevant, less coherent, or nonsensical, on the output. - Similar to Top-P it tries to determine the bulk of the most - likely tokens dynamically. But TFS filters out logits based on - the second derivative of their probabilities. Adding tokens is + Tail free sampling (TFS) is a text generation technique that + aims to reduce the impact of less likely tokens, which may be + less relevant, less coherent, or nonsensical, on the output. + Similar to Top-P it tries to determine the bulk of the most + likely tokens dynamically. But TFS filters out logits based on + the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the pa‐ rameter z. In short: TFS looks how quickly the probabilities of - the tokens decrease and cuts off the tail of unlikely tokens + the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of - 0.9 to 0.95. A value of 1.0 would include all tokens, and thus + 0.9 to 0.95. A value of 1.0 would include all tokens, and thus disables the effect of TFS. Default: 1.0 (which means disabled) @@ -214,13 +224,13 @@ --typical N Enables locally typical sampling with parameter p. - Locally typical sampling promotes the generation of contextu‐ + Locally typical sampling promotes the generation of contextu‐ ally coherent and diverse text by sampling tokens that are typ‐ - ical or expected based on the surrounding context. By setting - the parameter p between 0 and 1, you can control the balance - between producing text that is locally coherent and diverse. A - value closer to 1 will promote more contextually coherent to‐ - kens, while a value closer to 0 will promote more diverse to‐ + ical or expected based on the surrounding context. By setting + the parameter p between 0 and 1, you can control the balance + between producing text that is locally coherent and diverse. A + value closer to 1 will promote more contextually coherent to‐ + kens, while a value closer to 0 will promote more diverse to‐ kens. A value equal to 1 disables locally typical sampling. Default: 1.0 (which means disabled) @@ -228,9 +238,9 @@ --repeat-penalty N Controls repetition of token sequences in generated text. - This can help prevent the model from generating repetitive or + This can help prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repe‐ - titions more strongly, while a lower value (e.g., 0.9) will be + titions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1 @@ -238,11 +248,11 @@ --repeat-last-n N Last n tokens to consider for penalizing repetition. - This controls the number of tokens in the history to consider - for penalizing repetition. A larger value will look further - back in the generated text to prevent repetitions, while a - smaller value will only consider recent tokens. A value of 0 - disables the penalty, and a value of -1 sets the number of to‐ + This controls the number of tokens in the history to consider + for penalizing repetition. A larger value will look further + back in the generated text to prevent repetitions, while a + smaller value will only consider recent tokens. A value of 0 + disables the penalty, and a value of -1 sets the number of to‐ kens considered equal to the context size. - 0 = disabled @@ -251,12 +261,12 @@ Default: 64 --no-penalize-nl - Disables penalization of newline tokens when applying the re‐ + Disables penalization of newline tokens when applying the re‐ peat penalty. - This option is particularly useful for generating chat conver‐ + This option is particularly useful for generating chat conver‐ sations, dialogues, code, poetry, or any text where newline to‐ - kens play a significant role in structure and formatting. Dis‐ + kens play a significant role in structure and formatting. Dis‐ abling newline penalization helps maintain the natural flow and intended formatting in these specific use cases. @@ -278,9 +288,9 @@ Use Mirostat sampling. Mirostat is an algorithm that actively maintains the quality of - generated text within a desired range during text generation. - It aims to strike a balance between coherence and diversity, - avoiding low-quality output caused by excessive repetition + generated text within a desired range during text generation. + It aims to strike a balance between coherence and diversity, + avoiding low-quality output caused by excessive repetition (boredom traps) or incoherence (confusion traps). Using Mirostat causes the Top K, Nucleus, Tail Free and Locally @@ -305,26 +315,21 @@ --mirostat-ent N Sets the Mirostat target entropy (tau). - This represents the desired perplexity value for the generated - text. Adjusting the target entropy allows you to control the - balance between coherence and diversity in the generated text. - A lower value will result in more focused and coherent text, - while a higher value will lead to more diverse and potentially + This represents the desired perplexity value for the generated + text. Adjusting the target entropy allows you to control the + balance between coherence and diversity in the generated text. + A lower value will result in more focused and coherent text, + while a higher value will lead to more diverse and potentially less coherent text. Default: 5.0 -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS - Modifies the likelihood of token appearing in the completion, - i.e. --logit-bias 15043+1 to increase likelihood of token + Modifies the likelihood of token appearing in the completion, + i.e. --logit-bias 15043+1 to increase likelihood of token ' Hello', or --logit-bias 15043-1 to decrease likelihood of to‐ ken ' Hello'. - -md FNAME, --model-draft FNAME - Draft model for speculative decoding. - - Default: models/7B/ggml-model-f16.gguf - --cfg-negative-prompt PROMPT Negative prompt to use for guidance.. @@ -347,13 +352,13 @@ fied by the model --rope-scale N - RoPE context scaling factor, expands context by a factor of N - where N is the linear scaling factor used by the fine-tuned - model. Some fine-tuned models have extended the context length + RoPE context scaling factor, expands context by a factor of N + where N is the linear scaling factor used by the fine-tuned + model. Some fine-tuned models have extended the context length by scaling RoPE. For example, if the original pre-trained model - have a context length (max sequence length) of 4096 (4k) and - the fine-tuned model have 32k. That is a scaling factor of 8, - and should work by setting the above --ctx-size to 32768 (32k) + have a context length (max sequence length) of 4096 (4k) and + the fine-tuned model have 32k. That is a scaling factor of 8, + and should work by setting the above --ctx-size to 32768 (32k) and --rope-scale to 8. --rope-freq-base N @@ -362,7 +367,7 @@ Default: loaded from model --rope-freq-scale N - RoPE frequency scaling factor, expands context by a factor of + RoPE frequency scaling factor, expands context by a factor of 1/N --yarn-orig-ctx N @@ -392,10 +397,6 @@ Default: 32.0 - --ignore-eos - Ignore end of stream token and continue generating (implies - --logit-bias 2-inf) - --temp N Adjust the randomness of the generated text. @@ -409,46 +410,13 @@ temperature of 0 will always pick the most likely next token, leading to identical outputs in each run. - Default: 0.8 + Default: 0.8 in cli and server mode, and 0.0 in chat mode --logits-all Return logits for all tokens in the batch. Default: disabled - --hellaswag - Compute HellaSwag score over random tasks from datafile sup‐ - plied with -f - - --hellaswag-tasks N - Number of tasks to use when computing the HellaSwag score. - - Default: 400 - - --keep N - This flag allows users to retain the original prompt when the - model runs out of context, ensuring a connection to the initial - instruction or conversation topic is maintained, where N is the - number of tokens from the initial prompt to retain when the - model resets its internal context. - - - 0 = no tokens are kept from initial prompt - - -1 = retain all tokens from initial prompt - - Default: 0 - - --draft N - Number of tokens to draft for speculative decoding. - - Default: 16 - - --chunks N - Max number of chunks to process. - - - -1 = all - - Default: -1 - -ns N, --sequences N Number of sequences to decode. @@ -465,15 +433,15 @@ Default: 0.1 --mlock - Force system to keep model in RAM rather than swapping or com‐ + Force system to keep model in RAM rather than swapping or com‐ pressing. --no-mmap Do not memory-map model (slower load but may reduce pageouts if not using mlock). - --numa Attempt optimizations that help on some NUMA systems if run - without this previously, it is recommended to drop the system + --numa Attempt optimizations that help on some NUMA systems if run + without this previously, it is recommended to drop the system page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/1437. @@ -483,56 +451,13 @@ --nocompile Never compile GPU support at runtime. - If the appropriate DSO file already exists under ~/.llamafile/ - then it'll be linked as-is without question. If a prebuilt DSO - is present in the PKZIP content of the executable, then it'll - be extracted and linked if possible. Otherwise, llamafile will + If the appropriate DSO file already exists under ~/.llamafile/ + then it'll be linked as-is without question. If a prebuilt DSO + is present in the PKZIP content of the executable, then it'll + be extracted and linked if possible. Otherwise, llamafile will skip any attempt to compile GPU support and simply fall back to using CPU inference. - --gpu GPU - Specifies which brand of GPU should be used. Valid choices are: - - - AUTO: Use any GPU if possible, otherwise fall back to CPU - inference (default) - - - APPLE: Use Apple Metal GPU. This is only available on MacOS - ARM64. If Metal could not be used for any reason, then a - fatal error will be raised. - - - AMD: Use AMD GPUs. The AMD HIP ROCm SDK should be installed - in which case we assume the HIP_PATH environment variable - has been defined. The set of gfx microarchitectures needed - to run on the host machine is determined automatically - based on the output of the hipInfo command. On Windows, - llamafile release binaries are distributed with a tinyBLAS - DLL so it'll work out of the box without requiring the HIP - SDK to be installed. However, tinyBLAS is slower than - rocBLAS for batch and image processing, so it's recommended - that the SDK be installed anyway. If an AMD GPU could not - be used for any reason, then a fatal error will be raised. - - - NVIDIA: Use NVIDIA GPUs. If an NVIDIA GPU could not be used - for any reason, a fatal error will be raised. On Windows, - NVIDIA GPU support will use our tinyBLAS library, since it - works on stock Windows installs. However, tinyBLAS goes - slower for batch and image processing. It's possible to use - NVIDIA's closed-source cuBLAS library instead. To do that, - both MSVC and CUDA need to be installed and the llamafile - command should be run once from the x64 MSVC command prompt - with the --recompile flag passed. The GGML library will - then be compiled and saved to ~/.llamafile/ so the special - process only needs to happen a single time. - - - DISABLE: Never use GPU and instead use CPU inference. This - setting is implied by -ngl 0. - - -ngl N, --n-gpu-layers N - Number of layers to store in VRAM. - - -ngld N, --n-gpu-layers-draft N - Number of layers to store in VRAM for the draft model. - -sm SPLIT_MODE, --split-mode SPLIT_MODE How to split the model across multiple GPUs, one of: - none: use one GPU only @@ -541,28 +466,20 @@ -ts SPLIT, --tensor-split SPLIT When using multiple GPUs this option controls how large tensors - should be split across all GPUs. SPLIT is a comma-separated + should be split across all GPUs. SPLIT is a comma-separated list of non-negative values that assigns the proportion of data - that each GPU should get in order. For example, "3,2" will as‐ - sign 60% of the data to GPU 0 and 40% to GPU 1. By default the + that each GPU should get in order. For example, "3,2" will as‐ + sign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal - for performance. Requires cuBLAS. How to split tensors across + for performance. Requires cuBLAS. How to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1 -mg i, --main-gpu i The GPU to use for scratch and small tensors. - -nommq, --no-mul-mat-q - Use cuBLAS instead of custom mul_mat_q CUDA kernels. Not recom‐ - mended since this is both slower and uses more VRAM. - --verbose-prompt Print prompt before generation. - --simple-io - Use basic IO for better compatibility in subprocesses and lim‐ - ited consoles. - --lora FNAME Apply LoRA adapter (implies --no-mmap) @@ -585,9 +502,6 @@ --samplers-seq Simplified sequence for samplers that will be used. - -cml, --chatml - Run in chatml mode (use with ChatML-compatible models) - -dkvc, --dump-kv-cache Verbose print of the KV cache. @@ -607,27 +521,18 @@ -bf FNAME, --binary-file FNAME Binary file containing multiple choice tasks. - --winogrande - Compute Winogrande score over random tasks from datafile sup‐ - plied by the -f flag. - - --winogrande-tasks N - Number of tasks to use when computing the Winogrande score. - - Default: 0 - --multiple-choice - Compute multiple choice score over random tasks from datafile + Compute multiple choice score over random tasks from datafile supplied by the -f flag. --multiple-choice-tasks N - Number of tasks to use when computing the multiple choice + Number of tasks to use when computing the multiple choice score. Default: 0 --kl-divergence - Computes KL-divergence to logits provided via the + Computes KL-divergence to logits provided via the --kl-divergence-base flag. --save-all-logits FNAME, --kl-divergence-base FNAME @@ -647,26 +552,59 @@ The model default is used if unspecified. -CLI OPTIONS - The following options may be specified when llamafile is running in - --cli mode. +CHAT OPTIONS + The following options may be specified when llamafile is running in + --chat mode. + + -p STRING, --prompt STRING + Specifies system prompt. + + The system prompt is used to give instructions to the LLM at + the beginning of the conversation. For many model architec‐ + tures, this is done under a special role. The system prompt + also gets special treatment when managing the context window. + For example, the /clear command will erase everything except + the system prompt, and the /forget command will erase the old‐ + est chat message that isn't the system prompt. + + For example: + + llamafile --chat -m model.gguf -p "You are Mosaic's + Godzilla." + + may be used to instruct your llamafile to roleplay as Mozilla. + + -f FNAME, --file FNAME + Uses content of file as system prompt. + + --no-display-prompt, --silent-prompt + Suppress printing of system prompt at beginning of conversa‐ + tion. + + --nologo + Disables printing the llamafile logo during chatbot startup. --ascii - This flag may be used in --chat mode to print the llamafile + This flag may be used in --chat mode to print the llamafile logo in ASCII rather than UNICODE. - -e, --escape - Process prompt escapes sequences (\n, \r, \t, \´, \", \\) + --verbose + Enables verbose logger output in chatbot. This can be helpful + for troubleshooting issues. + +CLI OPTIONS + The following options may be specified when llamafile is running in + --cli mode. -p STRING, --prompt STRING - Prompt to start text generation. Your LLM works by auto-com‐ + Prompt to start text generation. Your LLM works by auto-com‐ pleting this text. For example: llamafile -m model.gguf -p "four score and" - Stands a pretty good chance of printing Lincoln's Gettysburg - Address. Prompts can take on a structured format too. Depend‐ - ing on how your model was trained, it may specify in its docs + Stands a pretty good chance of printing Lincoln's Gettysburg + Address. Prompts can take on a structured format too. Depend‐ + ing on how your model was trained, it may specify in its docs an instruction notation. With some models that might be: llamafile -p "[INST]Summarize this: $(cat file)[/INST]" @@ -678,6 +616,51 @@ -f FNAME, --file FNAME Prompt file to start generation. + -n N, --n-predict N + Sets number of tokens to predict when generating text. + + This option controls the number of tokens the model generates + in response to the input prompt. By adjusting this value, you + can influence the length of the generated text. A higher value + will result in longer text, while a lower value will produce + shorter text. + + A value of -1 will enable infinite text generation, even though + we have a finite context window. When the context window is + full, some of the earlier tokens (half of the tokens after + --n-keep) will be discarded. The context must then be re-evalu‐ + ated before generation can resume. On large models and/or large + context windows, this will result in significant pause in out‐ + put. + + If the pause is undesirable, a value of -2 will stop generation + immediately when the context is filled. + + It is important to note that the generated text may be shorter + than the specified number of tokens if an End-of-Sequence (EOS) + token or a reverse prompt is encountered. In interactive mode + text generation will pause and control will be returned to the + user. In non-interactive mode, the program will end. In both + cases, the text generation may stop before reaching the speci‐ + fied `n-predict` value. If you want the model to keep going + without ever producing End-of-Sequence on its own, you can use + the --ignore-eos parameter. + + - -1 = infinity + - -2 = until context filled + + Default: -1 + + --simple-io + Use basic IO for better compatibility in subprocesses and lim‐ + ited consoles. + + -cml, --chatml + Run in chatml mode (use with ChatML-compatible models) + + -e, --escape + Process prompt escapes sequences (\n, \r, \t, \´, \", \\) + --grammar GRAMMAR BNF-like grammar to constrain which tokens may be selected when generating text. For example, the grammar: @@ -809,6 +792,48 @@ mary of embeddings along with a cosine similarity matrix will be printed to the terminal. + --ignore-eos + Ignore end of stream token and continue generating (implies + --logit-bias 2-inf) + + --keep N + This flag allows users to retain the original prompt when the + model runs out of context, ensuring a connection to the initial + instruction or conversation topic is maintained, where N is the + number of tokens from the initial prompt to retain when the + model resets its internal context. + + - 0 = no tokens are kept from initial prompt + - -1 = retain all tokens from initial prompt + + Default: 0 + + --in-prefix-bos + Prefix BOS to user inputs, preceding the --in-prefix string. + + --in-prefix STRING + This flag is used to add a prefix to your input, primarily, + this is used to insert a space after the reverse prompt. Here's + an example of how to use the --in-prefix flag in conjunction + with the --reverse-prompt flag: + + ./main -r "User:" --in-prefix " " + + Default: empty + + --in-suffix STRING + This flag is used to add a suffix after your input. This is + useful for adding an "Assistant:" prompt after the user's in‐ + put. It's added after the new-line character (\n) that's auto‐ + matically added to the end of the user's input. Here's an exam‐ + ple of how to use the --in-suffix flag in conjunction with the + --reverse-prompt flag: + + ./main -r "User:" --in-prefix " " --in-suffix + "Assistant:" + + Default: empty + SERVER OPTIONS The following options may be specified when llamafile is running in --server mode. diff --git a/llama.cpp/perplexity/perplexity.1 b/llama.cpp/perplexity/perplexity.1 index bedbb37379..69e0537f3b 100644 --- a/llama.cpp/perplexity/perplexity.1 +++ b/llama.cpp/perplexity/perplexity.1 @@ -24,10 +24,33 @@ Show help message and exit. Model path (default: models/7B/ggml-model-f16.gguf) .It Fl f Ar FNAME , Fl Fl file Ar FNAME Raw data input file. +.It Fl Fl chunks Ar N +Max number of chunks to process. +.Pp +.Bl -dash -compact +.It +-1 = all +.El +.Pp +Default: -1 .It Fl t Ar N , Fl Fl threads Ar N Number of threads to use during generation (default: nproc/2) .It Fl s Ar SEED , Fl Fl seed Ar SEED Random Number Generator (RNG) seed (default: -1, use random seed for < 0) +.It Fl Fl hellaswag +Compute HellaSwag score over random tasks from datafile supplied with -f +.It Fl Fl hellaswag-tasks Ar N +Number of tasks to use when computing the HellaSwag score. +.Pp +Default: 400 +.It Fl Fl winogrande +Compute Winogrande score over random tasks from datafile supplied by the +.Fl f +flag. +.It Fl Fl winogrande-tasks Ar N +Number of tasks to use when computing the Winogrande score. +.Pp +Default: 0 .Sh EXAMPLE One dataset commonly used in the llama.cpp community for measuring perplexity is wikitext-2-raw. To use it when testing how well both your diff --git a/llama.cpp/server/server.cpp b/llama.cpp/server/server.cpp index 648cd1db6a..e3b719e842 100644 --- a/llama.cpp/server/server.cpp +++ b/llama.cpp/server/server.cpp @@ -2589,6 +2589,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, { FLAG_ascii = true; } + else if (arg == "--nologo") + { + FLAG_nologo = true; + } else if (arg == "--trap") { FLAG_trap = true; diff --git a/llamafile/BUILD.mk b/llamafile/BUILD.mk index 31b59bbcfd..a374cfd37f 100644 --- a/llamafile/BUILD.mk +++ b/llamafile/BUILD.mk @@ -56,12 +56,13 @@ o/$(MODE)/llamafile: \ o/$(MODE)/llamafile/tokenize \ o/$(MODE)/llamafile/addnl \ o/$(MODE)/llamafile/high \ - o/$(MODE)/llamafile/highlight_test.runs \ + o/$(MODE)/llamafile/datauri_test.runs \ o/$(MODE)/llamafile/highlight_c_test.runs \ o/$(MODE)/llamafile/highlight_python_test.runs \ - o/$(MODE)/llamafile/pool_test.runs \ - o/$(MODE)/llamafile/pool_cancel_test.runs \ + o/$(MODE)/llamafile/highlight_test.runs \ o/$(MODE)/llamafile/parse_cidr_test.runs \ + o/$(MODE)/llamafile/pool_cancel_test.runs \ + o/$(MODE)/llamafile/pool_test.runs \ o/$(MODE)/llamafile/thread_test.runs \ o/$(MODE)/llamafile/vmathf_test.runs \ @@ -189,6 +190,11 @@ o/$(MODE)/llamafile/highlight_python_test: \ o/$(MODE)/llamafile/is_keyword_python_builtin.o \ o/$(MODE)/llamafile/is_keyword_python_constant.o \ +o/$(MODE)/llamafile/datauri_test: \ + o/$(MODE)/llamafile/datauri_test.o \ + o/$(MODE)/llama.cpp/llama.cpp.a \ + o/$(MODE)/stb/stb.a \ + o/$(MODE)/llamafile/high: \ o/$(MODE)/llamafile/high.o \ o/$(MODE)/llama.cpp/llama.cpp.a \ diff --git a/llamafile/chatbot.cpp b/llamafile/chatbot.cpp index 0a69f2239c..68e734ab73 100644 --- a/llamafile/chatbot.cpp +++ b/llamafile/chatbot.cpp @@ -15,6 +15,8 @@ // See the License for the specific language governing permissions and // limitations under the License. +#include "chatbot.h" + #include #include #include @@ -34,14 +36,14 @@ #include "llama.cpp/llava/llava.h" #include "llama.cpp/server/server.h" #include "llamafile/bestline.h" -#include "llamafile/chatbot.h" #include "llamafile/compute.h" +#include "llamafile/datauri.h" #include "llamafile/highlight.h" +#include "llamafile/image.h" #include "llamafile/llama.h" #include "llamafile/llamafile.h" #include "llamafile/string.h" #include "llamafile/xterm.h" -#include "stb/stb_image.h" #define IMAGE_PLACEHOLDER_TOKEN -31337 @@ -57,7 +59,9 @@ struct ServerArgs { }; static bool g_manual_mode; +static bool g_has_ephemeral; static bool g_said_something; +static char g_last_printed_char; static int g_system_prompt_tokens; static gpt_params g_params; static clip_ctx *g_clip; @@ -96,6 +100,7 @@ static void fix_stack(std::vector *stack) { static void fix_stacks(void) { fix_stack(&g_undo); fix_stack(&g_stack); + g_system_prompt_tokens = MIN(g_system_prompt_tokens, tokens_used()); } static std::vector adjust_stack(llama_pos erase_begin, llama_pos erase_end, @@ -178,18 +183,6 @@ static enum Role cycle_role(enum Role role) { } } -static bool is_image_file(const char *path) { - int width, height, channels; - stbi_set_flip_vertically_on_load(false); // force full image decode - unsigned char *data = stbi_load(path, &width, &height, &channels, 0); - if (data != nullptr) { - stbi_image_free(data); - return true; - } else { - return false; - } -} - static bool has_binary(const std::string_view s) { return s.find('\0') != std::string_view::npos; } @@ -271,26 +264,45 @@ static std::string describe_position(llama_pos pos) { return description; } -static void err(const char *fmt, ...) { - va_list ap; - va_start(ap, fmt); - fputs(BRIGHT_RED, stderr); - vfprintf(stderr, fmt, ap); - fputs(RESET "\n", stderr); - va_end(ap); +static void print(const std::string_view &s) { + for (char c : s) { + g_last_printed_char = c; + fputc(c, stdout); + if (c == '\n') + g_has_ephemeral = false; + } +} + +static void ensure_newline() { + if (g_last_printed_char != '\n') + print("\n"); } static void print_ephemeral(const std::string_view &description) { fprintf(stderr, " " BRIGHT_BLACK "%.*s" UNFOREGROUND "\r", (int)description.size(), description.data()); + g_has_ephemeral = true; } static void clear_ephemeral(void) { - fprintf(stderr, CLEAR_FORWARD); + if (g_has_ephemeral) { + fprintf(stderr, CLEAR_FORWARD); + g_has_ephemeral = false; + } } -static bool out_of_context(int extra) { +static void err(const char *fmt, ...) { + va_list ap; clear_ephemeral(); + ensure_newline(); + va_start(ap, fmt); + fputs(BRIGHT_RED, stderr); + vfprintf(stderr, fmt, ap); + fputs(RESET "\n", stderr); + va_end(ap); +} + +static bool out_of_context(int extra) { err("error: ran out of context window at %d tokens\n" "consider passing `-c %d` at startup for the maximum\n" "you can free up more space using /forget or /clear", @@ -305,8 +317,7 @@ static bool eval_tokens(std::vector tokens) { for (int i = 0; i < N; i += g_params.n_batch) { if (g_got_sigint) { g_got_sigint = false; - if (N > g_params.n_batch) - clear_ephemeral(); + clear_ephemeral(); return false; } if (N > g_params.n_batch) @@ -318,21 +329,16 @@ static bool eval_tokens(std::vector tokens) { return out_of_context(n_eval); g_history.insert(g_history.end(), tokens.begin() + i, tokens.begin() + i + n_eval); } - if (N > g_params.n_batch) - clear_ephemeral(); + clear_ephemeral(); + // this function is what computes /stats. we need to call it now + // since llama_decode() kicks the can down the road to functions + // like llama_sampling_sample(). that is bad because the chatbot + // returns control to the repl rather than sampling when loading + // system and image prompts. + llama_synchronize(g_ctx); return true; } -static bool eval_id(int id) { - std::vector tokens; - tokens.push_back(id); - return eval_tokens(tokens); -} - -static bool eval_string(const std::string &str, bool add_special, bool parse_special) { - return eval_tokens(llama_tokenize(g_model, str, add_special, parse_special)); -} - static bool eval_image_embed(const struct llava_image_embed *image_embed) { int N = image_embed->n_image_pos; if (tokens_used() + N > llama_n_ctx(g_ctx)) @@ -341,8 +347,7 @@ static bool eval_image_embed(const struct llava_image_embed *image_embed) { for (int i = 0; i < N; i += g_params.n_batch) { if (g_got_sigint) { g_got_sigint = false; - if (N > g_params.n_batch) - clear_ephemeral(); + clear_ephemeral(); return false; } if (N > g_params.n_batch) @@ -362,19 +367,19 @@ static bool eval_image_embed(const struct llava_image_embed *image_embed) { for (int i = 0; i < n_eval; ++i) g_history.push_back(IMAGE_PLACEHOLDER_TOKEN); } - if (N > g_params.n_batch) - clear_ephemeral(); + clear_ephemeral(); return true; } -static bool eval_image(const char *image_path) { +static bool eval_image(const std::string_view binary) { unassert(g_clip); llava_image_embed *image_embed; print_ephemeral("analyzing image..."); - image_embed = llava_image_embed_make_with_filename(g_clip, FLAG_threads_batch, image_path); + image_embed = llava_image_embed_make_with_bytes( + g_clip, FLAG_threads_batch, (const unsigned char *)binary.data(), binary.size()); clear_ephemeral(); if (!image_embed) { - err("%s: failed to load image", image_path); + err("failed to load image"); return false; } bool ok = eval_image_embed(image_embed); @@ -382,6 +387,40 @@ static bool eval_image(const char *image_path) { return ok; } +static bool eval_token(int id) { + return eval_tokens({id}); +} + +static bool eval_plain_text(const std::string &str, bool add_special, bool parse_special) { + return eval_tokens(llama_tokenize(g_model, str, add_special, parse_special)); +} + +static bool eval_string(std::string_view s, bool add_special, bool parse_special) { + size_t i = 0; + for (;;) { + size_t pos = s.find("data:", i); + if (pos == std::string_view::npos) + return eval_plain_text(std::string(s), add_special, parse_special); + DataUri uri; + size_t end = uri.parse(s.substr(pos + 5)); + if (end == std::string_view::npos) { + i = pos + 5; + continue; + } + std::string image = uri.decode(); + if (!lf::is_image(image)) { + i = pos + 5; + continue; + } + if (!eval_plain_text(std::string(s.substr(0, pos)), add_special, parse_special)) + return false; + if (!eval_image(image)) + return false; + s = s.substr(pos + 5 + end); + i = 0; + } +} + static void rewind(int pos) { unassert(pos <= tokens_used()); llama_kv_cache_seq_rm(g_ctx, 0, pos, -1); @@ -394,7 +433,7 @@ static void on_manual(const std::vector &args) { } else if (args.size() == 2 && (args[1] == "on" || args[1] == "off")) { g_manual_mode = args[1] == "on"; } else { - err("error: bad /manual command" RESET "\n" + err("error: bad /manual command\n" "usage: /manual [on|off]"); return; } @@ -473,6 +512,7 @@ static void on_forget(const std::vector &args) { g_history.erase(g_history.begin() + erase_begin, // g_history.begin() + erase_end); adjust_stacks(erase_begin, erase_end); + fix_stacks(); } static void on_stack(const std::vector &args) { @@ -525,54 +565,45 @@ static void on_upload(const std::vector &args) { return; } int tokens_used_before = tokens_used(); - if (is_image_file(path)) { + std::string content; + if (!lf::slurp(&content, path)) { + err("%s: failed to slurp file", path); + return; + } + std::string markdown; + markdown += "- **Filename**: `"; + markdown += path; + markdown += "`\n- **Last modified**: "; + markdown += lf::iso8601(st.st_mtim); + markdown += "\n\n"; + if (lf::is_image(content)) { if (!g_clip) { - err("%s: need --mmproj model to process image", path); - return; - } - std::vector chat = { - {get_role_name(g_role), lf::format("/upload %s", path)}, - }; - if (!eval_string(llama_chat_apply_template(g_model, g_params.chat_template, chat, - DONT_ADD_ASSISTANT), - DONT_ADD_SPECIAL, PARSE_SPECIAL)) { - rewind(tokens_used_before); + err("%s: need --mmproj model to process images", path); return; } - if (!eval_image(path)) { - rewind(tokens_used_before); + lf::print_image(1, content, 80); + lf::convert_image_to_uri(&markdown, content); + } else { + if (has_binary(content)) { + err("%s: binary file type not supported", path); return; } - print_image(1, path, 80); - return; - } else { - std::string markdown; - markdown += "- **Filename**: `"; - markdown += path; - markdown += "`\n- **Last modified**: "; - markdown += lf::iso8601(st.st_mtim); - markdown += "\n\n``````"; + markdown += "``````"; markdown += lf::extname(path); markdown += '\n'; - if (!lf::slurp(&markdown, path)) { - err("%s: failed to slurp file", path); - return; - } + markdown += content; if (markdown.back() != '\n') markdown += '\n'; markdown += "``````"; - if (has_binary(markdown)) { - err("%s: binary file type not supported", path); - return; - } - std::vector chat = {{"system", markdown}}; - if (!eval_string(llama_chat_apply_template(g_model, g_params.chat_template, chat, - DONT_ADD_ASSISTANT), - DONT_ADD_SPECIAL, PARSE_SPECIAL)) { - rewind(tokens_used_before); - return; - } } + std::vector chat = {{"system", std::move(markdown)}}; + if (!eval_string( + llama_chat_apply_template(g_model, g_params.chat_template, chat, DONT_ADD_ASSISTANT), + DONT_ADD_SPECIAL, PARSE_SPECIAL)) { + rewind(tokens_used_before); + return; + } + llama_synchronize(g_ctx); } static const char *on_hint_impl(const char *line) { @@ -664,7 +695,7 @@ static void on_completion(const char *line, int pos, bestlineCompletions *comp) static bool handle_command(const char *command) { if (!strcmp(command, "/?")) { const std::vector args = {"?"}; - on_help(args); + chatbot_help(args); return true; } if (!(command[0] == '/' && std::isalpha(command[1]))) @@ -677,7 +708,7 @@ static bool handle_command(const char *command) { if (args[0] == "exit" || args[0] == "bye") { exit(0); } else if (args[0] == "help") { - on_help(args); + chatbot_help(args); } else if (args[0] == "stats") { on_stats(args); } else if (args[0] == "context") { @@ -706,27 +737,6 @@ static bool handle_command(const char *command) { return true; } -static void print_logo(const char16_t *s) { - for (int i = 0; s[i]; ++i) { - switch (s[i]) { - case u'█': - printf(GREEN "█" UNFOREGROUND); - break; - case u'╚': - case u'═': - case u'╝': - case u'╗': - case u'║': - case u'╔': - printf(FAINT "%C" UNBOLD, s[i]); - break; - default: - printf("%C", s[i]); - break; - } - } -} - static void on_server_listening(const char *host, int port) { pthread_mutex_lock(&g_lock); g_listen_url = lf::format("http://%s:%d/", host, port); @@ -744,38 +754,35 @@ static void *server_thread(void *arg) { } int chatbot_main(int argc, char **argv) { - log_disable(); - - if (llamafile_has(argv, "--ascii")) { - printf("\ - _ _ __ _ _\n\ -| | | __ _ _ __ ___ __ _ / _(_) | ___\n\ -| | |/ _` | '_ ` _ \\ / _` | |_| | |/ _ \\\n\ -| | | (_| | | | | | | (_| | _| | | __/\n\ -|_|_|\\__,_|_| |_| |_|\\__,_|_| |_|_|\\___|\n"); - } else { - print_logo(u"\n\ -██╗ ██╗ █████╗ ███╗ ███╗ █████╗ ███████╗██╗██╗ ███████╗\n\ -██║ ██║ ██╔══██╗████╗ ████║██╔══██╗██╔════╝██║██║ ██╔════╝\n\ -██║ ██║ ███████║██╔████╔██║███████║█████╗ ██║██║ █████╗\n\ -██║ ██║ ██╔══██║██║╚██╔╝██║██╔══██║██╔══╝ ██║██║ ██╔══╝\n\ -███████╗███████╗██║ ██║██║ ╚═╝ ██║██║ ██║██║ ██║███████╗███████╗\n\ -╚══════╝╚══════╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚══════╝╚══════╝\n"); - } - print_ephemeral("loading backend..."); - llama_backend_init(); + // print logo + chatbot_logo(argv); + + // disable llamafile gpu initialization log messages + if (!llamafile_has(argv, "--verbose")) + FLAG_log_disable = true; + + // override defaults for some flags g_params.n_batch = 256; // for better progress indication g_params.sparams.temp = 0; // don't believe in randomness by default g_params.prompt = "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the " "human's questions."; + + // parse flags (sadly initializes gpu support as side-effect) + print_ephemeral("loading backend..."); + llama_backend_init(); if (!gpt_params_parse(argc, argv, g_params)) { // also loads gpu module fprintf(stderr, "error: failed to parse flags\n"); exit(1); } clear_ephemeral(); + // setup logging + FLAG_log_disable = false; + if (!g_params.verbosity) + log_disable(); + print_ephemeral("loading model..."); llama_model_params model_params = llama_model_params_from_gpt_params(g_params); g_model = llama_load_model_from_file(g_params.model.c_str(), model_params); @@ -806,13 +813,15 @@ int chatbot_main(int argc, char **argv) { clear_ephemeral(); } - printf(BOLD "software" UNBOLD ": llamafile " LLAMAFILE_VERSION_STRING "\n" // - BOLD "model" UNBOLD ": %s\n", - lf::basename(g_params.model).c_str()); - printf(BOLD "compute" UNBOLD ": %s\n", describe_compute().c_str()); - if (want_server) - printf(BOLD "server" UNBOLD ": %s\n", g_listen_url.c_str()); - printf("\n"); + if (!FLAG_nologo) { + printf(BOLD "software" UNBOLD ": llamafile " LLAMAFILE_VERSION_STRING "\n" // + BOLD "model" UNBOLD ": %s\n", + lf::basename(g_params.model).c_str()); + printf(BOLD "compute" UNBOLD ": %s\n", describe_compute().c_str()); + if (want_server) + printf(BOLD "server" UNBOLD ": %s\n", g_listen_url.c_str()); + printf("\n"); + } print_ephemeral("initializing context..."); llama_context_params ctx_params = llama_context_params_from_gpt_params(g_params); @@ -828,7 +837,7 @@ int chatbot_main(int argc, char **argv) { if (FLAG_mmproj) { print_ephemeral("initializing vision model..."); - g_clip = clip_model_load(FLAG_mmproj, 0); + g_clip = clip_model_load(FLAG_mmproj, g_params.verbosity); clear_ephemeral(); if (!g_clip) { fprintf(stderr, "%s: failed to initialize clip image model\n", FLAG_mmproj); @@ -838,7 +847,7 @@ int chatbot_main(int argc, char **argv) { // setup conversation if (llama_should_add_bos_token(g_model)) - if (!eval_id(llama_token_bos(g_model))) + if (!eval_token(llama_token_bos(g_model))) exit(6); record_undo(); @@ -848,9 +857,11 @@ int chatbot_main(int argc, char **argv) { llama_chat_apply_template(g_model, g_params.chat_template, chat, DONT_ADD_ASSISTANT); if (!eval_string(msg, DONT_ADD_SPECIAL, PARSE_SPECIAL)) exit(6); + llama_synchronize(g_ctx); g_system_prompt_tokens = tokens_used(); clear_ephemeral(); - printf("%s\n", g_params.special ? msg.c_str() : g_params.prompt.c_str()); + if (g_params.display_prompt) + printf("%s\n", g_params.special ? msg.c_str() : g_params.prompt.c_str()); // perform important setup HighlightMarkdown highlighter; @@ -870,7 +881,7 @@ int chatbot_main(int argc, char **argv) { write(1, UNFOREGROUND, strlen(UNFOREGROUND)); if (!line) { if (g_got_sigint) - printf("\n"); + ensure_newline(); break; } if (is_empty(line)) { @@ -902,25 +913,26 @@ int chatbot_main(int argc, char **argv) { } for (;;) { if (g_got_sigint) { - eval_id(llamafile_token_eot(g_model)); + eval_token(llamafile_token_eot(g_model)); break; } llama_token id = llama_sampling_sample(sampler, g_ctx, NULL); llama_sampling_accept(sampler, g_ctx, id, APPLY_GRAMMAR); - if (!eval_id(id)) + if (!eval_token(id)) break; if (llama_token_is_eog(g_model, id)) break; std::string s; bleeder.feed(&s, token_to_piece(g_ctx, id, g_params.special)); - printf("%s", s.c_str()); + print(s); fflush(stdout); } g_got_sigint = 0; free(line); std::string s; bleeder.flush(&s); - printf("%s\n", s.c_str()); + print(s); + ensure_newline(); } if (g_clip) { diff --git a/llamafile/chatbot.h b/llamafile/chatbot.h index 36ee17c59d..a8a6de8a49 100644 --- a/llamafile/chatbot.h +++ b/llamafile/chatbot.h @@ -34,4 +34,6 @@ #define BRIGHT_GREEN "\e[92m" #define CLEAR_FORWARD "\e[K" -void on_help(const std::vector &); +int chatbot_main(int, char **); +void chatbot_help(const std::vector &); +void chatbot_logo(char **); diff --git a/llamafile/chatbot_help.cpp b/llamafile/chatbot_help.cpp index c0381d0e17..20e62c7ce5 100644 --- a/llamafile/chatbot_help.cpp +++ b/llamafile/chatbot_help.cpp @@ -17,7 +17,7 @@ #include "chatbot.h" -void on_help(const std::vector &args) { +void chatbot_help(const std::vector &args) { if (args.size() == 1) { fprintf(stderr, "\ " BOLD "available commands" RESET "\n\ diff --git a/llamafile/chatbot_logo.cpp b/llamafile/chatbot_logo.cpp new file mode 100644 index 0000000000..0c5ae382bd --- /dev/null +++ b/llamafile/chatbot_logo.cpp @@ -0,0 +1,64 @@ +// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- +// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi +// +// Copyright 2024 Mozilla Foundation +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "chatbot.h" + +#include + +#include "llamafile.h" + +static void print_logo(const char16_t *s) { + for (int i = 0; s[i]; ++i) { + switch (s[i]) { + case u'█': + printf(GREEN "█" UNFOREGROUND); + break; + case u'╚': + case u'═': + case u'╝': + case u'╗': + case u'║': + case u'╔': + printf(FAINT "%C" UNBOLD, s[i]); + break; + default: + printf("%C", s[i]); + break; + } + } +} + +void chatbot_logo(char **argv) { + if (llamafile_has(argv, "--nologo")) + return; + if (llamafile_has(argv, "--ascii")) { + printf("\ + _ _ __ _ _\n\ +| | | __ _ _ __ ___ __ _ / _(_) | ___\n\ +| | |/ _` | '_ ` _ \\ / _` | |_| | |/ _ \\\n\ +| | | (_| | | | | | | (_| | _| | | __/\n\ +|_|_|\\__,_|_| |_| |_|\\__,_|_| |_|_|\\___|\n"); + } else { + print_logo(u"\n\ +██╗ ██╗ █████╗ ███╗ ███╗ █████╗ ███████╗██╗██╗ ███████╗\n\ +██║ ██║ ██╔══██╗████╗ ████║██╔══██╗██╔════╝██║██║ ██╔════╝\n\ +██║ ██║ ███████║██╔████╔██║███████║█████╗ ██║██║ █████╗\n\ +██║ ██║ ██╔══██║██║╚██╔╝██║██╔══██║██╔══╝ ██║██║ ██╔══╝\n\ +███████╗███████╗██║ ██║██║ ╚═╝ ██║██║ ██║██║ ██║███████╗███████╗\n\ +╚══════╝╚══════╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚══════╝╚══════╝\n"); + } +} diff --git a/llamafile/datauri.cpp b/llamafile/datauri.cpp new file mode 100644 index 0000000000..822aefb726 --- /dev/null +++ b/llamafile/datauri.cpp @@ -0,0 +1,286 @@ +// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- +// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi +// +// Copyright 2024 Mozilla Foundation +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "datauri.h" + +#include "llama.cpp/base64.h" + +// See RFC2045 (MIME) +static const char kMimeToken[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, // ! #$%&' *+ -. + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, // 0123456789 + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // ABCDEFGHIJKLMNO + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, // PQRSTUVWXYZ ^_ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // `abcdefghijklmno + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, // pqrstuvwxyz{|}~ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // +}; + +// See RFC2397 ("data" URL scheme) which imports `urlchar` a.k.a. `uric` +// from RFC2396 (URI obsolete) with a design finalized by RFC3986 (URI). +static const char kUrlChar[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, // $%& +,-./ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, // 0123456789:; = ? + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // @ABCDEFGHIJKLMNO + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, // PQRSTUVWXYZ _ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // abcdefghijklmno + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, // pqrstuvwxyz ~ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // +}; + +alignas(signed char) static const signed char kHexToInt[] = { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x00 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x10 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x20 + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, // 0x30 + -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x40 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x50 + -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x60 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x70 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x80 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x90 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0xa0 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0xb0 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0xc0 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0xd0 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0xe0 + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0xf0 +}; + +static std::string percent_decode(std::string_view data) { + std::string r; + enum { + NORMAL, + PERCENT1, + PERCENT2, + } t = NORMAL; + int b, a = 0, ac = 0; + for (size_t i = 0; i < data.size(); ++i) { + int c = data[i] & 255; + switch (t) { + case NORMAL: + if (c == '%') { + t = PERCENT1; + } else { + r += c; + } + break; + case PERCENT1: + if ((a = kHexToInt[(ac = c)]) != -1) { + t = PERCENT2; + } else if (c == '%') { + r += '%'; + } else { + t = NORMAL; + r += '%'; + r += c; + } + break; + case PERCENT2: + if ((b = kHexToInt[c]) != -1) { + t = NORMAL; + r += a << 4 | b; + } else if (c == '%') { + t = PERCENT1; + r += '%'; + r += ac; + } else { + t = NORMAL; + r += '%'; + r += ac; + r += c; + } + break; + default: + __builtin_unreachable(); + } + } + switch (t) { + case PERCENT1: + r += '%'; + break; + case PERCENT2: + r += '%'; + r += ac; + break; + default: + break; + } + return r; +} + +DataUri::DataUri() { +} + +DataUri::~DataUri() { +} + +// parses "data" uri scheme, where `s` has everything after "data:". +// returns index of where data uri ends or npos if the parser failed +size_t DataUri::parse(std::string_view s) { + enum { + BEGIN, + MIME_TYPE, + MIME_SLASH, + MIME_SUBTYPE, + PARAMETER, + PARAMETER_ATTRIBUTE, + PARAMETER_VALUE, + PAYLOAD, + } t = BEGIN; + size_t a = 0; + std::string_view k; + for (size_t i = 0; i < s.size(); ++i) { + int c = s[i] & 255; + switch (t) { + case BEGIN: + if (c == ';') { + t = PARAMETER; + a = i + 1; + break; + } else if (c == ',') { + mime = "text/plain"; + params.emplace_back("charset", "US-ASCII"); + t = PAYLOAD; + a = i + 1; + break; + } else if (kMimeToken[c]) { + t = MIME_TYPE; + } else { + return std::string_view::npos; + } + break; + case MIME_TYPE: + if (c == '/') { + t = MIME_SLASH; + } else if (!kMimeToken[c]) { + return std::string_view::npos; + } + break; + case MIME_SLASH: + if (kMimeToken[c]) { + t = MIME_SUBTYPE; + } else { + return std::string_view::npos; + } + break; + case MIME_SUBTYPE: + if (c == ';') { + mime = s.substr(a, i - a); + t = PARAMETER; + a = i + 1; + } else if (c == ',') { + mime = s.substr(a, i - a); + t = PAYLOAD; + a = i + 1; + } else if (!kMimeToken[c]) { + return std::string_view::npos; + } + break; + case PARAMETER: + if (kMimeToken[c]) { + t = PARAMETER_ATTRIBUTE; + } else { + return std::string_view::npos; + } + break; + case PARAMETER_ATTRIBUTE: + if (c == ';') { + params.emplace_back(s.substr(a, i - a), ""); + t = PARAMETER; + a = i + 1; + } else if (c == '=') { + k = s.substr(a, i - a); + t = PARAMETER_VALUE; + a = i + 1; + } else if (c == ',') { + params.emplace_back(s.substr(a, i - a), ""); + t = PAYLOAD; + a = i + 1; + } else if (!kMimeToken[c]) { + return std::string_view::npos; + } + break; + case PARAMETER_VALUE: + if (c == ';') { + params.emplace_back(k, s.substr(a, i - a)); + t = PARAMETER; + a = i + 1; + } else if (c == ',') { + params.emplace_back(k, s.substr(a, i - a)); + t = PAYLOAD; + a = i + 1; + } else if (!kMimeToken[c]) { + return std::string_view::npos; + } + break; + case PAYLOAD: + if (!kUrlChar[c]) { + data = s.substr(a, i - a); + return i; + } + break; + default: + __builtin_unreachable(); + } + } + switch (t) { + case PAYLOAD: + data = s.substr(a); + return s.size(); + default: + return std::string_view::npos; + } +} + +std::string DataUri::decode() { + if (has_param("base64")) + return base64::decode(data); + return percent_decode(data); +} + +bool DataUri::has_param(std::string_view attribute) { + for (const auto ¶m : params) + if (param.first == attribute) + return true; + return false; +} + +std::string_view DataUri::get_param(std::string_view attribute) { + for (const auto ¶m : params) + if (param.first == attribute) + return param.second; + return ""; +} diff --git a/llamafile/datauri.h b/llamafile/datauri.h new file mode 100644 index 0000000000..d243d977be --- /dev/null +++ b/llamafile/datauri.h @@ -0,0 +1,34 @@ +// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- +// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi +// +// Copyright 2024 Mozilla Foundation +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include +#include +#include + +struct DataUri { + std::string_view mime; + std::string_view data; + std::vector> params; + + DataUri(); + ~DataUri(); + size_t parse(std::string_view); + bool has_param(std::string_view); + std::string_view get_param(std::string_view); + std::string decode(); +}; diff --git a/llamafile/datauri_test.cpp b/llamafile/datauri_test.cpp new file mode 100644 index 0000000000..a9e18fdf49 --- /dev/null +++ b/llamafile/datauri_test.cpp @@ -0,0 +1,156 @@ +// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- +// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi +// +// Copyright 2024 Mozilla Foundation +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "datauri.h" +#include "image.h" + +namespace { + +void rfc2397_example1() { + DataUri uri; + std::string_view s = ",A%20brief%20note"; + if (uri.parse(s) != s.size()) + exit(1); + if (uri.mime != "text/plain") + exit(2); + if (uri.get_param("charset") != "US-ASCII") + exit(3); + if (uri.decode() != "A brief note") + exit(4); +} + +void rfc2397_example2() { + DataUri uri; + std::string_view s = "image/gif;base64,R0lGODdhMAAwAPAAAAAAAP///ywAAAAAMAAw" + "AAAC8IyPqcvt3wCcDkiLc7C0qwyGHhSWpjQu5yqmCYsapyuvUUlvONmOZtfzgFz" + "ByTB10QgxOR0TqBQejhRNzOfkVJ+5YiUqrXF5Y5lKh/DeuNcP5yLWGsEbtLiOSp" + "a/TPg7JpJHxyendzWTBfX0cxOnKPjgBzi4diinWGdkF8kjdfnycQZXZeYGejmJl" + "ZeGl9i2icVqaNVailT6F5iJ90m6mvuTS4OK05M0vDk0Q4XUtwvKOzrcd3iq9uis" + "F81M1OIcR7lEewwcLp7tuNNkM3uNna3F2JQFo97Vriy/Xl4/f1cf5VWzXyym7PH" + "hhx4dbgYKAAA7\" ALT=\"Larry\">"; + size_t pos = uri.parse(s); + if (pos == std::string_view::npos) + exit(5); + if (s.substr(pos) != "\" ALT=\"Larry\">") + exit(6); + if (uri.mime != "image/gif") + exit(7); + std::string image = uri.decode(); + if (lf::get_image_type(image) != lf::IMAGE_TYPE_GIF) + exit(8); + if (!lf::is_image(image)) + exit(9); +} + +void rfc2397_example3() { + DataUri uri; + std::string_view s = "text/plain;charset=iso-8859-7,%be%fg%be"; + size_t pos = uri.parse(s); + if (pos != s.size()) + exit(10); + if (uri.mime != "text/plain") + exit(11); + if (uri.get_param("charset") != "iso-8859-7") + exit(12); + if (uri.decode() != "\xbe%fg\xbe") + exit(13); +} + +void mime_missing_slash() { + DataUri uri; + if (uri.parse("a,") != std::string_view::npos) + exit(14); +} + +void empty_string() { + DataUri uri; + if (uri.parse("") != std::string_view::npos) + exit(15); +} + +void empty_data() { + DataUri uri; + if (uri.parse(",") != 1) + exit(16); +} + +void bad_token() { + DataUri uri; + if (uri.parse("\1/b;c,") != std::string_view::npos) + exit(17); + if (uri.parse("a/\1;c,") != std::string_view::npos) + exit(18); + if (uri.parse("a/b;\1,") != std::string_view::npos) + exit(19); + if (uri.parse("a/b;c,") == std::string_view::npos) + exit(20); +} + +void empty_components() { + DataUri uri; + if (uri.parse("/b;c,") != std::string_view::npos) + exit(21); + if (uri.parse("a/;c,") != std::string_view::npos) + exit(22); + if (uri.parse("a/b;,") != std::string_view::npos) + exit(23); +} + +void bad_percent() { + DataUri uri; + uri.data = "%"; + if (uri.decode() != "%") + exit(24); + uri.data = "%%"; + if (uri.decode() != "%%") + exit(25); + uri.data = "%a%"; + if (uri.decode() != "%a%") + exit(26); + uri.data = "%a%a"; + if (uri.decode() != "%a%a") + exit(27); + uri.data = "%!%"; + if (uri.decode() != "%!%") + exit(28); + uri.data = "%!%!"; + if (uri.decode() != "%!%!") + exit(29); + uri.data = "%a!%a"; + if (uri.decode() != "%a!%a") + exit(30); + uri.data = "%a!%a!"; + if (uri.decode() != "%a!%a!") + exit(31); + uri.data = "%a%%a%"; + if (uri.decode() != "%a%%a%") + exit(32); +} + +} // namespace + +int main(int argc, char *argv[]) { + rfc2397_example1(); + rfc2397_example2(); + rfc2397_example3(); + mime_missing_slash(); + empty_string(); + empty_data(); + bad_token(); + empty_components(); + bad_percent(); +} diff --git a/llamafile/flags.cpp b/llamafile/flags.cpp index f43a6c30cc..b9b11c9ea4 100644 --- a/llamafile/flags.cpp +++ b/llamafile/flags.cpp @@ -42,6 +42,7 @@ bool FLAG_log_disable = false; bool FLAG_mlock = false; bool FLAG_mmap = true; bool FLAG_nocompile = false; +bool FLAG_nologo = false; bool FLAG_precise = false; bool FLAG_recompile = false; bool FLAG_tinyblas = false; @@ -137,6 +138,19 @@ void llamafile_get_flags(int argc, char **argv) { continue; } + ////////////////////////////////////////////////////////////////////// + // chatbot flags + + if (!strcmp(flag, "--ascii")) { + FLAG_ascii = true; + continue; + } + + if (!strcmp(flag, "--nologo")) { + FLAG_nologo = true; + continue; + } + ////////////////////////////////////////////////////////////////////// // server flags diff --git a/llamafile/image.cpp b/llamafile/image.cpp new file mode 100644 index 0000000000..63cb14b2f8 --- /dev/null +++ b/llamafile/image.cpp @@ -0,0 +1,272 @@ +// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- +// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi +// +// Copyright 2024 Mozilla Foundation +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "image.h" + +#include +#include +#include +#include + +#include "llama.cpp/base64.h" +#include "llamafile/macros.h" +#include "llamafile/xterm.h" +#include "stb/stb_image.h" +#include "stb/stb_image_resize2.h" + +namespace lf { + +/** + * Returns true if binary is an image format we can use. + * + * This function performs extensive validation. + */ +bool is_image(const std::string_view &image) { + if (!get_image_type(image)) + return false; + int width, height, channels; + unsigned char *data = stbi_load_from_memory((const unsigned char *)image.data(), image.size(), + &width, &height, &channels, 0); + if (!data) + return false; + stbi_image_free(data); + return true; +} + +/** + * Returns true if binary is an image format we can use. + * + * This function performs extensive validation. + */ +void convert_image_to_uri(std::string *r, const std::string_view &image) { + *r += "data:"; + *r += get_image_mime(get_image_type(image)); + *r += ";base64,"; + size_t size = r->size(); + size_t need = base64::required_encode_size(image.size()); + r->resize(size + need); + r->resize(base64::encode(image.begin(), image.end(), r->begin() + size) - r->begin()); +} + +/** + * Determines image file type from binary image content. + * + * Please be warned that some file formats have very broad magic numbers + * that might overlap with unrelated files. For example the PGM magic is + * "P5" which is a perfectly innocent ASCII prologue. To be certain that + * binary is in fact an image, it should be loaded by a library like STB + * that can do a more thorough validation. + */ +ImageType get_image_type(const std::string_view &binary) { + if (binary.size() < 16) + return IMAGE_TYPE_UNKNOWN; + const char *p = binary.data(); + + // check magic + if (READ32LE(p) == READ32LE("\x1A\x45\xDF\xA3")) + return IMAGE_TYPE_WEBM; + if (READ32LE(p) == READ32LE("\x49\x49\x2A\x00") || // + READ32LE(p) == READ32LE("\x4D\x4D\x00\x2A")) + return IMAGE_TYPE_TIFF; + if (READ32LE(p) == READ32LE("DDS ")) + return IMAGE_TYPE_DDS; + if (READ32LE(p) == READ32LE("8BPS")) + return IMAGE_TYPE_PSD; + if (READ32LE(p) == READ32LE("IIBC")) + return IMAGE_TYPE_JXR; + if (READ32LE(p) == READ32LE("v/1\1")) + return IMAGE_TYPE_EXR; + if (READ32LE(p) == READ32LE("PIB ")) + return IMAGE_TYPE_PIC; // Softimage + if (READ32LE(p) == READ32LE("\0\0\1\0")) + return IMAGE_TYPE_ICO; + if (READ32LE(p) == READ32LE("\0\0\2\0")) + return IMAGE_TYPE_CUR; + if ((READ32LE(p) & 0xffff) == READ32LE("BM\0")) + return IMAGE_TYPE_BMP; + if ((READ32LE(p) & 0xffffff) == READ32LE("\xFF\xD8\xFF")) + return IMAGE_TYPE_JPG; + if (READ64LE(p) == READ64LE("\x89\x50\x4E\x47\x0D\x0A\x1A\x0A")) + return IMAGE_TYPE_PNG; + if (READ64LE(p) == READ64LE("\x67\x69\x6D\x70\x20\x78\x63\x66")) + return IMAGE_TYPE_XCF; // GIMP + if ((READ64LE(p) & 0xffffffffffff) == READ64LE("GIF87a\0") || + (READ64LE(p) & 0xffffffffffff) == READ64LE("GIF89a\0")) + return IMAGE_TYPE_GIF; + if (READ32LE(p + 0) == READ32LE("RIFF") && // + READ32LE(p + 8) == READ32LE("WEBP")) + return IMAGE_TYPE_WEBP; + if (READ32LE(p + 4) == READ32LE("ftyp")) { + if (READ32LE(p + 8) == READ32LE("avif") || // + READ32LE(p + 8) == READ32LE("avis")) + return IMAGE_TYPE_AVIF; + if (READ32LE(p + 8) == READ32LE("heic") || // + READ32LE(p + 8) == READ32LE("heix")) + return IMAGE_TYPE_HEIC; + if (READ32LE(p + 8) == READ32LE("hevc") || // + READ32LE(p + 8) == READ32LE("hevx")) + return IMAGE_TYPE_HEIF; + } + + // TGA: Check for valid image type and color map type + if (binary.size() >= 18) { + unsigned char imageType = binary[2]; + unsigned char colorMapType = binary[1]; + bool validImageType = (imageType == 1 || imageType == 2 || imageType == 3 || + imageType == 9 || imageType == 10 || imageType == 11); + bool validColorMapType = (colorMapType == 0 || colorMapType == 1); + if (validImageType && validColorMapType) + return IMAGE_TYPE_TGA; + } + + // PCX: 0A followed by 0, 1, 2, 3, 4, or 5 + if (binary[0] == 0x0A && // + (binary[1] >= 0x00 && binary[1] <= 0x05)) + return IMAGE_TYPE_PCX; + + // HDR: #?RADIANCE or #?RGBE + if (!binary.substr(0, 10).find("#?RADIANCE") || // + !binary.substr(0, 10).find("#?RGBE")) + return IMAGE_TYPE_HDR; + + // PGM/PPM: P1-P6 + if (binary[0] == 'P') { + char type = binary[1]; + if (type >= '1' && type <= '6') { + if (type == '2' || type == '5') { + return IMAGE_TYPE_PGM; + } else if (type == '3' || type == '6') { + return IMAGE_TYPE_PPM; + } + } + } + + return IMAGE_TYPE_UNKNOWN; +} + +const char *get_image_mime(ImageType type) { + switch (type) { + case IMAGE_TYPE_PNG: + return "image/png"; + case IMAGE_TYPE_JPG: + return "image/jpeg"; + case IMAGE_TYPE_GIF: + return "image/gif"; + case IMAGE_TYPE_BMP: + return "image/bmp"; + case IMAGE_TYPE_TGA: + return "image/x-targa"; + case IMAGE_TYPE_HDR: + return "image/vnd.radiance"; + case IMAGE_TYPE_PGM: + return "image/x-portable-graymap"; + case IMAGE_TYPE_PPM: + return "image/x-portable-pixmap"; + case IMAGE_TYPE_PIC: + return "image/x-softimage"; + case IMAGE_TYPE_PSD: + return "image/vnd.adobe.photoshop"; + case IMAGE_TYPE_WEBM: + return "video/webm"; + case IMAGE_TYPE_WEBP: + return "image/webp"; + case IMAGE_TYPE_ICO: + return "image/x-icon"; + case IMAGE_TYPE_CUR: + return "image/x-win-bitmap"; + case IMAGE_TYPE_TIFF: + return "image/tiff"; + case IMAGE_TYPE_AVIF: + return "image/avif"; + case IMAGE_TYPE_HEIF: + return "image/heif"; + case IMAGE_TYPE_HEIC: + return "image/heic"; + case IMAGE_TYPE_DDS: + return "image/vnd-ms.dds"; + case IMAGE_TYPE_JXR: + return "image/jxr"; + case IMAGE_TYPE_EXR: + return "image/x-exr"; + case IMAGE_TYPE_PCX: + return "image/x-pcx"; + case IMAGE_TYPE_XCF: + return "image/x-xcf"; + default: + return "application/octet-stream"; + } +} + +/** + * Prints image to terminal. + */ +int print_image(int fd, const std::string_view &image, int max_width) { + + // load image + int width, height, channels; + unsigned char *img = stbi_load_from_memory((const unsigned char *)image.data(), image.size(), + &width, &height, &channels, 3); + if (!img) + return -1; + + // get terminal info + bool use_rgb = is_rgb_terminal(); + struct winsize ws = {24, 80}; + tcgetwinsize(fd, &ws); + + // calculate new dimensions preserving aspect ratio + int xn = MIN(max_width, ws.ws_col); + int yn = (height * xn) / width; // *2 because we use half blocks + yn = (yn + 1) & -2; // round up to even number + + // resize image + unsigned char *resized = new unsigned char[xn * yn * 3]; + stbir_resize_uint8_srgb(img, width, height, 0, // + resized, xn, yn, 0, // + STBIR_RGB); + stbi_image_free(img); + + // convert image to string using half blocks + std::string s; + for (int y = 0; y < yn; y += 2) { + for (int x = 0; x < xn; ++x) { + int upr = resized[((y + 0) * xn + x) * 3 + 0]; + int upg = resized[((y + 0) * xn + x) * 3 + 1]; + int upb = resized[((y + 0) * xn + x) * 3 + 2]; + int lor = resized[((y + 1) * xn + x) * 3 + 0]; + int log = resized[((y + 1) * xn + x) * 3 + 1]; + int lob = resized[((y + 1) * xn + x) * 3 + 2]; + char buf[48]; + if (use_rgb) { + s.append(buf, snprintf(buf, sizeof(buf), "\033[38;2;%d;%d;%dm\033[48;2;%d;%d;%dm▀", + upr, upg, upb, lor, log, lob)); + } else { + int upx = rgb2xterm256((upr << 16) | (upg << 8) | upb); + int lox = rgb2xterm256((lor << 16) | (log << 8) | lob); + s.append(buf, snprintf(buf, sizeof(buf), "\033[38;5;%dm\033[48;5;%dm▀", upx, lox)); + } + } + s += "\033[0m\n"; + } + + // write image to terminal + int rc = write(fd, s.data(), s.size()); + delete[] resized; + return rc; +} + +} // namespace lf diff --git a/llamafile/image.h b/llamafile/image.h new file mode 100644 index 0000000000..3160115df7 --- /dev/null +++ b/llamafile/image.h @@ -0,0 +1,56 @@ +// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- +// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi +// +// Copyright 2024 Mozilla Foundation +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include + +namespace lf { + +enum ImageType { + IMAGE_TYPE_UNKNOWN, + IMAGE_TYPE_PNG, // supported by stb + IMAGE_TYPE_JPG, // supported by stb + IMAGE_TYPE_GIF, // supported by stb + IMAGE_TYPE_BMP, // supported by stb + IMAGE_TYPE_TGA, // supported by stb + IMAGE_TYPE_HDR, // supported by stb + IMAGE_TYPE_PGM, // supported by stb + IMAGE_TYPE_PPM, // supported by stb + IMAGE_TYPE_PIC, // supported by stb + IMAGE_TYPE_PSD, // partially supported by stb + IMAGE_TYPE_WEBM, + IMAGE_TYPE_WEBP, + IMAGE_TYPE_AVIF, + IMAGE_TYPE_HEIF, + IMAGE_TYPE_HEIC, + IMAGE_TYPE_TIFF, + IMAGE_TYPE_ICO, + IMAGE_TYPE_CUR, + IMAGE_TYPE_DDS, + IMAGE_TYPE_JXR, + IMAGE_TYPE_EXR, + IMAGE_TYPE_PCX, + IMAGE_TYPE_XCF +}; + +ImageType get_image_type(const std::string_view &); +bool is_image(const std::string_view &); +const char *get_image_mime(ImageType); +int print_image(int, const std::string_view &, int); +void convert_image_to_uri(std::string *, const std::string_view &); + +} // namespace lf diff --git a/llamafile/llamafile.h b/llamafile/llamafile.h index 77ddcfc90e..7370fb9b94 100644 --- a/llamafile/llamafile.h +++ b/llamafile/llamafile.h @@ -14,6 +14,7 @@ extern bool FLAG_log_disable; extern bool FLAG_mlock; extern bool FLAG_mmap; extern bool FLAG_nocompile; +extern bool FLAG_nologo; extern bool FLAG_precise; extern bool FLAG_recompile; extern bool FLAG_tinyblas; diff --git a/llamafile/print_image.cpp b/llamafile/print_image.cpp deleted file mode 100644 index c51ecfce69..0000000000 --- a/llamafile/print_image.cpp +++ /dev/null @@ -1,81 +0,0 @@ -// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- -// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi -// -// Copyright 2024 Mozilla Foundation -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "xterm.h" - -#include -#include -#include - -#include "llamafile/macros.h" -#include "stb/stb_image.h" -#include "stb/stb_image_resize.h" - -/** - * Prints image to terminal. - */ -int print_image(int fd, const char *path, int max_width) { - - // load image - int width, height, channels; - unsigned char *img = stbi_load(path, &width, &height, &channels, 3); - if (!img) - return -1; - - // get terminal info - bool use_rgb = is_rgb_terminal(); - struct winsize ws = {24, 80}; - tcgetwinsize(fd, &ws); - - // calculate new dimensions preserving aspect ratio - int xn = MIN(max_width, ws.ws_col); - int yn = (height * xn) / width; // *2 because we use half blocks - yn = (yn + 1) & -2; // round up to even number - - // resize image - unsigned char *resized = new unsigned char[xn * yn * 3]; - stbir_resize_uint8(img, width, height, 0, resized, xn, yn, 0, 3); - stbi_image_free(img); - - // convert image to string using half blocks - std::string s; - for (int y = 0; y < yn; y += 2) { - for (int x = 0; x < xn; ++x) { - int upr = resized[((y + 0) * xn + x) * 3 + 0]; - int upg = resized[((y + 0) * xn + x) * 3 + 1]; - int upb = resized[((y + 0) * xn + x) * 3 + 2]; - int lor = resized[((y + 1) * xn + x) * 3 + 0]; - int log = resized[((y + 1) * xn + x) * 3 + 1]; - int lob = resized[((y + 1) * xn + x) * 3 + 2]; - char buf[48]; - if (use_rgb) { - s.append(buf, snprintf(buf, sizeof(buf), "\033[38;2;%d;%d;%dm\033[48;2;%d;%d;%dm▀", - upr, upg, upb, lor, log, lob)); - } else { - int upx = rgb2xterm256((upr << 16) | (upg << 8) | upb); - int lox = rgb2xterm256((lor << 16) | (log << 8) | lob); - s.append(buf, snprintf(buf, sizeof(buf), "\033[38;5;%dm\033[48;5;%dm▀", upx, lox)); - } - } - s += "\033[0m\n"; - } - - // write image to terminal - int rc = write(fd, s.data(), s.size()); - delete[] resized; - return rc; -} diff --git a/llamafile/xterm.h b/llamafile/xterm.h index 6dd905204f..d7c5250598 100644 --- a/llamafile/xterm.h +++ b/llamafile/xterm.h @@ -18,5 +18,4 @@ #pragma once bool is_rgb_terminal(void); -int print_image(int, const char *, int); int rgb2xterm256(int); diff --git a/stable-diffusion.cpp/main.cpp b/stable-diffusion.cpp/main.cpp index 9458ea7696..2b4c75a9af 100644 --- a/stable-diffusion.cpp/main.cpp +++ b/stable-diffusion.cpp/main.cpp @@ -23,7 +23,7 @@ // #define STB_IMAGE_RESIZE_IMPLEMENTATION // #define STB_IMAGE_RESIZE_STATIC -#include "stb/stb_image_resize.h" +#include "stb/stb_image_resize2.h" #include "llamafile/llamafile.h" #include "llamafile/debug.h" @@ -743,11 +743,9 @@ int main(int argc, const char* argv[]) { return 1; } stbir_resize(input_image_buffer, width, height, 0, - resized_image_buffer, resized_width, resized_height, 0, STBIR_TYPE_UINT8, - 3 /*RGB channel*/, STBIR_ALPHA_CHANNEL_NONE, 0, - STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP, - STBIR_FILTER_BOX, STBIR_FILTER_BOX, - STBIR_COLORSPACE_SRGB, nullptr); + resized_image_buffer, resized_width, resized_height, 0, + STBIR_RGB, STBIR_TYPE_UINT8_SRGB, STBIR_EDGE_CLAMP, + STBIR_FILTER_BOX); // Save resized result free(input_image_buffer); diff --git a/stable-diffusion.cpp/util.cpp b/stable-diffusion.cpp/util.cpp index e206aa10e1..806b25ec2f 100644 --- a/stable-diffusion.cpp/util.cpp +++ b/stable-diffusion.cpp/util.cpp @@ -25,7 +25,7 @@ #include "llama.cpp/ggml.h" #include "stable-diffusion.h" -#include "stb/stb_image_resize.h" +#include "stb/stb_image_resize2.h" bool ends_with(const std::string& str, const std::string& ending) { if (str.length() >= ending.length()) { @@ -286,9 +286,9 @@ sd_image_t* preprocess_id_image(sd_image_t* img) { // 1. do resize using stb_resize functions unsigned char* buf = (unsigned char*)malloc(sizeof(unsigned char) * 3 * size * size); - if (!stbir_resize_uint8(img->data, w, h, 0, - buf, size, size, 0, - c)) { + if (!stbir_resize_uint8_srgb(img->data, w, h, 0, + buf, size, size, 0, + (stbir_pixel_layout)c)) { fprintf(stderr, "%s: resize operation failed \n ", __func__); return resized; } diff --git a/stb/stb_image.h b/stb/stb_image.h index 4766d7e675..9eedabedc4 100644 --- a/stb/stb_image.h +++ b/stb/stb_image.h @@ -1,4 +1,4 @@ -/* stb_image - v2.28 - public domain image loader - http://nothings.org/stb +/* stb_image - v2.30 - public domain image loader - http://nothings.org/stb no warranty implied; use at your own risk Do this: @@ -48,6 +48,8 @@ LICENSE RECENT REVISION HISTORY: + 2.30 (2024-05-31) avoid erroneous gcc warning + 2.29 (2023-05-xx) optimizations 2.28 (2023-01-29) many error fixes, security errors, just tons of stuff 2.27 (2021-07-11) document stbi_info better, 16-bit PNM support, bug fixes 2.26 (2020-07-13) many minor fixes @@ -371,13 +373,14 @@ RECENT REVISION HISTORY: #define STBI_VERSION 1 -enum { - STBI_default = 0, // only used for desired_channels +enum +{ + STBI_default = 0, // only used for desired_channels - STBI_grey = 1, - STBI_grey_alpha = 2, - STBI_rgb = 3, - STBI_rgb_alpha = 4 + STBI_grey = 1, + STBI_grey_alpha = 2, + STBI_rgb = 3, + STBI_rgb_alpha = 4 }; #include @@ -405,11 +408,11 @@ extern "C" { // load image by filename, open file, or memory buffer // -typedef struct { - int (*read)(void * user, char * data, - int size); // fill 'data' with 'size' bytes. return number of bytes actually read - void (*skip)(void * user, int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative - int (*eof)(void * user); // returns nonzero if we are at end of file/data +typedef struct +{ + int (*read) (void *user,char *data,int size); // fill 'data' with 'size' bytes. return number of bytes actually read + void (*skip) (void *user,int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative + int (*eof) (void *user); // returns nonzero if we are at end of file/data } stbi_io_callbacks; //////////////////////////////////// @@ -417,24 +420,21 @@ typedef struct { // 8-bits-per-channel interface // -STBIDEF stbi_uc * stbi_load_from_memory(stbi_uc const * buffer, int len, int * x, int * y, int * channels_in_file, - int desired_channels); -STBIDEF stbi_uc * stbi_load_from_callbacks(stbi_io_callbacks const * clbk, void * user, int * x, int * y, - int * channels_in_file, int desired_channels); +STBIDEF stbi_uc *stbi_load_from_memory (stbi_uc const *buffer, int len , int *x, int *y, int *channels_in_file, int desired_channels); +STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk , void *user, int *x, int *y, int *channels_in_file, int desired_channels); #ifndef STBI_NO_STDIO -STBIDEF stbi_uc * stbi_load(char const * filename, int * x, int * y, int * channels_in_file, int desired_channels); -STBIDEF stbi_uc * stbi_load_from_file(FILE * f, int * x, int * y, int * channels_in_file, int desired_channels); +STBIDEF stbi_uc *stbi_load (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); +STBIDEF stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); // for stbi_load_from_file, file pointer is left pointing immediately after image #endif #ifndef STBI_NO_GIF -STBIDEF stbi_uc * stbi_load_gif_from_memory(stbi_uc const * buffer, int len, int ** delays, int * x, int * y, int * z, - int * comp, int req_comp); +STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp); #endif #ifdef STBI_WINDOWS_UTF8 -STBIDEF int stbi_convert_wchar_to_utf8(char * buffer, size_t bufferlen, const wchar_t * input); +STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input); #endif //////////////////////////////////// @@ -442,14 +442,12 @@ STBIDEF int stbi_convert_wchar_to_utf8(char * buffer, size_t bufferlen, const wc // 16-bits-per-channel interface // -STBIDEF stbi_us * stbi_load_16_from_memory(stbi_uc const * buffer, int len, int * x, int * y, int * channels_in_file, - int desired_channels); -STBIDEF stbi_us * stbi_load_16_from_callbacks(stbi_io_callbacks const * clbk, void * user, int * x, int * y, - int * channels_in_file, int desired_channels); +STBIDEF stbi_us *stbi_load_16_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); +STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); #ifndef STBI_NO_STDIO -STBIDEF stbi_us * stbi_load_16(char const * filename, int * x, int * y, int * channels_in_file, int desired_channels); -STBIDEF stbi_us * stbi_load_from_file_16(FILE * f, int * x, int * y, int * channels_in_file, int desired_channels); +STBIDEF stbi_us *stbi_load_16 (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); +STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); #endif //////////////////////////////////// @@ -457,55 +455,56 @@ STBIDEF stbi_us * stbi_load_from_file_16(FILE * f, int * x, int * y, int * chann // float-per-channel interface // #ifndef STBI_NO_LINEAR -STBIDEF float * stbi_loadf_from_memory(stbi_uc const * buffer, int len, int * x, int * y, int * channels_in_file, - int desired_channels); -STBIDEF float * stbi_loadf_from_callbacks(stbi_io_callbacks const * clbk, void * user, int * x, int * y, int * channels_in_file, - int desired_channels); + STBIDEF float *stbi_loadf_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); + STBIDEF float *stbi_loadf_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); -#ifndef STBI_NO_STDIO -STBIDEF float * stbi_loadf(char const * filename, int * x, int * y, int * channels_in_file, int desired_channels); -STBIDEF float * stbi_loadf_from_file(FILE * f, int * x, int * y, int * channels_in_file, int desired_channels); -#endif + #ifndef STBI_NO_STDIO + STBIDEF float *stbi_loadf (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); + STBIDEF float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); + #endif #endif #ifndef STBI_NO_HDR -STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); -STBIDEF void stbi_hdr_to_ldr_scale(float scale); + STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); + STBIDEF void stbi_hdr_to_ldr_scale(float scale); #endif // STBI_NO_HDR #ifndef STBI_NO_LINEAR -STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); -STBIDEF void stbi_ldr_to_hdr_scale(float scale); + STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); + STBIDEF void stbi_ldr_to_hdr_scale(float scale); #endif // STBI_NO_LINEAR // stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR -STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const * clbk, void * user); -STBIDEF int stbi_is_hdr_from_memory(stbi_uc const * buffer, int len); +STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user); +STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); #ifndef STBI_NO_STDIO -STBIDEF int stbi_is_hdr(char const * filename); -STBIDEF int stbi_is_hdr_from_file(FILE * f); +STBIDEF int stbi_is_hdr (char const *filename); +STBIDEF int stbi_is_hdr_from_file(FILE *f); #endif // STBI_NO_STDIO + // get a VERY brief reason for failure // on most compilers (and ALL modern mainstream compilers) this is threadsafe -STBIDEF const char * stbi_failure_reason(void); +STBIDEF const char *stbi_failure_reason (void); // free the loaded image -- this is just free() -STBIDEF void stbi_image_free(void * retval_from_stbi_load); +STBIDEF void stbi_image_free (void *retval_from_stbi_load); // get image dimensions & components without fully decoding -STBIDEF int stbi_info_from_memory(stbi_uc const * buffer, int len, int * x, int * y, int * comp); -STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const * clbk, void * user, int * x, int * y, int * comp); -STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const * buffer, int len); -STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const * clbk, void * user); +STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); +STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp); +STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len); +STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *clbk, void *user); #ifndef STBI_NO_STDIO -STBIDEF int stbi_info(char const * filename, int * x, int * y, int * comp); -STBIDEF int stbi_info_from_file(FILE * f, int * x, int * y, int * comp); -STBIDEF int stbi_is_16_bit(char const * filename); -STBIDEF int stbi_is_16_bit_from_file(FILE * f); +STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp); +STBIDEF int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); +STBIDEF int stbi_is_16_bit (char const *filename); +STBIDEF int stbi_is_16_bit_from_file(FILE *f); #endif + + // for image formats that explicitly notate that they have premultiplied alpha, // we just return the colors as stored in the file. set this flag to force // unpremultiplication. results are undefined if the unpremultiply overflow. @@ -527,14 +526,14 @@ STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_fli // ZLIB client - used by PNG, available for other purposes -STBIDEF char * stbi_zlib_decode_malloc_guesssize(const char * buffer, int len, int initial_size, int * outlen); -STBIDEF char * stbi_zlib_decode_malloc_guesssize_headerflag(const char * buffer, int len, int initial_size, int * outlen, - int parse_header); -STBIDEF char * stbi_zlib_decode_malloc(const char * buffer, int len, int * outlen); -STBIDEF int stbi_zlib_decode_buffer(char * obuffer, int olen, const char * ibuffer, int ilen); +STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); +STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header); +STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); +STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); + +STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); +STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); -STBIDEF char * stbi_zlib_decode_noheader_malloc(const char * buffer, int len, int * outlen); -STBIDEF int stbi_zlib_decode_noheader_buffer(char * obuffer, int olen, const char * ibuffer, int ilen); #ifdef __cplusplus } @@ -547,50 +546,52 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char * obuffer, int olen, const cha #ifdef STB_IMAGE_IMPLEMENTATION -#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) || defined(STBI_ONLY_TGA) || \ - defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || \ - defined(STBI_ONLY_PNM) || defined(STBI_ONLY_ZLIB) -#ifndef STBI_ONLY_JPEG -#define STBI_NO_JPEG -#endif -#ifndef STBI_ONLY_PNG -#define STBI_NO_PNG -#endif -#ifndef STBI_ONLY_BMP -#define STBI_NO_BMP -#endif -#ifndef STBI_ONLY_PSD -#define STBI_NO_PSD -#endif -#ifndef STBI_ONLY_TGA -#define STBI_NO_TGA -#endif -#ifndef STBI_ONLY_GIF -#define STBI_NO_GIF -#endif -#ifndef STBI_ONLY_HDR -#define STBI_NO_HDR -#endif -#ifndef STBI_ONLY_PIC -#define STBI_NO_PIC -#endif -#ifndef STBI_ONLY_PNM -#define STBI_NO_PNM -#endif +#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) \ + || defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) \ + || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) \ + || defined(STBI_ONLY_ZLIB) + #ifndef STBI_ONLY_JPEG + #define STBI_NO_JPEG + #endif + #ifndef STBI_ONLY_PNG + #define STBI_NO_PNG + #endif + #ifndef STBI_ONLY_BMP + #define STBI_NO_BMP + #endif + #ifndef STBI_ONLY_PSD + #define STBI_NO_PSD + #endif + #ifndef STBI_ONLY_TGA + #define STBI_NO_TGA + #endif + #ifndef STBI_ONLY_GIF + #define STBI_NO_GIF + #endif + #ifndef STBI_ONLY_HDR + #define STBI_NO_HDR + #endif + #ifndef STBI_ONLY_PIC + #define STBI_NO_PIC + #endif + #ifndef STBI_ONLY_PNM + #define STBI_NO_PNM + #endif #endif #if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB) #define STBI_NO_ZLIB #endif -#include + #include #include // ptrdiff_t on osx #include #include +#include #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) -#include // ldexp, pow +#include // ldexp, pow #endif #ifndef STBI_NO_STDIO @@ -608,54 +609,55 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char * obuffer, int olen, const cha #define STBI_EXTERN extern #endif + #ifndef _MSC_VER -#ifdef __cplusplus -#define stbi_inline inline -#else -#define stbi_inline -#endif + #ifdef __cplusplus + #define stbi_inline inline + #else + #define stbi_inline + #endif #else -#define stbi_inline __forceinline + #define stbi_inline __forceinline #endif #ifndef STBI_NO_THREAD_LOCALS -#if defined(__cplusplus) && __cplusplus >= 201103L -#define STBI_THREAD_LOCAL thread_local -#elif defined(__GNUC__) && __GNUC__ < 5 -#define STBI_THREAD_LOCAL __thread -#elif defined(_MSC_VER) -#define STBI_THREAD_LOCAL __declspec(thread) -#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_THREADS__) -#define STBI_THREAD_LOCAL _Thread_local -#endif - -#ifndef STBI_THREAD_LOCAL -#if defined(__GNUC__) -#define STBI_THREAD_LOCAL __thread -#endif -#endif + #if defined(__cplusplus) && __cplusplus >= 201103L + #define STBI_THREAD_LOCAL thread_local + #elif defined(__GNUC__) && __GNUC__ < 5 + #define STBI_THREAD_LOCAL __thread + #elif defined(_MSC_VER) + #define STBI_THREAD_LOCAL __declspec(thread) + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_THREADS__) + #define STBI_THREAD_LOCAL _Thread_local + #endif + + #ifndef STBI_THREAD_LOCAL + #if defined(__GNUC__) + #define STBI_THREAD_LOCAL __thread + #endif + #endif #endif #if defined(_MSC_VER) || defined(__SYMBIAN32__) typedef unsigned short stbi__uint16; -typedef signed short stbi__int16; -typedef unsigned int stbi__uint32; -typedef signed int stbi__int32; +typedef signed short stbi__int16; +typedef unsigned int stbi__uint32; +typedef signed int stbi__int32; #else #include typedef uint16_t stbi__uint16; -typedef int16_t stbi__int16; +typedef int16_t stbi__int16; typedef uint32_t stbi__uint32; -typedef int32_t stbi__int32; +typedef int32_t stbi__int32; #endif // should produce compiler error if size is wrong -typedef unsigned char validate_uint32[sizeof(stbi__uint32) == 4 ? 1 : -1]; +typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1]; #ifdef _MSC_VER -#define STBI_NOTUSED(v) (void)(v) +#define STBI_NOTUSED(v) (void)(v) #else -#define STBI_NOTUSED(v) (void)sizeof(v) +#define STBI_NOTUSED(v) (void)sizeof(v) #endif #ifdef _MSC_VER @@ -663,9 +665,9 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32) == 4 ? 1 : -1]; #endif #ifdef STBI_HAS_LROTL -#define stbi_lrot(x, y) _lrotl(x, y) + #define stbi_lrot(x,y) _lrotl(x,y) #else -#define stbi_lrot(x, y) (((x) << (y)) | ((x) >> (-(y)&31))) + #define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (-(y) & 31))) #endif #if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) @@ -677,13 +679,13 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32) == 4 ? 1 : -1]; #endif #ifndef STBI_MALLOC -#define STBI_MALLOC(sz) malloc(sz) -#define STBI_REALLOC(p, newsz) realloc(p, newsz) -#define STBI_FREE(p) free(p) +#define STBI_MALLOC(sz) malloc(sz) +#define STBI_REALLOC(p,newsz) realloc(p,newsz) +#define STBI_FREE(p) free(p) #endif #ifndef STBI_REALLOC_SIZED -#define STBI_REALLOC_SIZED(p, oldsz, newsz) STBI_REALLOC(p, newsz) +#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz) #endif // x86/x64 detection @@ -725,31 +727,34 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32) == 4 ? 1 : -1]; #ifdef _MSC_VER -#if _MSC_VER >= 1400 // not VC6 -#include // __cpuid -static int stbi__cpuid3(void) { - int info[4]; - __cpuid(info, 1); - return info[3]; +#if _MSC_VER >= 1400 // not VC6 +#include // __cpuid +static int stbi__cpuid3(void) +{ + int info[4]; + __cpuid(info,1); + return info[3]; } #else -static int stbi__cpuid3(void) { - int res; - __asm { +static int stbi__cpuid3(void) +{ + int res; + __asm { mov eax,1 cpuid mov res,edx - } - return res; + } + return res; } #endif #define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name #if !defined(STBI_NO_JPEG) && defined(STBI_SSE2) -static int stbi__sse2_available(void) { - int info3 = stbi__cpuid3(); - return ((info3 >> 26) & 1) != 0; +static int stbi__sse2_available(void) +{ + int info3 = stbi__cpuid3(); + return ((info3 >> 26) & 1) != 0; } #endif @@ -757,11 +762,12 @@ static int stbi__sse2_available(void) { #define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) #if !defined(STBI_NO_JPEG) && defined(STBI_SSE2) -static int stbi__sse2_available(void) { - // If we're even attempting to compile this on GCC/Clang, that means - // -msse2 is on, which means the compiler is allowed to use SSE2 - // instructions at will, and so are we. - return 1; +static int stbi__sse2_available(void) +{ + // If we're even attempting to compile this on GCC/Clang, that means + // -msse2 is on, which means the compiler is allowed to use SSE2 + // instructions at will, and so are we. + return 1; } #endif @@ -796,162 +802,190 @@ static int stbi__sse2_available(void) { // stbi__context structure is our basic context used by all images, so it // contains all the IO context, plus some basic image information -typedef struct { - stbi__uint32 img_x, img_y; - int img_n, img_out_n; +typedef struct +{ + stbi__uint32 img_x, img_y; + int img_n, img_out_n; - stbi_io_callbacks io; - void * io_user_data; + stbi_io_callbacks io; + void *io_user_data; - int read_from_callbacks; - int buflen; - stbi_uc buffer_start[128]; - int callback_already_read; + int read_from_callbacks; + int buflen; + stbi_uc buffer_start[128]; + int callback_already_read; - stbi_uc *img_buffer, *img_buffer_end; - stbi_uc *img_buffer_original, *img_buffer_original_end; + stbi_uc *img_buffer, *img_buffer_end; + stbi_uc *img_buffer_original, *img_buffer_original_end; } stbi__context; -static void stbi__refill_buffer(stbi__context * s); + +static void stbi__refill_buffer(stbi__context *s); // initialize a memory-decode context -static void stbi__start_mem(stbi__context * s, stbi_uc const * buffer, int len) { - s->io.read = NULL; - s->read_from_callbacks = 0; - s->callback_already_read = 0; - s->img_buffer = s->img_buffer_original = (stbi_uc *)buffer; - s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *)buffer + len; +static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len) +{ + s->io.read = NULL; + s->read_from_callbacks = 0; + s->callback_already_read = 0; + s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer; + s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *) buffer+len; } // initialize a callback-based context -static void stbi__start_callbacks(stbi__context * s, stbi_io_callbacks * c, void * user) { - s->io = *c; - s->io_user_data = user; - s->buflen = sizeof(s->buffer_start); - s->read_from_callbacks = 1; - s->callback_already_read = 0; - s->img_buffer = s->img_buffer_original = s->buffer_start; - stbi__refill_buffer(s); - s->img_buffer_original_end = s->img_buffer_end; +static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user) +{ + s->io = *c; + s->io_user_data = user; + s->buflen = sizeof(s->buffer_start); + s->read_from_callbacks = 1; + s->callback_already_read = 0; + s->img_buffer = s->img_buffer_original = s->buffer_start; + stbi__refill_buffer(s); + s->img_buffer_original_end = s->img_buffer_end; } #ifndef STBI_NO_STDIO -static int stbi__stdio_read(void * user, char * data, int size) { return (int)fread(data, 1, size, (FILE *)user); } +static int stbi__stdio_read(void *user, char *data, int size) +{ + return (int) fread(data,1,size,(FILE*) user); +} -static void stbi__stdio_skip(void * user, int n) { - int ch; - fseek((FILE *)user, n, SEEK_CUR); - ch = fgetc((FILE *)user); /* have to read a byte to reset feof()'s flag */ - if (ch != EOF) { - ungetc(ch, (FILE *)user); /* push byte back onto stream if valid. */ - } +static void stbi__stdio_skip(void *user, int n) +{ + int ch; + fseek((FILE*) user, n, SEEK_CUR); + ch = fgetc((FILE*) user); /* have to read a byte to reset feof()'s flag */ + if (ch != EOF) { + ungetc(ch, (FILE *) user); /* push byte back onto stream if valid. */ + } } -static int stbi__stdio_eof(void * user) { return feof((FILE *)user) || ferror((FILE *)user); } +static int stbi__stdio_eof(void *user) +{ + return feof((FILE*) user) || ferror((FILE *) user); +} -static stbi_io_callbacks stbi__stdio_callbacks = { - stbi__stdio_read, - stbi__stdio_skip, - stbi__stdio_eof, +static stbi_io_callbacks stbi__stdio_callbacks = +{ + stbi__stdio_read, + stbi__stdio_skip, + stbi__stdio_eof, }; -static void stbi__start_file(stbi__context * s, FILE * f) { stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *)f); } +static void stbi__start_file(stbi__context *s, FILE *f) +{ + stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f); +} -// static void stop_file(stbi__context *s) { } +//static void stop_file(stbi__context *s) { } #endif // !STBI_NO_STDIO -static void stbi__rewind(stbi__context * s) { - // conceptually rewind SHOULD rewind to the beginning of the stream, - // but we just rewind to the beginning of the initial buffer, because - // we only use it after doing 'test', which only ever looks at at most 92 bytes - s->img_buffer = s->img_buffer_original; - s->img_buffer_end = s->img_buffer_original_end; +static void stbi__rewind(stbi__context *s) +{ + // conceptually rewind SHOULD rewind to the beginning of the stream, + // but we just rewind to the beginning of the initial buffer, because + // we only use it after doing 'test', which only ever looks at at most 92 bytes + s->img_buffer = s->img_buffer_original; + s->img_buffer_end = s->img_buffer_original_end; } -enum { STBI_ORDER_RGB, STBI_ORDER_BGR }; +enum +{ + STBI_ORDER_RGB, + STBI_ORDER_BGR +}; -typedef struct { - int bits_per_channel; - int num_channels; - int channel_order; +typedef struct +{ + int bits_per_channel; + int num_channels; + int channel_order; } stbi__result_info; #ifndef STBI_NO_JPEG -static int stbi__jpeg_test(stbi__context * s); -static void * stbi__jpeg_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri); -static int stbi__jpeg_info(stbi__context * s, int * x, int * y, int * comp); +static int stbi__jpeg_test(stbi__context *s); +static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PNG -static int stbi__png_test(stbi__context * s); -static void * stbi__png_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri); -static int stbi__png_info(stbi__context * s, int * x, int * y, int * comp); -static int stbi__png_is16(stbi__context * s); +static int stbi__png_test(stbi__context *s); +static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__png_is16(stbi__context *s); #endif #ifndef STBI_NO_BMP -static int stbi__bmp_test(stbi__context * s); -static void * stbi__bmp_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri); -static int stbi__bmp_info(stbi__context * s, int * x, int * y, int * comp); +static int stbi__bmp_test(stbi__context *s); +static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_TGA -static int stbi__tga_test(stbi__context * s); -static void * stbi__tga_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri); -static int stbi__tga_info(stbi__context * s, int * x, int * y, int * comp); +static int stbi__tga_test(stbi__context *s); +static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PSD -static int stbi__psd_test(stbi__context * s); -static void * stbi__psd_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri, int bpc); -static int stbi__psd_info(stbi__context * s, int * x, int * y, int * comp); -static int stbi__psd_is16(stbi__context * s); +static int stbi__psd_test(stbi__context *s); +static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc); +static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__psd_is16(stbi__context *s); #endif #ifndef STBI_NO_HDR -static int stbi__hdr_test(stbi__context * s); -static float * stbi__hdr_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri); -static int stbi__hdr_info(stbi__context * s, int * x, int * y, int * comp); +static int stbi__hdr_test(stbi__context *s); +static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PIC -static int stbi__pic_test(stbi__context * s); -static void * stbi__pic_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri); -static int stbi__pic_info(stbi__context * s, int * x, int * y, int * comp); +static int stbi__pic_test(stbi__context *s); +static void *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_GIF -static int stbi__gif_test(stbi__context * s); -static void * stbi__gif_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri); -static void * stbi__load_gif_main(stbi__context * s, int ** delays, int * x, int * y, int * z, int * comp, int req_comp); -static int stbi__gif_info(stbi__context * s, int * x, int * y, int * comp); +static int stbi__gif_test(stbi__context *s); +static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp); +static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp); #endif #ifndef STBI_NO_PNM -static int stbi__pnm_test(stbi__context * s); -static void * stbi__pnm_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri); -static int stbi__pnm_info(stbi__context * s, int * x, int * y, int * comp); -static int stbi__pnm_is16(stbi__context * s); +static int stbi__pnm_test(stbi__context *s); +static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp); +static int stbi__pnm_is16(stbi__context *s); #endif static #ifdef STBI_THREAD_LOCAL - STBI_THREAD_LOCAL +STBI_THREAD_LOCAL #endif - const char * stbi__g_failure_reason; +const char *stbi__g_failure_reason; -STBIDEF const char * stbi_failure_reason(void) { return stbi__g_failure_reason; } +STBIDEF const char *stbi_failure_reason(void) +{ + return stbi__g_failure_reason; +} #ifndef STBI_NO_FAILURE_STRINGS -static int stbi__err(const char * str) { - stbi__g_failure_reason = str; - return 0; +static int stbi__err(const char *str) +{ + stbi__g_failure_reason = str; + return 0; } #endif -static void * stbi__malloc(size_t size) { return STBI_MALLOC(size); } +static void *stbi__malloc(size_t size) +{ + return STBI_MALLOC(size); +} // stb_image uses ints pervasively, including for offset calculations. // therefore the largest decoded image size we can support with the @@ -965,88 +999,88 @@ static void * stbi__malloc(size_t size) { return STBI_MALLOC(size); } // return 1 if the sum is valid, 0 on overflow. // negative terms are considered invalid. -static int stbi__addsizes_valid(int a, int b) { - if (b < 0) - return 0; - // now 0 <= b <= INT_MAX, hence also - // 0 <= INT_MAX - b <= INTMAX. - // And "a + b <= INT_MAX" (which might overflow) is the - // same as a <= INT_MAX - b (no overflow) - return a <= INT_MAX - b; +static int stbi__addsizes_valid(int a, int b) +{ + if (b < 0) return 0; + // now 0 <= b <= INT_MAX, hence also + // 0 <= INT_MAX - b <= INTMAX. + // And "a + b <= INT_MAX" (which might overflow) is the + // same as a <= INT_MAX - b (no overflow) + return a <= INT_MAX - b; } // returns 1 if the product is valid, 0 on overflow. // negative factors are considered invalid. -static int stbi__mul2sizes_valid(int a, int b) { - if (a < 0 || b < 0) - return 0; - if (b == 0) - return 1; // mul-by-0 is always safe - // portable way to check for no overflows in a*b - return a <= INT_MAX / b; +static int stbi__mul2sizes_valid(int a, int b) +{ + if (a < 0 || b < 0) return 0; + if (b == 0) return 1; // mul-by-0 is always safe + // portable way to check for no overflows in a*b + return a <= INT_MAX/b; } #if !defined(STBI_NO_JPEG) || !defined(STBI_NO_PNG) || !defined(STBI_NO_TGA) || !defined(STBI_NO_HDR) // returns 1 if "a*b + add" has no negative terms/factors and doesn't overflow -static int stbi__mad2sizes_valid(int a, int b, int add) { - return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a * b, add); +static int stbi__mad2sizes_valid(int a, int b, int add) +{ + return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a*b, add); } #endif // returns 1 if "a*b*c + add" has no negative terms/factors and doesn't overflow -static int stbi__mad3sizes_valid(int a, int b, int c, int add) { - return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a * b, c) && stbi__addsizes_valid(a * b * c, add); +static int stbi__mad3sizes_valid(int a, int b, int c, int add) +{ + return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && + stbi__addsizes_valid(a*b*c, add); } // returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't overflow #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) || !defined(STBI_NO_PNM) -static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add) { - return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a * b, c) && stbi__mul2sizes_valid(a * b * c, d) && - stbi__addsizes_valid(a * b * c * d, add); +static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add) +{ + return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && + stbi__mul2sizes_valid(a*b*c, d) && stbi__addsizes_valid(a*b*c*d, add); } #endif #if !defined(STBI_NO_JPEG) || !defined(STBI_NO_PNG) || !defined(STBI_NO_TGA) || !defined(STBI_NO_HDR) // mallocs with size overflow checking -static void * stbi__malloc_mad2(int a, int b, int add) { - if (!stbi__mad2sizes_valid(a, b, add)) - return NULL; - return stbi__malloc(a * b + add); +static void *stbi__malloc_mad2(int a, int b, int add) +{ + if (!stbi__mad2sizes_valid(a, b, add)) return NULL; + return stbi__malloc(a*b + add); } #endif -static void * stbi__malloc_mad3(int a, int b, int c, int add) { - if (!stbi__mad3sizes_valid(a, b, c, add)) - return NULL; - return stbi__malloc(a * b * c + add); +static void *stbi__malloc_mad3(int a, int b, int c, int add) +{ + if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL; + return stbi__malloc(a*b*c + add); } #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) || !defined(STBI_NO_PNM) -static void * stbi__malloc_mad4(int a, int b, int c, int d, int add) { - if (!stbi__mad4sizes_valid(a, b, c, d, add)) - return NULL; - return stbi__malloc(a * b * c * d + add); +static void *stbi__malloc_mad4(int a, int b, int c, int d, int add) +{ + if (!stbi__mad4sizes_valid(a, b, c, d, add)) return NULL; + return stbi__malloc(a*b*c*d + add); } #endif // returns 1 if the sum of two signed ints is valid (between -2^31 and 2^31-1 inclusive), 0 on overflow. -static int stbi__addints_valid(int a, int b) { - if ((a >= 0) != (b >= 0)) - return 1; // a and b have different signs, so no overflow - if (a < 0 && b < 0) - return a >= INT_MIN - b; // same as a + b >= INT_MIN; INT_MIN - b cannot overflow since b < 0. - return a <= INT_MAX - b; +static int stbi__addints_valid(int a, int b) +{ + if ((a >= 0) != (b >= 0)) return 1; // a and b have different signs, so no overflow + if (a < 0 && b < 0) return a >= INT_MIN - b; // same as a + b >= INT_MIN; INT_MIN - b cannot overflow since b < 0. + return a <= INT_MAX - b; } -// returns 1 if the product of two signed shorts is valid, 0 on overflow. -static int stbi__mul2shorts_valid(short a, short b) { - if (b == 0 || b == -1) - return 1; // multiplication by 0 is always 0; check for -1 so SHRT_MIN/b doesn't overflow - if ((a >= 0) == (b >= 0)) - return a <= SHRT_MAX / b; // product is positive, so similar to mul2sizes_valid - if (b < 0) - return a <= SHRT_MIN / b; // same as a * b >= SHRT_MIN - return a >= SHRT_MIN / b; +// returns 1 if the product of two ints fits in a signed short, 0 on overflow. +static int stbi__mul2shorts_valid(int a, int b) +{ + if (b == 0 || b == -1) return 1; // multiplication by 0 is always 0; check for -1 so SHRT_MIN/b doesn't overflow + if ((a >= 0) == (b >= 0)) return a <= SHRT_MAX/b; // product is positive, so similar to mul2sizes_valid + if (b < 0) return a <= SHRT_MIN / b; // same as a * b >= SHRT_MIN + return a >= SHRT_MIN / b; } // stbi__err - error @@ -1054,411 +1088,423 @@ static int stbi__mul2shorts_valid(short a, short b) { // stbi__errpuc - error returning pointer to unsigned char #ifdef STBI_NO_FAILURE_STRINGS -#define stbi__err(x, y) 0 + #define stbi__err(x,y) 0 #elif defined(STBI_FAILURE_USERMSG) -#define stbi__err(x, y) stbi__err(y) + #define stbi__err(x,y) stbi__err(y) #else -#define stbi__err(x, y) stbi__err(x) + #define stbi__err(x,y) stbi__err(x) #endif -#define stbi__errpf(x, y) ((float *)(size_t)(stbi__err(x, y) ? NULL : NULL)) -#define stbi__errpuc(x, y) ((unsigned char *)(size_t)(stbi__err(x, y) ? NULL : NULL)) +#define stbi__errpf(x,y) ((float *)(size_t) (stbi__err(x,y)?NULL:NULL)) +#define stbi__errpuc(x,y) ((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL)) -STBIDEF void stbi_image_free(void * retval_from_stbi_load) { STBI_FREE(retval_from_stbi_load); } +STBIDEF void stbi_image_free(void *retval_from_stbi_load) +{ + STBI_FREE(retval_from_stbi_load); +} #ifndef STBI_NO_LINEAR -static float * stbi__ldr_to_hdr(stbi_uc * data, int x, int y, int comp); +static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp); #endif #ifndef STBI_NO_HDR -static stbi_uc * stbi__hdr_to_ldr(float * data, int x, int y, int comp); +static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp); #endif static int stbi__vertically_flip_on_load_global = 0; -STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) { - stbi__vertically_flip_on_load_global = flag_true_if_should_flip; +STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) +{ + stbi__vertically_flip_on_load_global = flag_true_if_should_flip; } #ifndef STBI_THREAD_LOCAL -#define stbi__vertically_flip_on_load stbi__vertically_flip_on_load_global +#define stbi__vertically_flip_on_load stbi__vertically_flip_on_load_global #else static STBI_THREAD_LOCAL int stbi__vertically_flip_on_load_local, stbi__vertically_flip_on_load_set; -STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_flip) { - stbi__vertically_flip_on_load_local = flag_true_if_should_flip; - stbi__vertically_flip_on_load_set = 1; +STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_flip) +{ + stbi__vertically_flip_on_load_local = flag_true_if_should_flip; + stbi__vertically_flip_on_load_set = 1; } -#define stbi__vertically_flip_on_load \ - (stbi__vertically_flip_on_load_set ? stbi__vertically_flip_on_load_local : stbi__vertically_flip_on_load_global) +#define stbi__vertically_flip_on_load (stbi__vertically_flip_on_load_set \ + ? stbi__vertically_flip_on_load_local \ + : stbi__vertically_flip_on_load_global) #endif // STBI_THREAD_LOCAL -static void * stbi__load_main(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri, int bpc) { - memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields - ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed - ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order - ri->num_channels = 0; - -// test the formats with a very explicit header first (at least a FOURCC -// or distinctive magic number first) -#ifndef STBI_NO_PNG - if (stbi__png_test(s)) - return stbi__png_load(s, x, y, comp, req_comp, ri); -#endif -#ifndef STBI_NO_BMP - if (stbi__bmp_test(s)) - return stbi__bmp_load(s, x, y, comp, req_comp, ri); -#endif -#ifndef STBI_NO_GIF - if (stbi__gif_test(s)) - return stbi__gif_load(s, x, y, comp, req_comp, ri); -#endif -#ifndef STBI_NO_PSD - if (stbi__psd_test(s)) - return stbi__psd_load(s, x, y, comp, req_comp, ri, bpc); -#else - STBI_NOTUSED(bpc); -#endif -#ifndef STBI_NO_PIC - if (stbi__pic_test(s)) - return stbi__pic_load(s, x, y, comp, req_comp, ri); -#endif - -// then the formats that can end up attempting to load with just 1 or 2 -// bytes matching expectations; these are prone to false positives, so -// try them later -#ifndef STBI_NO_JPEG - if (stbi__jpeg_test(s)) - return stbi__jpeg_load(s, x, y, comp, req_comp, ri); -#endif -#ifndef STBI_NO_PNM - if (stbi__pnm_test(s)) - return stbi__pnm_load(s, x, y, comp, req_comp, ri); -#endif - -#ifndef STBI_NO_HDR - if (stbi__hdr_test(s)) { - float * hdr = stbi__hdr_load(s, x, y, comp, req_comp, ri); - return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); - } -#endif - -#ifndef STBI_NO_TGA - // test tga last because it's a crappy test! - if (stbi__tga_test(s)) - return stbi__tga_load(s, x, y, comp, req_comp, ri); -#endif - - return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt"); -} - -static stbi_uc * stbi__convert_16_to_8(stbi__uint16 * orig, int w, int h, int channels) { - int i; - int img_len = w * h * channels; - stbi_uc * reduced; +static void *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) +{ + memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields + ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed + ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order + ri->num_channels = 0; + + // test the formats with a very explicit header first (at least a FOURCC + // or distinctive magic number first) + #ifndef STBI_NO_PNG + if (stbi__png_test(s)) return stbi__png_load(s,x,y,comp,req_comp, ri); + #endif + #ifndef STBI_NO_BMP + if (stbi__bmp_test(s)) return stbi__bmp_load(s,x,y,comp,req_comp, ri); + #endif + #ifndef STBI_NO_GIF + if (stbi__gif_test(s)) return stbi__gif_load(s,x,y,comp,req_comp, ri); + #endif + #ifndef STBI_NO_PSD + if (stbi__psd_test(s)) return stbi__psd_load(s,x,y,comp,req_comp, ri, bpc); + #else + STBI_NOTUSED(bpc); + #endif + #ifndef STBI_NO_PIC + if (stbi__pic_test(s)) return stbi__pic_load(s,x,y,comp,req_comp, ri); + #endif + + // then the formats that can end up attempting to load with just 1 or 2 + // bytes matching expectations; these are prone to false positives, so + // try them later + #ifndef STBI_NO_JPEG + if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp, ri); + #endif + #ifndef STBI_NO_PNM + if (stbi__pnm_test(s)) return stbi__pnm_load(s,x,y,comp,req_comp, ri); + #endif + + #ifndef STBI_NO_HDR + if (stbi__hdr_test(s)) { + float *hdr = stbi__hdr_load(s, x,y,comp,req_comp, ri); + return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); + } + #endif + + #ifndef STBI_NO_TGA + // test tga last because it's a crappy test! + if (stbi__tga_test(s)) + return stbi__tga_load(s,x,y,comp,req_comp, ri); + #endif + + return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt"); +} + +static stbi_uc *stbi__convert_16_to_8(stbi__uint16 *orig, int w, int h, int channels) +{ + int i; + int img_len = w * h * channels; + stbi_uc *reduced; - reduced = (stbi_uc *)stbi__malloc(img_len); - if (reduced == NULL) - return stbi__errpuc("outofmem", "Out of memory"); + reduced = (stbi_uc *) stbi__malloc(img_len); + if (reduced == NULL) return stbi__errpuc("outofmem", "Out of memory"); - for (i = 0; i < img_len; ++i) - reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling + for (i = 0; i < img_len; ++i) + reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling - STBI_FREE(orig); - return reduced; + STBI_FREE(orig); + return reduced; } -static stbi__uint16 * stbi__convert_8_to_16(stbi_uc * orig, int w, int h, int channels) { - int i; - int img_len = w * h * channels; - stbi__uint16 * enlarged; +static stbi__uint16 *stbi__convert_8_to_16(stbi_uc *orig, int w, int h, int channels) +{ + int i; + int img_len = w * h * channels; + stbi__uint16 *enlarged; - enlarged = (stbi__uint16 *)stbi__malloc(img_len * 2); - if (enlarged == NULL) - return (stbi__uint16 *)stbi__errpuc("outofmem", "Out of memory"); + enlarged = (stbi__uint16 *) stbi__malloc(img_len*2); + if (enlarged == NULL) return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory"); - for (i = 0; i < img_len; ++i) - enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff + for (i = 0; i < img_len; ++i) + enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff - STBI_FREE(orig); - return enlarged; + STBI_FREE(orig); + return enlarged; } -static void stbi__vertical_flip(void * image, int w, int h, int bytes_per_pixel) { - int row; - size_t bytes_per_row = (size_t)w * bytes_per_pixel; - stbi_uc temp[2048]; - stbi_uc * bytes = (stbi_uc *)image; - - for (row = 0; row < (h >> 1); row++) { - stbi_uc * row0 = bytes + row * bytes_per_row; - stbi_uc * row1 = bytes + (h - row - 1) * bytes_per_row; - // swap row0 with row1 - size_t bytes_left = bytes_per_row; - while (bytes_left) { - size_t bytes_copy = (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp); - memcpy(temp, row0, bytes_copy); - memcpy(row0, row1, bytes_copy); - memcpy(row1, temp, bytes_copy); - row0 += bytes_copy; - row1 += bytes_copy; - bytes_left -= bytes_copy; - } - } +static void stbi__vertical_flip(void *image, int w, int h, int bytes_per_pixel) +{ + int row; + size_t bytes_per_row = (size_t)w * bytes_per_pixel; + stbi_uc temp[2048]; + stbi_uc *bytes = (stbi_uc *)image; + + for (row = 0; row < (h>>1); row++) { + stbi_uc *row0 = bytes + row*bytes_per_row; + stbi_uc *row1 = bytes + (h - row - 1)*bytes_per_row; + // swap row0 with row1 + size_t bytes_left = bytes_per_row; + while (bytes_left) { + size_t bytes_copy = (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp); + memcpy(temp, row0, bytes_copy); + memcpy(row0, row1, bytes_copy); + memcpy(row1, temp, bytes_copy); + row0 += bytes_copy; + row1 += bytes_copy; + bytes_left -= bytes_copy; + } + } } #ifndef STBI_NO_GIF -static void stbi__vertical_flip_slices(void * image, int w, int h, int z, int bytes_per_pixel) { - int slice; - int slice_size = w * h * bytes_per_pixel; - - stbi_uc * bytes = (stbi_uc *)image; - for (slice = 0; slice < z; ++slice) { - stbi__vertical_flip(bytes, w, h, bytes_per_pixel); - bytes += slice_size; - } +static void stbi__vertical_flip_slices(void *image, int w, int h, int z, int bytes_per_pixel) +{ + int slice; + int slice_size = w * h * bytes_per_pixel; + + stbi_uc *bytes = (stbi_uc *)image; + for (slice = 0; slice < z; ++slice) { + stbi__vertical_flip(bytes, w, h, bytes_per_pixel); + bytes += slice_size; + } } #endif -static unsigned char * stbi__load_and_postprocess_8bit(stbi__context * s, int * x, int * y, int * comp, int req_comp) { - stbi__result_info ri; - void * result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8); +static unsigned char *stbi__load_and_postprocess_8bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + stbi__result_info ri; + void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8); - if (result == NULL) - return NULL; + if (result == NULL) + return NULL; - // it is the responsibility of the loaders to make sure we get either 8 or 16 bit. - STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16); + // it is the responsibility of the loaders to make sure we get either 8 or 16 bit. + STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16); - if (ri.bits_per_channel != 8) { - result = stbi__convert_16_to_8((stbi__uint16 *)result, *x, *y, req_comp == 0 ? *comp : req_comp); - ri.bits_per_channel = 8; - } + if (ri.bits_per_channel != 8) { + result = stbi__convert_16_to_8((stbi__uint16 *) result, *x, *y, req_comp == 0 ? *comp : req_comp); + ri.bits_per_channel = 8; + } - // @TODO: move stbi__convert_format to here + // @TODO: move stbi__convert_format to here - if (stbi__vertically_flip_on_load) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc)); - } + if (stbi__vertically_flip_on_load) { + int channels = req_comp ? req_comp : *comp; + stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc)); + } - return (unsigned char *)result; + return (unsigned char *) result; } -static stbi__uint16 * stbi__load_and_postprocess_16bit(stbi__context * s, int * x, int * y, int * comp, int req_comp) { - stbi__result_info ri; - void * result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16); +static stbi__uint16 *stbi__load_and_postprocess_16bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + stbi__result_info ri; + void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16); - if (result == NULL) - return NULL; + if (result == NULL) + return NULL; - // it is the responsibility of the loaders to make sure we get either 8 or 16 bit. - STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16); + // it is the responsibility of the loaders to make sure we get either 8 or 16 bit. + STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16); - if (ri.bits_per_channel != 16) { - result = stbi__convert_8_to_16((stbi_uc *)result, *x, *y, req_comp == 0 ? *comp : req_comp); - ri.bits_per_channel = 16; - } + if (ri.bits_per_channel != 16) { + result = stbi__convert_8_to_16((stbi_uc *) result, *x, *y, req_comp == 0 ? *comp : req_comp); + ri.bits_per_channel = 16; + } - // @TODO: move stbi__convert_format16 to here - // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision + // @TODO: move stbi__convert_format16 to here + // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision - if (stbi__vertically_flip_on_load) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16)); - } + if (stbi__vertically_flip_on_load) { + int channels = req_comp ? req_comp : *comp; + stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16)); + } - return (stbi__uint16 *)result; + return (stbi__uint16 *) result; } #if !defined(STBI_NO_HDR) && !defined(STBI_NO_LINEAR) -static void stbi__float_postprocess(float * result, int * x, int * y, int * comp, int req_comp) { - if (stbi__vertically_flip_on_load && result != NULL) { - int channels = req_comp ? req_comp : *comp; - stbi__vertical_flip(result, *x, *y, channels * sizeof(float)); - } +static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp) +{ + if (stbi__vertically_flip_on_load && result != NULL) { + int channels = req_comp ? req_comp : *comp; + stbi__vertical_flip(result, *x, *y, channels * sizeof(float)); + } } #endif #ifndef STBI_NO_STDIO #if defined(_WIN32) && defined(STBI_WINDOWS_UTF8) -STBI_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char * str, - int cbmb, wchar_t * widestr, int cchwide); -STBI_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, - const wchar_t * widestr, int cchwide, char * str, int cbmb, - const char * defchar, int * used_default); +STBI_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide); +STBI_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default); #endif #if defined(_WIN32) && defined(STBI_WINDOWS_UTF8) -STBIDEF int stbi_convert_wchar_to_utf8(char * buffer, size_t bufferlen, const wchar_t * input) { - return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int)bufferlen, NULL, NULL); +STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input) +{ + return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL); } #endif -static FILE * stbi__fopen(char const * filename, char const * mode) { - FILE * f; +static FILE *stbi__fopen(char const *filename, char const *mode) +{ + FILE *f; #if defined(_WIN32) && defined(STBI_WINDOWS_UTF8) - wchar_t wMode[64]; - wchar_t wFilename[1024]; - if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename) / sizeof(*wFilename))) - return 0; + wchar_t wMode[64]; + wchar_t wFilename[1024]; + if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename)/sizeof(*wFilename))) + return 0; - if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode) / sizeof(*wMode))) - return 0; + if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode)/sizeof(*wMode))) + return 0; #if defined(_MSC_VER) && _MSC_VER >= 1400 - if (0 != _wfopen_s(&f, wFilename, wMode)) - f = 0; + if (0 != _wfopen_s(&f, wFilename, wMode)) + f = 0; #else - f = _wfopen(wFilename, wMode); + f = _wfopen(wFilename, wMode); #endif #elif defined(_MSC_VER) && _MSC_VER >= 1400 - if (0 != fopen_s(&f, filename, mode)) - f = 0; + if (0 != fopen_s(&f, filename, mode)) + f=0; #else - f = fopen(filename, mode); + f = fopen(filename, mode); #endif - return f; + return f; } -STBIDEF stbi_uc * stbi_load(char const * filename, int * x, int * y, int * comp, int req_comp) { - FILE * f = stbi__fopen(filename, "rb"); - unsigned char * result; - if (!f) - return stbi__errpuc("can't fopen", "Unable to open file"); - result = stbi_load_from_file(f, x, y, comp, req_comp); - fclose(f); - return result; -} -STBIDEF stbi_uc * stbi_load_from_file(FILE * f, int * x, int * y, int * comp, int req_comp) { - unsigned char * result; - stbi__context s; - stbi__start_file(&s, f); - result = stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); - if (result) { - // need to 'unget' all the characters in the IO buffer - fseek(f, -(int)(s.img_buffer_end - s.img_buffer), SEEK_CUR); - } - return result; +STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) +{ + FILE *f = stbi__fopen(filename, "rb"); + unsigned char *result; + if (!f) return stbi__errpuc("can't fopen", "Unable to open file"); + result = stbi_load_from_file(f,x,y,comp,req_comp); + fclose(f); + return result; } -STBIDEF stbi__uint16 * stbi_load_from_file_16(FILE * f, int * x, int * y, int * comp, int req_comp) { - stbi__uint16 * result; - stbi__context s; - stbi__start_file(&s, f); - result = stbi__load_and_postprocess_16bit(&s, x, y, comp, req_comp); - if (result) { - // need to 'unget' all the characters in the IO buffer - fseek(f, -(int)(s.img_buffer_end - s.img_buffer), SEEK_CUR); - } - return result; +STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) +{ + unsigned char *result; + stbi__context s; + stbi__start_file(&s,f); + result = stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); + if (result) { + // need to 'unget' all the characters in the IO buffer + fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); + } + return result; +} + +STBIDEF stbi__uint16 *stbi_load_from_file_16(FILE *f, int *x, int *y, int *comp, int req_comp) +{ + stbi__uint16 *result; + stbi__context s; + stbi__start_file(&s,f); + result = stbi__load_and_postprocess_16bit(&s,x,y,comp,req_comp); + if (result) { + // need to 'unget' all the characters in the IO buffer + fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR); + } + return result; +} + +STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *comp, int req_comp) +{ + FILE *f = stbi__fopen(filename, "rb"); + stbi__uint16 *result; + if (!f) return (stbi_us *) stbi__errpuc("can't fopen", "Unable to open file"); + result = stbi_load_from_file_16(f,x,y,comp,req_comp); + fclose(f); + return result; } -STBIDEF stbi_us * stbi_load_16(char const * filename, int * x, int * y, int * comp, int req_comp) { - FILE * f = stbi__fopen(filename, "rb"); - stbi__uint16 * result; - if (!f) - return (stbi_us *)stbi__errpuc("can't fopen", "Unable to open file"); - result = stbi_load_from_file_16(f, x, y, comp, req_comp); - fclose(f); - return result; -} -#endif //! STBI_NO_STDIO +#endif //!STBI_NO_STDIO -STBIDEF stbi_us * stbi_load_16_from_memory(stbi_uc const * buffer, int len, int * x, int * y, int * channels_in_file, - int desired_channels) { - stbi__context s; - stbi__start_mem(&s, buffer, len); - return stbi__load_and_postprocess_16bit(&s, x, y, channels_in_file, desired_channels); +STBIDEF stbi_us *stbi_load_16_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels) +{ + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels); } -STBIDEF stbi_us * stbi_load_16_from_callbacks(stbi_io_callbacks const * clbk, void * user, int * x, int * y, - int * channels_in_file, int desired_channels) { - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); - return stbi__load_and_postprocess_16bit(&s, x, y, channels_in_file, desired_channels); +STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); + return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels); } -STBIDEF stbi_uc * stbi_load_from_memory(stbi_uc const * buffer, int len, int * x, int * y, int * comp, int req_comp) { - stbi__context s; - stbi__start_mem(&s, buffer, len); - return stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); +STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); } -STBIDEF stbi_uc * stbi_load_from_callbacks(stbi_io_callbacks const * clbk, void * user, int * x, int * y, int * comp, - int req_comp) { - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); - return stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); +STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); + return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp); } #ifndef STBI_NO_GIF -STBIDEF stbi_uc * stbi_load_gif_from_memory(stbi_uc const * buffer, int len, int ** delays, int * x, int * y, int * z, - int * comp, int req_comp) { - unsigned char * result; - stbi__context s; - stbi__start_mem(&s, buffer, len); - - result = (unsigned char *)stbi__load_gif_main(&s, delays, x, y, z, comp, req_comp); - if (stbi__vertically_flip_on_load) { - stbi__vertical_flip_slices(result, *x, *y, *z, *comp); - } +STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp) +{ + unsigned char *result; + stbi__context s; + stbi__start_mem(&s,buffer,len); - return result; + result = (unsigned char*) stbi__load_gif_main(&s, delays, x, y, z, comp, req_comp); + if (stbi__vertically_flip_on_load) { + stbi__vertical_flip_slices( result, *x, *y, *z, *comp ); + } + + return result; } #endif #ifndef STBI_NO_LINEAR -static float * stbi__loadf_main(stbi__context * s, int * x, int * y, int * comp, int req_comp) { - unsigned char * data; -#ifndef STBI_NO_HDR - if (stbi__hdr_test(s)) { - stbi__result_info ri; - float * hdr_data = stbi__hdr_load(s, x, y, comp, req_comp, &ri); - if (hdr_data) - stbi__float_postprocess(hdr_data, x, y, comp, req_comp); - return hdr_data; - } -#endif - data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp); - if (data) - return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); - return stbi__errpf("unknown image type", "Image not of any known type, or corrupt"); -} - -STBIDEF float * stbi_loadf_from_memory(stbi_uc const * buffer, int len, int * x, int * y, int * comp, int req_comp) { - stbi__context s; - stbi__start_mem(&s, buffer, len); - return stbi__loadf_main(&s, x, y, comp, req_comp); +static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + unsigned char *data; + #ifndef STBI_NO_HDR + if (stbi__hdr_test(s)) { + stbi__result_info ri; + float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp, &ri); + if (hdr_data) + stbi__float_postprocess(hdr_data,x,y,comp,req_comp); + return hdr_data; + } + #endif + data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp); + if (data) + return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); + return stbi__errpf("unknown image type", "Image not of any known type, or corrupt"); +} + +STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__loadf_main(&s,x,y,comp,req_comp); } -STBIDEF float * stbi_loadf_from_callbacks(stbi_io_callbacks const * clbk, void * user, int * x, int * y, int * comp, - int req_comp) { - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); - return stbi__loadf_main(&s, x, y, comp, req_comp); +STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); + return stbi__loadf_main(&s,x,y,comp,req_comp); } #ifndef STBI_NO_STDIO -STBIDEF float * stbi_loadf(char const * filename, int * x, int * y, int * comp, int req_comp) { - float * result; - FILE * f = stbi__fopen(filename, "rb"); - if (!f) - return stbi__errpf("can't fopen", "Unable to open file"); - result = stbi_loadf_from_file(f, x, y, comp, req_comp); - fclose(f); - return result; +STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) +{ + float *result; + FILE *f = stbi__fopen(filename, "rb"); + if (!f) return stbi__errpf("can't fopen", "Unable to open file"); + result = stbi_loadf_from_file(f,x,y,comp,req_comp); + fclose(f); + return result; } -STBIDEF float * stbi_loadf_from_file(FILE * f, int * x, int * y, int * comp, int req_comp) { - stbi__context s; - stbi__start_file(&s, f); - return stbi__loadf_main(&s, x, y, comp, req_comp); +STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_file(&s,f); + return stbi__loadf_main(&s,x,y,comp,req_comp); } #endif // !STBI_NO_STDIO @@ -1468,208 +1514,222 @@ STBIDEF float * stbi_loadf_from_file(FILE * f, int * x, int * y, int * comp, int // defined, for API simplicity; if STBI_NO_LINEAR is defined, it always // reports false! -STBIDEF int stbi_is_hdr_from_memory(stbi_uc const * buffer, int len) { -#ifndef STBI_NO_HDR - stbi__context s; - stbi__start_mem(&s, buffer, len); - return stbi__hdr_test(&s); -#else - STBI_NOTUSED(buffer); - STBI_NOTUSED(len); - return 0; -#endif +STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) +{ + #ifndef STBI_NO_HDR + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__hdr_test(&s); + #else + STBI_NOTUSED(buffer); + STBI_NOTUSED(len); + return 0; + #endif } #ifndef STBI_NO_STDIO -STBIDEF int stbi_is_hdr(char const * filename) { - FILE * f = stbi__fopen(filename, "rb"); - int result = 0; - if (f) { - result = stbi_is_hdr_from_file(f); - fclose(f); - } - return result; +STBIDEF int stbi_is_hdr (char const *filename) +{ + FILE *f = stbi__fopen(filename, "rb"); + int result=0; + if (f) { + result = stbi_is_hdr_from_file(f); + fclose(f); + } + return result; } -STBIDEF int stbi_is_hdr_from_file(FILE * f) { -#ifndef STBI_NO_HDR - long pos = ftell(f); - int res; - stbi__context s; - stbi__start_file(&s, f); - res = stbi__hdr_test(&s); - fseek(f, pos, SEEK_SET); - return res; -#else - STBI_NOTUSED(f); - return 0; -#endif +STBIDEF int stbi_is_hdr_from_file(FILE *f) +{ + #ifndef STBI_NO_HDR + long pos = ftell(f); + int res; + stbi__context s; + stbi__start_file(&s,f); + res = stbi__hdr_test(&s); + fseek(f, pos, SEEK_SET); + return res; + #else + STBI_NOTUSED(f); + return 0; + #endif } #endif // !STBI_NO_STDIO -STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const * clbk, void * user) { -#ifndef STBI_NO_HDR - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); - return stbi__hdr_test(&s); -#else - STBI_NOTUSED(clbk); - STBI_NOTUSED(user); - return 0; -#endif +STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user) +{ + #ifndef STBI_NO_HDR + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user); + return stbi__hdr_test(&s); + #else + STBI_NOTUSED(clbk); + STBI_NOTUSED(user); + return 0; + #endif } #ifndef STBI_NO_LINEAR -static float stbi__l2h_gamma = 2.2f, stbi__l2h_scale = 1.0f; +static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f; -STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } -STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } +STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } +STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } #endif -static float stbi__h2l_gamma_i = 1.0f / 2.2f, stbi__h2l_scale_i = 1.0f; +static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f; + +STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; } +STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; } -STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1 / gamma; } -STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1 / scale; } ////////////////////////////////////////////////////////////////////////////// // // Common code used by all image loaders // -enum { STBI__SCAN_load = 0, STBI__SCAN_type, STBI__SCAN_header }; - -static void stbi__refill_buffer(stbi__context * s) { - int n = (s->io.read)(s->io_user_data, (char *)s->buffer_start, s->buflen); - s->callback_already_read += (int)(s->img_buffer - s->img_buffer_original); - if (n == 0) { - // at end of file, treat same as if from memory, but need to handle case - // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file - s->read_from_callbacks = 0; - s->img_buffer = s->buffer_start; - s->img_buffer_end = s->buffer_start + 1; - *s->img_buffer = 0; - } else { - s->img_buffer = s->buffer_start; - s->img_buffer_end = s->buffer_start + n; - } -} +enum +{ + STBI__SCAN_load=0, + STBI__SCAN_type, + STBI__SCAN_header +}; -stbi_inline static stbi_uc stbi__get8(stbi__context * s) { - if (s->img_buffer < s->img_buffer_end) - return *s->img_buffer++; - if (s->read_from_callbacks) { - stbi__refill_buffer(s); - return *s->img_buffer++; - } - return 0; +static void stbi__refill_buffer(stbi__context *s) +{ + int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen); + s->callback_already_read += (int) (s->img_buffer - s->img_buffer_original); + if (n == 0) { + // at end of file, treat same as if from memory, but need to handle case + // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file + s->read_from_callbacks = 0; + s->img_buffer = s->buffer_start; + s->img_buffer_end = s->buffer_start+1; + *s->img_buffer = 0; + } else { + s->img_buffer = s->buffer_start; + s->img_buffer_end = s->buffer_start + n; + } +} + +stbi_inline static stbi_uc stbi__get8(stbi__context *s) +{ + if (s->img_buffer < s->img_buffer_end) + return *s->img_buffer++; + if (s->read_from_callbacks) { + stbi__refill_buffer(s); + return *s->img_buffer++; + } + return 0; } #if defined(STBI_NO_JPEG) && defined(STBI_NO_HDR) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) // nothing #else -stbi_inline static int stbi__at_eof(stbi__context * s) { - if (s->io.read) { - if (!(s->io.eof)(s->io_user_data)) - return 0; - // if feof() is true, check if buffer = end - // special case: we've only got the special 0 character at the end - if (s->read_from_callbacks == 0) - return 1; - } +stbi_inline static int stbi__at_eof(stbi__context *s) +{ + if (s->io.read) { + if (!(s->io.eof)(s->io_user_data)) return 0; + // if feof() is true, check if buffer = end + // special case: we've only got the special 0 character at the end + if (s->read_from_callbacks == 0) return 1; + } - return s->img_buffer >= s->img_buffer_end; + return s->img_buffer >= s->img_buffer_end; } #endif -#if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && \ - defined(STBI_NO_GIF) && defined(STBI_NO_PIC) +#if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) // nothing #else -static void stbi__skip(stbi__context * s, int n) { - if (n == 0) - return; // already there! - if (n < 0) { - s->img_buffer = s->img_buffer_end; - return; - } - if (s->io.read) { - int blen = (int)(s->img_buffer_end - s->img_buffer); - if (blen < n) { - s->img_buffer = s->img_buffer_end; - (s->io.skip)(s->io_user_data, n - blen); - return; - } - } - s->img_buffer += n; +static void stbi__skip(stbi__context *s, int n) +{ + if (n == 0) return; // already there! + if (n < 0) { + s->img_buffer = s->img_buffer_end; + return; + } + if (s->io.read) { + int blen = (int) (s->img_buffer_end - s->img_buffer); + if (blen < n) { + s->img_buffer = s->img_buffer_end; + (s->io.skip)(s->io_user_data, n - blen); + return; + } + } + s->img_buffer += n; } #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_TGA) && defined(STBI_NO_HDR) && defined(STBI_NO_PNM) // nothing #else -static int stbi__getn(stbi__context * s, stbi_uc * buffer, int n) { - if (s->io.read) { - int blen = (int)(s->img_buffer_end - s->img_buffer); - if (blen < n) { - int res, count; - - memcpy(buffer, s->img_buffer, blen); - - count = (s->io.read)(s->io_user_data, (char *)buffer + blen, n - blen); - res = (count == (n - blen)); - s->img_buffer = s->img_buffer_end; - return res; - } - } +static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) +{ + if (s->io.read) { + int blen = (int) (s->img_buffer_end - s->img_buffer); + if (blen < n) { + int res, count; + + memcpy(buffer, s->img_buffer, blen); - if (s->img_buffer + n <= s->img_buffer_end) { - memcpy(buffer, s->img_buffer, n); - s->img_buffer += n; - return 1; - } else - return 0; + count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen); + res = (count == (n-blen)); + s->img_buffer = s->img_buffer_end; + return res; + } + } + + if (s->img_buffer+n <= s->img_buffer_end) { + memcpy(buffer, s->img_buffer, n); + s->img_buffer += n; + return 1; + } else + return 0; } #endif #if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_PSD) && defined(STBI_NO_PIC) // nothing #else -static int stbi__get16be(stbi__context * s) { - int z = stbi__get8(s); - return (z << 8) + stbi__get8(s); +static int stbi__get16be(stbi__context *s) +{ + int z = stbi__get8(s); + return (z << 8) + stbi__get8(s); } #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) && defined(STBI_NO_PIC) // nothing #else -static stbi__uint32 stbi__get32be(stbi__context * s) { - stbi__uint32 z = stbi__get16be(s); - return (z << 16) + stbi__get16be(s); +static stbi__uint32 stbi__get32be(stbi__context *s) +{ + stbi__uint32 z = stbi__get16be(s); + return (z << 16) + stbi__get16be(s); } #endif #if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) // nothing #else -static int stbi__get16le(stbi__context * s) { - int z = stbi__get8(s); - return z + (stbi__get8(s) << 8); +static int stbi__get16le(stbi__context *s) +{ + int z = stbi__get8(s); + return z + (stbi__get8(s) << 8); } #endif #ifndef STBI_NO_BMP -static stbi__uint32 stbi__get32le(stbi__context * s) { - stbi__uint32 z = stbi__get16le(s); - z += (stbi__uint32)stbi__get16le(s) << 16; - return z; +static stbi__uint32 stbi__get32le(stbi__context *s) +{ + stbi__uint32 z = stbi__get16le(s); + z += (stbi__uint32)stbi__get16le(s) << 16; + return z; } #endif -#define STBI__BYTECAST(x) ((stbi_uc)((x)&255)) // truncate int to byte without warnings +#define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings -#if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && \ - defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) +#if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) // nothing #else ////////////////////////////////////////////////////////////////////////////// @@ -1683,264 +1743,169 @@ static stbi__uint32 stbi__get32le(stbi__context * s) { // assume data buffer is malloced, so malloc a new one and free that one // only failure mode is malloc failing -static stbi_uc stbi__compute_y(int r, int g, int b) { return (stbi_uc)(((r * 77) + (g * 150) + (29 * b)) >> 8); } +static stbi_uc stbi__compute_y(int r, int g, int b) +{ + return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8); +} #endif -#if defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && \ - defined(STBI_NO_PIC) && defined(STBI_NO_PNM) +#if defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) // nothing #else -static unsigned char * stbi__convert_format(unsigned char * data, int img_n, int req_comp, unsigned int x, unsigned int y) { - int i, j; - unsigned char * good; - - if (req_comp == img_n) - return data; - STBI_ASSERT(req_comp >= 1 && req_comp <= 4); - - good = (unsigned char *)stbi__malloc_mad3(req_comp, x, y, 0); - if (good == NULL) { - STBI_FREE(data); - return stbi__errpuc("outofmem", "Out of memory"); - } - - for (j = 0; j < (int)y; ++j) { - unsigned char * src = data + j * x * img_n; - unsigned char * dest = good + j * x * req_comp; - -#define STBI__COMBO(a, b) ((a)*8 + (b)) -#define STBI__CASE(a, b) \ - case STBI__COMBO(a, b): \ - for (i = x - 1; i >= 0; --i, src += a, dest += b) - // convert source image with img_n components to one with req_comp components; - // avoid switch per pixel, so use switch per scanline and massive macros - switch (STBI__COMBO(img_n, req_comp)) { - STBI__CASE(1, 2) { - dest[0] = src[0]; - dest[1] = 255; - } - break; - STBI__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } - break; - STBI__CASE(1, 4) { - dest[0] = dest[1] = dest[2] = src[0]; - dest[3] = 255; - } - break; - STBI__CASE(2, 1) { dest[0] = src[0]; } - break; - STBI__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } - break; - STBI__CASE(2, 4) { - dest[0] = dest[1] = dest[2] = src[0]; - dest[3] = src[1]; - } - break; - STBI__CASE(3, 4) { - dest[0] = src[0]; - dest[1] = src[1]; - dest[2] = src[2]; - dest[3] = 255; - } - break; - STBI__CASE(3, 1) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); } - break; - STBI__CASE(3, 2) { - dest[0] = stbi__compute_y(src[0], src[1], src[2]); - dest[1] = 255; - } - break; - STBI__CASE(4, 1) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); } - break; - STBI__CASE(4, 2) { - dest[0] = stbi__compute_y(src[0], src[1], src[2]); - dest[1] = src[3]; - } - break; - STBI__CASE(4, 3) { - dest[0] = src[0]; - dest[1] = src[1]; - dest[2] = src[2]; - } - break; - default: - STBI_ASSERT(0); - STBI_FREE(data); - STBI_FREE(good); - return stbi__errpuc("unsupported", "Unsupported format conversion"); - } -#undef STBI__CASE - } - - STBI_FREE(data); - return good; +static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y) +{ + int i,j; + unsigned char *good; + + if (req_comp == img_n) return data; + STBI_ASSERT(req_comp >= 1 && req_comp <= 4); + + good = (unsigned char *) stbi__malloc_mad3(req_comp, x, y, 0); + if (good == NULL) { + STBI_FREE(data); + return stbi__errpuc("outofmem", "Out of memory"); + } + + for (j=0; j < (int) y; ++j) { + unsigned char *src = data + j * x * img_n ; + unsigned char *dest = good + j * x * req_comp; + + #define STBI__COMBO(a,b) ((a)*8+(b)) + #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) + // convert source image with img_n components to one with req_comp components; + // avoid switch per pixel, so use switch per scanline and massive macros + switch (STBI__COMBO(img_n, req_comp)) { + STBI__CASE(1,2) { dest[0]=src[0]; dest[1]=255; } break; + STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; + STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=255; } break; + STBI__CASE(2,1) { dest[0]=src[0]; } break; + STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; + STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=src[1]; } break; + STBI__CASE(3,4) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];dest[3]=255; } break; + STBI__CASE(3,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; + STBI__CASE(3,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); dest[1] = 255; } break; + STBI__CASE(4,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; + STBI__CASE(4,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); dest[1] = src[3]; } break; + STBI__CASE(4,3) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2]; } break; + default: STBI_ASSERT(0); STBI_FREE(data); STBI_FREE(good); return stbi__errpuc("unsupported", "Unsupported format conversion"); + } + #undef STBI__CASE + } + + STBI_FREE(data); + return good; } #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) // nothing #else -static stbi__uint16 stbi__compute_y_16(int r, int g, int b) { return (stbi__uint16)(((r * 77) + (g * 150) + (29 * b)) >> 8); } +static stbi__uint16 stbi__compute_y_16(int r, int g, int b) +{ + return (stbi__uint16) (((r*77) + (g*150) + (29*b)) >> 8); +} #endif #if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) // nothing #else -static stbi__uint16 * stbi__convert_format16(stbi__uint16 * data, int img_n, int req_comp, unsigned int x, unsigned int y) { - int i, j; - stbi__uint16 * good; - - if (req_comp == img_n) - return data; - STBI_ASSERT(req_comp >= 1 && req_comp <= 4); - - good = (stbi__uint16 *)stbi__malloc(req_comp * x * y * 2); - if (good == NULL) { - STBI_FREE(data); - return (stbi__uint16 *)stbi__errpuc("outofmem", "Out of memory"); - } - - for (j = 0; j < (int)y; ++j) { - stbi__uint16 * src = data + j * x * img_n; - stbi__uint16 * dest = good + j * x * req_comp; - -#define STBI__COMBO(a, b) ((a)*8 + (b)) -#define STBI__CASE(a, b) \ - case STBI__COMBO(a, b): \ - for (i = x - 1; i >= 0; --i, src += a, dest += b) - // convert source image with img_n components to one with req_comp components; - // avoid switch per pixel, so use switch per scanline and massive macros - switch (STBI__COMBO(img_n, req_comp)) { - STBI__CASE(1, 2) { - dest[0] = src[0]; - dest[1] = 0xffff; - } - break; - STBI__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } - break; - STBI__CASE(1, 4) { - dest[0] = dest[1] = dest[2] = src[0]; - dest[3] = 0xffff; - } - break; - STBI__CASE(2, 1) { dest[0] = src[0]; } - break; - STBI__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } - break; - STBI__CASE(2, 4) { - dest[0] = dest[1] = dest[2] = src[0]; - dest[3] = src[1]; - } - break; - STBI__CASE(3, 4) { - dest[0] = src[0]; - dest[1] = src[1]; - dest[2] = src[2]; - dest[3] = 0xffff; - } - break; - STBI__CASE(3, 1) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); } - break; - STBI__CASE(3, 2) { - dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); - dest[1] = 0xffff; - } - break; - STBI__CASE(4, 1) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); } - break; - STBI__CASE(4, 2) { - dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); - dest[1] = src[3]; - } - break; - STBI__CASE(4, 3) { - dest[0] = src[0]; - dest[1] = src[1]; - dest[2] = src[2]; - } - break; - default: - STBI_ASSERT(0); - STBI_FREE(data); - STBI_FREE(good); - return (stbi__uint16 *)stbi__errpuc("unsupported", "Unsupported format conversion"); - } -#undef STBI__CASE - } - - STBI_FREE(data); - return good; +static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y) +{ + int i,j; + stbi__uint16 *good; + + if (req_comp == img_n) return data; + STBI_ASSERT(req_comp >= 1 && req_comp <= 4); + + good = (stbi__uint16 *) stbi__malloc(req_comp * x * y * 2); + if (good == NULL) { + STBI_FREE(data); + return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory"); + } + + for (j=0; j < (int) y; ++j) { + stbi__uint16 *src = data + j * x * img_n ; + stbi__uint16 *dest = good + j * x * req_comp; + + #define STBI__COMBO(a,b) ((a)*8+(b)) + #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) + // convert source image with img_n components to one with req_comp components; + // avoid switch per pixel, so use switch per scanline and massive macros + switch (STBI__COMBO(img_n, req_comp)) { + STBI__CASE(1,2) { dest[0]=src[0]; dest[1]=0xffff; } break; + STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; + STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=0xffff; } break; + STBI__CASE(2,1) { dest[0]=src[0]; } break; + STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; + STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=src[1]; } break; + STBI__CASE(3,4) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];dest[3]=0xffff; } break; + STBI__CASE(3,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; + STBI__CASE(3,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); dest[1] = 0xffff; } break; + STBI__CASE(4,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; + STBI__CASE(4,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); dest[1] = src[3]; } break; + STBI__CASE(4,3) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2]; } break; + default: STBI_ASSERT(0); STBI_FREE(data); STBI_FREE(good); return (stbi__uint16*) stbi__errpuc("unsupported", "Unsupported format conversion"); + } + #undef STBI__CASE + } + + STBI_FREE(data); + return good; } #endif #ifndef STBI_NO_LINEAR -static float * stbi__ldr_to_hdr(stbi_uc * data, int x, int y, int comp) { - int i, k, n; - float * output; - if (!data) - return NULL; - output = (float *)stbi__malloc_mad4(x, y, comp, sizeof(float), 0); - if (output == NULL) { - STBI_FREE(data); - return stbi__errpf("outofmem", "Out of memory"); - } - // compute number of non-alpha components - if (comp & 1) - n = comp; - else - n = comp - 1; - for (i = 0; i < x * y; ++i) { - for (k = 0; k < n; ++k) { - output[i * comp + k] = (float)(pow(data[i * comp + k] / 255.0f, stbi__l2h_gamma) * stbi__l2h_scale); - } - } - if (n < comp) { - for (i = 0; i < x * y; ++i) { - output[i * comp + n] = data[i * comp + n] / 255.0f; - } - } - STBI_FREE(data); - return output; +static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp) +{ + int i,k,n; + float *output; + if (!data) return NULL; + output = (float *) stbi__malloc_mad4(x, y, comp, sizeof(float), 0); + if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); } + // compute number of non-alpha components + if (comp & 1) n = comp; else n = comp-1; + for (i=0; i < x*y; ++i) { + for (k=0; k < n; ++k) { + output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale); + } + } + if (n < comp) { + for (i=0; i < x*y; ++i) { + output[i*comp + n] = data[i*comp + n]/255.0f; + } + } + STBI_FREE(data); + return output; } #endif #ifndef STBI_NO_HDR -#define stbi__float2int(x) ((int)(x)) -static stbi_uc * stbi__hdr_to_ldr(float * data, int x, int y, int comp) { - int i, k, n; - stbi_uc * output; - if (!data) - return NULL; - output = (stbi_uc *)stbi__malloc_mad3(x, y, comp, 0); - if (output == NULL) { - STBI_FREE(data); - return stbi__errpuc("outofmem", "Out of memory"); - } - // compute number of non-alpha components - if (comp & 1) - n = comp; - else - n = comp - 1; - for (i = 0; i < x * y; ++i) { - for (k = 0; k < n; ++k) { - float z = (float)pow(data[i * comp + k] * stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; - if (z < 0) - z = 0; - if (z > 255) - z = 255; - output[i * comp + k] = (stbi_uc)stbi__float2int(z); - } - if (k < comp) { - float z = data[i * comp + k] * 255 + 0.5f; - if (z < 0) - z = 0; - if (z > 255) - z = 255; - output[i * comp + k] = (stbi_uc)stbi__float2int(z); - } - } - STBI_FREE(data); - return output; +#define stbi__float2int(x) ((int) (x)) +static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) +{ + int i,k,n; + stbi_uc *output; + if (!data) return NULL; + output = (stbi_uc *) stbi__malloc_mad3(x, y, comp, 0); + if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); } + // compute number of non-alpha components + if (comp & 1) n = comp; else n = comp-1; + for (i=0; i < x*y; ++i) { + for (k=0; k < n; ++k) { + float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; + if (z < 0) z = 0; + if (z > 255) z = 255; + output[i*comp + k] = (stbi_uc) stbi__float2int(z); + } + if (k < comp) { + float z = data[i*comp+k] * 255 + 0.5f; + if (z < 0) z = 0; + if (z > 255) z = 255; + output[i*comp + k] = (stbi_uc) stbi__float2int(z); + } + } + STBI_FREE(data); + return output; } #endif @@ -1968,783 +1933,763 @@ static stbi_uc * stbi__hdr_to_ldr(float * data, int x, int y, int comp) { #ifndef STBI_NO_JPEG // huffman decoding acceleration -#define FAST_BITS 9 // larger handles more cases; smaller stomps less cache - -typedef struct { - stbi_uc fast[1 << FAST_BITS]; - // weirdly, repacking this into AoS is a 10% speed loss, instead of a win - stbi__uint16 code[256]; - stbi_uc values[256]; - stbi_uc size[257]; - unsigned int maxcode[18]; - int delta[17]; // old 'firstsymbol' - old 'firstcode' +#define FAST_BITS 9 // larger handles more cases; smaller stomps less cache + +typedef struct +{ + stbi_uc fast[1 << FAST_BITS]; + // weirdly, repacking this into AoS is a 10% speed loss, instead of a win + stbi__uint16 code[256]; + stbi_uc values[256]; + stbi_uc size[257]; + unsigned int maxcode[18]; + int delta[17]; // old 'firstsymbol' - old 'firstcode' } stbi__huffman; -typedef struct { - stbi__context * s; - stbi__huffman huff_dc[4]; - stbi__huffman huff_ac[4]; - stbi__uint16 dequant[4][64]; - stbi__int16 fast_ac[4][1 << FAST_BITS]; - - // sizes for components, interleaved MCUs - int img_h_max, img_v_max; - int img_mcu_x, img_mcu_y; - int img_mcu_w, img_mcu_h; - - // definition of jpeg image component - struct { - int id; - int h, v; - int tq; - int hd, ha; - int dc_pred; - - int x, y, w2, h2; - stbi_uc * data; - void *raw_data, *raw_coeff; - stbi_uc * linebuf; - short * coeff; // progressive only - int coeff_w, coeff_h; // number of 8x8 coefficient blocks - } img_comp[4]; - - stbi__uint32 code_buffer; // jpeg entropy-coded buffer - int code_bits; // number of valid bits - unsigned char marker; // marker seen while filling entropy buffer - int nomore; // flag if we saw a marker so must stop - - int progressive; - int spec_start; - int spec_end; - int succ_high; - int succ_low; - int eob_run; - int jfif; - int app14_color_transform; // Adobe APP14 tag - int rgb; - - int scan_n, order[4]; - int restart_interval, todo; - - // kernels - void (*idct_block_kernel)(stbi_uc * out, int out_stride, short data[64]); - void (*YCbCr_to_RGB_kernel)(stbi_uc * out, const stbi_uc * y, const stbi_uc * pcb, const stbi_uc * pcr, int count, - int step); - stbi_uc * (*resample_row_hv_2_kernel)(stbi_uc * out, stbi_uc * in_near, stbi_uc * in_far, int w, int hs); +typedef struct +{ + stbi__context *s; + stbi__huffman huff_dc[4]; + stbi__huffman huff_ac[4]; + stbi__uint16 dequant[4][64]; + stbi__int16 fast_ac[4][1 << FAST_BITS]; + +// sizes for components, interleaved MCUs + int img_h_max, img_v_max; + int img_mcu_x, img_mcu_y; + int img_mcu_w, img_mcu_h; + +// definition of jpeg image component + struct + { + int id; + int h,v; + int tq; + int hd,ha; + int dc_pred; + + int x,y,w2,h2; + stbi_uc *data; + void *raw_data, *raw_coeff; + stbi_uc *linebuf; + short *coeff; // progressive only + int coeff_w, coeff_h; // number of 8x8 coefficient blocks + } img_comp[4]; + + stbi__uint32 code_buffer; // jpeg entropy-coded buffer + int code_bits; // number of valid bits + unsigned char marker; // marker seen while filling entropy buffer + int nomore; // flag if we saw a marker so must stop + + int progressive; + int spec_start; + int spec_end; + int succ_high; + int succ_low; + int eob_run; + int jfif; + int app14_color_transform; // Adobe APP14 tag + int rgb; + + int scan_n, order[4]; + int restart_interval, todo; + +// kernels + void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); + void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step); + stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs); } stbi__jpeg; -static int stbi__build_huffman(stbi__huffman * h, int * count) { - int i, j, k = 0; - unsigned int code; - // build size list for each symbol (from JPEG spec) - for (i = 0; i < 16; ++i) { - for (j = 0; j < count[i]; ++j) { - h->size[k++] = (stbi_uc)(i + 1); - if (k >= 257) - return stbi__err("bad size list", "Corrupt JPEG"); - } - } - h->size[k] = 0; - - // compute actual symbols (from jpeg spec) - code = 0; - k = 0; - for (j = 1; j <= 16; ++j) { - // compute delta to add to code to compute symbol id - h->delta[j] = k - code; - if (h->size[k] == j) { - while (h->size[k] == j) - h->code[k++] = (stbi__uint16)(code++); - if (code - 1 >= (1u << j)) - return stbi__err("bad code lengths", "Corrupt JPEG"); - } - // compute largest code + 1 for this size, preshifted as needed later - h->maxcode[j] = code << (16 - j); - code <<= 1; - } - h->maxcode[j] = 0xffffffff; - - // build non-spec acceleration table; 255 is flag for not-accelerated - memset(h->fast, 255, 1 << FAST_BITS); - for (i = 0; i < k; ++i) { - int s = h->size[i]; - if (s <= FAST_BITS) { - int c = h->code[i] << (FAST_BITS - s); - int m = 1 << (FAST_BITS - s); - for (j = 0; j < m; ++j) { - h->fast[c + j] = (stbi_uc)i; - } - } - } - return 1; +static int stbi__build_huffman(stbi__huffman *h, int *count) +{ + int i,j,k=0; + unsigned int code; + // build size list for each symbol (from JPEG spec) + for (i=0; i < 16; ++i) { + for (j=0; j < count[i]; ++j) { + h->size[k++] = (stbi_uc) (i+1); + if(k >= 257) return stbi__err("bad size list","Corrupt JPEG"); + } + } + h->size[k] = 0; + + // compute actual symbols (from jpeg spec) + code = 0; + k = 0; + for(j=1; j <= 16; ++j) { + // compute delta to add to code to compute symbol id + h->delta[j] = k - code; + if (h->size[k] == j) { + while (h->size[k] == j) + h->code[k++] = (stbi__uint16) (code++); + if (code-1 >= (1u << j)) return stbi__err("bad code lengths","Corrupt JPEG"); + } + // compute largest code + 1 for this size, preshifted as needed later + h->maxcode[j] = code << (16-j); + code <<= 1; + } + h->maxcode[j] = 0xffffffff; + + // build non-spec acceleration table; 255 is flag for not-accelerated + memset(h->fast, 255, 1 << FAST_BITS); + for (i=0; i < k; ++i) { + int s = h->size[i]; + if (s <= FAST_BITS) { + int c = h->code[i] << (FAST_BITS-s); + int m = 1 << (FAST_BITS-s); + for (j=0; j < m; ++j) { + h->fast[c+j] = (stbi_uc) i; + } + } + } + return 1; } // build a table that decodes both magnitude and value of small ACs in // one go. -static void stbi__build_fast_ac(stbi__int16 * fast_ac, stbi__huffman * h) { - int i; - for (i = 0; i < (1 << FAST_BITS); ++i) { - stbi_uc fast = h->fast[i]; - fast_ac[i] = 0; - if (fast < 255) { - int rs = h->values[fast]; - int run = (rs >> 4) & 15; - int magbits = rs & 15; - int len = h->size[fast]; - - if (magbits && len + magbits <= FAST_BITS) { - // magnitude code followed by receive_extend code - int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); - int m = 1 << (magbits - 1); - if (k < m) - k += (~0U << magbits) + 1; - // if the result is small enough, we can fit it in fast_ac table - if (k >= -128 && k <= 127) - fast_ac[i] = (stbi__int16)((k * 256) + (run * 16) + (len + magbits)); - } - } - } -} - -static void stbi__grow_buffer_unsafe(stbi__jpeg * j) { - do { - unsigned int b = j->nomore ? 0 : stbi__get8(j->s); - if (b == 0xff) { - int c = stbi__get8(j->s); - while (c == 0xff) - c = stbi__get8(j->s); // consume fill bytes - if (c != 0) { - j->marker = (unsigned char)c; - j->nomore = 1; - return; - } - } - j->code_buffer |= b << (24 - j->code_bits); - j->code_bits += 8; - } while (j->code_bits <= 24); +static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h) +{ + int i; + for (i=0; i < (1 << FAST_BITS); ++i) { + stbi_uc fast = h->fast[i]; + fast_ac[i] = 0; + if (fast < 255) { + int rs = h->values[fast]; + int run = (rs >> 4) & 15; + int magbits = rs & 15; + int len = h->size[fast]; + + if (magbits && len + magbits <= FAST_BITS) { + // magnitude code followed by receive_extend code + int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); + int m = 1 << (magbits - 1); + if (k < m) k += (~0U << magbits) + 1; + // if the result is small enough, we can fit it in fast_ac table + if (k >= -128 && k <= 127) + fast_ac[i] = (stbi__int16) ((k * 256) + (run * 16) + (len + magbits)); + } + } + } +} + +static void stbi__grow_buffer_unsafe(stbi__jpeg *j) +{ + do { + unsigned int b = j->nomore ? 0 : stbi__get8(j->s); + if (b == 0xff) { + int c = stbi__get8(j->s); + while (c == 0xff) c = stbi__get8(j->s); // consume fill bytes + if (c != 0) { + j->marker = (unsigned char) c; + j->nomore = 1; + return; + } + } + j->code_buffer |= b << (24 - j->code_bits); + j->code_bits += 8; + } while (j->code_bits <= 24); } // (1 << n) - 1 -static const stbi__uint32 stbi__bmask[17] = {0, 1, 3, 7, 15, 31, 63, 127, 255, - 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535}; +static const stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; // decode a jpeg huffman value from the bitstream -stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg * j, stbi__huffman * h) { - unsigned int temp; - int c, k; - - if (j->code_bits < 16) - stbi__grow_buffer_unsafe(j); - - // look at the top FAST_BITS and determine what symbol ID it is, - // if the code is <= FAST_BITS - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); - k = h->fast[c]; - if (k < 255) { - int s = h->size[k]; - if (s > j->code_bits) - return -1; - j->code_buffer <<= s; - j->code_bits -= s; - return h->values[k]; - } - - // naive test is to shift the code_buffer down so k bits are - // valid, then test against maxcode. To speed this up, we've - // preshifted maxcode left so that it has (16-k) 0s at the - // end; in other words, regardless of the number of bits, it - // wants to be compared against something shifted to have 16; - // that way we don't need to shift inside the loop. - temp = j->code_buffer >> 16; - for (k = FAST_BITS + 1;; ++k) - if (temp < h->maxcode[k]) - break; - if (k == 17) { - // error! code not found - j->code_bits -= 16; - return -1; - } - - if (k > j->code_bits) - return -1; - - // convert the huffman code to the symbol id - c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; - if (c < 0 || c >= 256) // symbol id out of bounds! - return -1; - STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]); - - // convert the id to a symbol - j->code_bits -= k; - j->code_buffer <<= k; - return h->values[c]; +stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h) +{ + unsigned int temp; + int c,k; + + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + + // look at the top FAST_BITS and determine what symbol ID it is, + // if the code is <= FAST_BITS + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); + k = h->fast[c]; + if (k < 255) { + int s = h->size[k]; + if (s > j->code_bits) + return -1; + j->code_buffer <<= s; + j->code_bits -= s; + return h->values[k]; + } + + // naive test is to shift the code_buffer down so k bits are + // valid, then test against maxcode. To speed this up, we've + // preshifted maxcode left so that it has (16-k) 0s at the + // end; in other words, regardless of the number of bits, it + // wants to be compared against something shifted to have 16; + // that way we don't need to shift inside the loop. + temp = j->code_buffer >> 16; + for (k=FAST_BITS+1 ; ; ++k) + if (temp < h->maxcode[k]) + break; + if (k == 17) { + // error! code not found + j->code_bits -= 16; + return -1; + } + + if (k > j->code_bits) + return -1; + + // convert the huffman code to the symbol id + c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; + if(c < 0 || c >= 256) // symbol id out of bounds! + return -1; + STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]); + + // convert the id to a symbol + j->code_bits -= k; + j->code_buffer <<= k; + return h->values[c]; } // bias[n] = (-1<code_bits < n) - stbi__grow_buffer_unsafe(j); - if (j->code_bits < n) - return 0; // ran out of bits from stream, return 0s intead of continuing - - sgn = j->code_buffer >> 31; // sign bit always in MSB; 0 if MSB clear (positive), 1 if MSB set (negative) - k = stbi_lrot(j->code_buffer, n); - j->code_buffer = k & ~stbi__bmask[n]; - k &= stbi__bmask[n]; - j->code_bits -= n; - return k + (stbi__jbias[n] & (sgn - 1)); +stbi_inline static int stbi__extend_receive(stbi__jpeg *j, int n) +{ + unsigned int k; + int sgn; + if (j->code_bits < n) stbi__grow_buffer_unsafe(j); + if (j->code_bits < n) return 0; // ran out of bits from stream, return 0s intead of continuing + + sgn = j->code_buffer >> 31; // sign bit always in MSB; 0 if MSB clear (positive), 1 if MSB set (negative) + k = stbi_lrot(j->code_buffer, n); + j->code_buffer = k & ~stbi__bmask[n]; + k &= stbi__bmask[n]; + j->code_bits -= n; + return k + (stbi__jbias[n] & (sgn - 1)); } // get some unsigned bits -stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg * j, int n) { - unsigned int k; - if (j->code_bits < n) - stbi__grow_buffer_unsafe(j); - if (j->code_bits < n) - return 0; // ran out of bits from stream, return 0s intead of continuing - k = stbi_lrot(j->code_buffer, n); - j->code_buffer = k & ~stbi__bmask[n]; - k &= stbi__bmask[n]; - j->code_bits -= n; - return k; -} - -stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg * j) { - unsigned int k; - if (j->code_bits < 1) - stbi__grow_buffer_unsafe(j); - if (j->code_bits < 1) - return 0; // ran out of bits from stream, return 0s intead of continuing - k = j->code_buffer; - j->code_buffer <<= 1; - --j->code_bits; - return k & 0x80000000; +stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n) +{ + unsigned int k; + if (j->code_bits < n) stbi__grow_buffer_unsafe(j); + if (j->code_bits < n) return 0; // ran out of bits from stream, return 0s intead of continuing + k = stbi_lrot(j->code_buffer, n); + j->code_buffer = k & ~stbi__bmask[n]; + k &= stbi__bmask[n]; + j->code_bits -= n; + return k; +} + +stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) +{ + unsigned int k; + if (j->code_bits < 1) stbi__grow_buffer_unsafe(j); + if (j->code_bits < 1) return 0; // ran out of bits from stream, return 0s intead of continuing + k = j->code_buffer; + j->code_buffer <<= 1; + --j->code_bits; + return k & 0x80000000; } // given a value that's at position X in the zigzag stream, // where does it appear in the 8x8 matrix coded as row-major? -static const stbi_uc stbi__jpeg_dezigzag[64 + 15] = { - 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, - 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, - // let corrupt input sample past end - 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63}; +static const stbi_uc stbi__jpeg_dezigzag[64+15] = +{ + 0, 1, 8, 16, 9, 2, 3, 10, + 17, 24, 32, 25, 18, 11, 4, 5, + 12, 19, 26, 33, 40, 48, 41, 34, + 27, 20, 13, 6, 7, 14, 21, 28, + 35, 42, 49, 56, 57, 50, 43, 36, + 29, 22, 15, 23, 30, 37, 44, 51, + 58, 59, 52, 45, 38, 31, 39, 46, + 53, 60, 61, 54, 47, 55, 62, 63, + // let corrupt input sample past end + 63, 63, 63, 63, 63, 63, 63, 63, + 63, 63, 63, 63, 63, 63, 63 +}; // decode one 64-entry block-- -static int stbi__jpeg_decode_block(stbi__jpeg * j, short data[64], stbi__huffman * hdc, stbi__huffman * hac, stbi__int16 * fac, - int b, stbi__uint16 * dequant) { - int diff, dc, k; - int t; - - if (j->code_bits < 16) - stbi__grow_buffer_unsafe(j); - t = stbi__jpeg_huff_decode(j, hdc); - if (t < 0 || t > 15) - return stbi__err("bad huffman code", "Corrupt JPEG"); - - // 0 all the ac values now so we can do it 32-bits at a time - memset(data, 0, 64 * sizeof(data[0])); - - diff = t ? stbi__extend_receive(j, t) : 0; - if (!stbi__addints_valid(j->img_comp[b].dc_pred, diff)) - return stbi__err("bad delta", "Corrupt JPEG"); - dc = j->img_comp[b].dc_pred + diff; - j->img_comp[b].dc_pred = dc; - if (!stbi__mul2shorts_valid(dc, dequant[0])) - return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - data[0] = (short)(dc * dequant[0]); - - // decode AC components, see JPEG spec - k = 1; - do { - unsigned int zig; - int c, r, s; - if (j->code_bits < 16) - stbi__grow_buffer_unsafe(j); - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); - r = fac[c]; - if (r) { // fast-AC path +static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi__uint16 *dequant) +{ + int diff,dc,k; + int t; + + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + t = stbi__jpeg_huff_decode(j, hdc); + if (t < 0 || t > 15) return stbi__err("bad huffman code","Corrupt JPEG"); + + // 0 all the ac values now so we can do it 32-bits at a time + memset(data,0,64*sizeof(data[0])); + + diff = t ? stbi__extend_receive(j, t) : 0; + if (!stbi__addints_valid(j->img_comp[b].dc_pred, diff)) return stbi__err("bad delta","Corrupt JPEG"); + dc = j->img_comp[b].dc_pred + diff; + j->img_comp[b].dc_pred = dc; + if (!stbi__mul2shorts_valid(dc, dequant[0])) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + data[0] = (short) (dc * dequant[0]); + + // decode AC components, see JPEG spec + k = 1; + do { + unsigned int zig; + int c,r,s; + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); + r = fac[c]; + if (r) { // fast-AC path + k += (r >> 4) & 15; // run + s = r & 15; // combined length + if (s > j->code_bits) return stbi__err("bad huffman code", "Combined length longer than code bits available"); + j->code_buffer <<= s; + j->code_bits -= s; + // decode into unzigzag'd location + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short) ((r >> 8) * dequant[zig]); + } else { + int rs = stbi__jpeg_huff_decode(j, hac); + if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) { + if (rs != 0xf0) break; // end block + k += 16; + } else { + k += r; + // decode into unzigzag'd location + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]); + } + } + } while (k < 64); + return 1; +} + +static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b) +{ + int diff,dc; + int t; + if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + + if (j->succ_high == 0) { + // first scan for DC coefficient, must be first + memset(data,0,64*sizeof(data[0])); // 0 all the ac values now + t = stbi__jpeg_huff_decode(j, hdc); + if (t < 0 || t > 15) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + diff = t ? stbi__extend_receive(j, t) : 0; + + if (!stbi__addints_valid(j->img_comp[b].dc_pred, diff)) return stbi__err("bad delta", "Corrupt JPEG"); + dc = j->img_comp[b].dc_pred + diff; + j->img_comp[b].dc_pred = dc; + if (!stbi__mul2shorts_valid(dc, 1 << j->succ_low)) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + data[0] = (short) (dc * (1 << j->succ_low)); + } else { + // refinement scan for DC coefficient + if (stbi__jpeg_get_bit(j)) + data[0] += (short) (1 << j->succ_low); + } + return 1; +} + +// @OPTIMIZE: store non-zigzagged during the decode passes, +// and only de-zigzag when dequantizing +static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac) +{ + int k; + if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + + if (j->succ_high == 0) { + int shift = j->succ_low; + + if (j->eob_run) { + --j->eob_run; + return 1; + } + + k = j->spec_start; + do { + unsigned int zig; + int c,r,s; + if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1); + r = fac[c]; + if (r) { // fast-AC path k += (r >> 4) & 15; // run - s = r & 15; // combined length - if (s > j->code_bits) - return stbi__err("bad huffman code", "Combined length longer than code bits available"); + s = r & 15; // combined length + if (s > j->code_bits) return stbi__err("bad huffman code", "Combined length longer than code bits available"); j->code_buffer <<= s; j->code_bits -= s; - // decode into unzigzag'd location zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short)((r >> 8) * dequant[zig]); - } else { + data[zig] = (short) ((r >> 8) * (1 << shift)); + } else { int rs = stbi__jpeg_huff_decode(j, hac); - if (rs < 0) - return stbi__err("bad huffman code", "Corrupt JPEG"); + if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { - if (rs != 0xf0) - break; // end block - k += 16; + if (r < 15) { + j->eob_run = (1 << r); + if (r) + j->eob_run += stbi__jpeg_get_bits(j, r); + --j->eob_run; + break; + } + k += 16; } else { - k += r; - // decode into unzigzag'd location - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short)(stbi__extend_receive(j, s) * dequant[zig]); + k += r; + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short) (stbi__extend_receive(j,s) * (1 << shift)); } - } - } while (k < 64); - return 1; -} - -static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg * j, short data[64], stbi__huffman * hdc, int b) { - int diff, dc; - int t; - if (j->spec_end != 0) - return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - - if (j->code_bits < 16) - stbi__grow_buffer_unsafe(j); - - if (j->succ_high == 0) { - // first scan for DC coefficient, must be first - memset(data, 0, 64 * sizeof(data[0])); // 0 all the ac values now - t = stbi__jpeg_huff_decode(j, hdc); - if (t < 0 || t > 15) - return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - diff = t ? stbi__extend_receive(j, t) : 0; - - if (!stbi__addints_valid(j->img_comp[b].dc_pred, diff)) - return stbi__err("bad delta", "Corrupt JPEG"); - dc = j->img_comp[b].dc_pred + diff; - j->img_comp[b].dc_pred = dc; - if (!stbi__mul2shorts_valid(dc, 1 << j->succ_low)) - return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - data[0] = (short)(dc * (1 << j->succ_low)); - } else { - // refinement scan for DC coefficient - if (stbi__jpeg_get_bit(j)) - data[0] += (short)(1 << j->succ_low); - } - return 1; -} - -// @OPTIMIZE: store non-zigzagged during the decode passes, -// and only de-zigzag when dequantizing -static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg * j, short data[64], stbi__huffman * hac, stbi__int16 * fac) { - int k; - if (j->spec_start == 0) - return stbi__err("can't merge dc and ac", "Corrupt JPEG"); - - if (j->succ_high == 0) { - int shift = j->succ_low; - - if (j->eob_run) { - --j->eob_run; - return 1; - } - - k = j->spec_start; - do { - unsigned int zig; - int c, r, s; - if (j->code_bits < 16) - stbi__grow_buffer_unsafe(j); - c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); - r = fac[c]; - if (r) { // fast-AC path - k += (r >> 4) & 15; // run - s = r & 15; // combined length - if (s > j->code_bits) - return stbi__err("bad huffman code", "Combined length longer than code bits available"); - j->code_buffer <<= s; - j->code_bits -= s; - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short)((r >> 8) * (1 << shift)); + } + } while (k <= j->spec_end); + } else { + // refinement scan for these AC coefficients + + short bit = (short) (1 << j->succ_low); + + if (j->eob_run) { + --j->eob_run; + for (k = j->spec_start; k <= j->spec_end; ++k) { + short *p = &data[stbi__jpeg_dezigzag[k]]; + if (*p != 0) + if (stbi__jpeg_get_bit(j)) + if ((*p & bit)==0) { + if (*p > 0) + *p += bit; + else + *p -= bit; + } + } + } else { + k = j->spec_start; + do { + int r,s; + int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh + if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) { + if (r < 15) { + j->eob_run = (1 << r) - 1; + if (r) + j->eob_run += stbi__jpeg_get_bits(j, r); + r = 64; // force end of block + } else { + // r=15 s=0 should write 16 0s, so we just do + // a run of 15 0s and then write s (which is 0), + // so we don't have to do anything special here + } } else { - int rs = stbi__jpeg_huff_decode(j, hac); - if (rs < 0) - return stbi__err("bad huffman code", "Corrupt JPEG"); - s = rs & 15; - r = rs >> 4; - if (s == 0) { - if (r < 15) { - j->eob_run = (1 << r); - if (r) - j->eob_run += stbi__jpeg_get_bits(j, r); - --j->eob_run; - break; - } - k += 16; - } else { - k += r; - zig = stbi__jpeg_dezigzag[k++]; - data[zig] = (short)(stbi__extend_receive(j, s) * (1 << shift)); - } + if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG"); + // sign bit + if (stbi__jpeg_get_bit(j)) + s = bit; + else + s = -bit; } - } while (k <= j->spec_end); - } else { - // refinement scan for these AC coefficients - - short bit = (short)(1 << j->succ_low); - - if (j->eob_run) { - --j->eob_run; - for (k = j->spec_start; k <= j->spec_end; ++k) { - short * p = &data[stbi__jpeg_dezigzag[k]]; - if (*p != 0) - if (stbi__jpeg_get_bit(j)) - if ((*p & bit) == 0) { - if (*p > 0) - *p += bit; - else - *p -= bit; - } + + // advance by r + while (k <= j->spec_end) { + short *p = &data[stbi__jpeg_dezigzag[k++]]; + if (*p != 0) { + if (stbi__jpeg_get_bit(j)) + if ((*p & bit)==0) { + if (*p > 0) + *p += bit; + else + *p -= bit; + } + } else { + if (r == 0) { + *p = (short) s; + break; + } + --r; + } } - } else { - k = j->spec_start; - do { - int r, s; - int rs = stbi__jpeg_huff_decode( - j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh - if (rs < 0) - return stbi__err("bad huffman code", "Corrupt JPEG"); - s = rs & 15; - r = rs >> 4; - if (s == 0) { - if (r < 15) { - j->eob_run = (1 << r) - 1; - if (r) - j->eob_run += stbi__jpeg_get_bits(j, r); - r = 64; // force end of block - } else { - // r=15 s=0 should write 16 0s, so we just do - // a run of 15 0s and then write s (which is 0), - // so we don't have to do anything special here - } - } else { - if (s != 1) - return stbi__err("bad huffman code", "Corrupt JPEG"); - // sign bit - if (stbi__jpeg_get_bit(j)) - s = bit; - else - s = -bit; - } - - // advance by r - while (k <= j->spec_end) { - short * p = &data[stbi__jpeg_dezigzag[k++]]; - if (*p != 0) { - if (stbi__jpeg_get_bit(j)) - if ((*p & bit) == 0) { - if (*p > 0) - *p += bit; - else - *p -= bit; - } - } else { - if (r == 0) { - *p = (short)s; - break; - } - --r; - } - } - } while (k <= j->spec_end); - } - } - return 1; + } while (k <= j->spec_end); + } + } + return 1; } // take a -128..127 value and stbi__clamp it and convert to 0..255 -stbi_inline static stbi_uc stbi__clamp(int x) { - // trick to use a single test to catch both cases - if ((unsigned int)x > 255) { - if (x < 0) - return 0; - if (x > 255) - return 255; - } - return (stbi_uc)x; +stbi_inline static stbi_uc stbi__clamp(int x) +{ + // trick to use a single test to catch both cases + if ((unsigned int) x > 255) { + if (x < 0) return 0; + if (x > 255) return 255; + } + return (stbi_uc) x; } -#define stbi__f2f(x) ((int)(((x)*4096 + 0.5))) -#define stbi__fsh(x) ((x)*4096) +#define stbi__f2f(x) ((int) (((x) * 4096 + 0.5))) +#define stbi__fsh(x) ((x) * 4096) // derived from jidctint -- DCT_ISLOW -#define STBI__IDCT_1D(s0, s1, s2, s3, s4, s5, s6, s7) \ - int t0, t1, t2, t3, p1, p2, p3, p4, p5, x0, x1, x2, x3; \ - p2 = s2; \ - p3 = s6; \ - p1 = (p2 + p3) * stbi__f2f(0.5411961f); \ - t2 = p1 + p3 * stbi__f2f(-1.847759065f); \ - t3 = p1 + p2 * stbi__f2f(0.765366865f); \ - p2 = s0; \ - p3 = s4; \ - t0 = stbi__fsh(p2 + p3); \ - t1 = stbi__fsh(p2 - p3); \ - x0 = t0 + t3; \ - x3 = t0 - t3; \ - x1 = t1 + t2; \ - x2 = t1 - t2; \ - t0 = s7; \ - t1 = s5; \ - t2 = s3; \ - t3 = s1; \ - p3 = t0 + t2; \ - p4 = t1 + t3; \ - p1 = t0 + t3; \ - p2 = t1 + t2; \ - p5 = (p3 + p4) * stbi__f2f(1.175875602f); \ - t0 = t0 * stbi__f2f(0.298631336f); \ - t1 = t1 * stbi__f2f(2.053119869f); \ - t2 = t2 * stbi__f2f(3.072711026f); \ - t3 = t3 * stbi__f2f(1.501321110f); \ - p1 = p5 + p1 * stbi__f2f(-0.899976223f); \ - p2 = p5 + p2 * stbi__f2f(-2.562915447f); \ - p3 = p3 * stbi__f2f(-1.961570560f); \ - p4 = p4 * stbi__f2f(-0.390180644f); \ - t3 += p1 + p4; \ - t2 += p2 + p3; \ - t1 += p2 + p4; \ - t0 += p1 + p3; - -static void stbi__idct_block(stbi_uc * out, int out_stride, short data[64]) { - int i, val[64], *v = val; - stbi_uc * o; - short * d = data; - - // columns - for (i = 0; i < 8; ++i, ++d, ++v) { - // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing - if (d[8] == 0 && d[16] == 0 && d[24] == 0 && d[32] == 0 && d[40] == 0 && d[48] == 0 && d[56] == 0) { - // no shortcut 0 seconds - // (1|2|3|4|5|6|7)==0 0 seconds - // all separate -0.047 seconds - // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds - int dcterm = d[0] * 4; - v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; - } else { - STBI__IDCT_1D(d[0], d[8], d[16], d[24], d[32], d[40], d[48], d[56]) - // constants scaled things up by 1<<12; let's bring them back - // down, but keep 2 extra bits of precision - x0 += 512; - x1 += 512; - x2 += 512; - x3 += 512; - v[0] = (x0 + t3) >> 10; - v[56] = (x0 - t3) >> 10; - v[8] = (x1 + t2) >> 10; - v[48] = (x1 - t2) >> 10; - v[16] = (x2 + t1) >> 10; - v[40] = (x2 - t1) >> 10; - v[24] = (x3 + t0) >> 10; - v[32] = (x3 - t0) >> 10; - } - } - - for (i = 0, v = val, o = out; i < 8; ++i, v += 8, o += out_stride) { - // no fast case since the first 1D IDCT spread components out - STBI__IDCT_1D(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]) - // constants scaled things up by 1<<12, plus we had 1<<2 from first - // loop, plus horizontal and vertical each scale by sqrt(8) so together - // we've got an extra 1<<3, so 1<<17 total we need to remove. - // so we want to round that, which means adding 0.5 * 1<<17, - // aka 65536. Also, we'll end up with -128 to 127 that we want - // to encode as 0..255 by adding 128, so we'll add that before the shift - x0 += 65536 + (128 << 17); - x1 += 65536 + (128 << 17); - x2 += 65536 + (128 << 17); - x3 += 65536 + (128 << 17); - // tried computing the shifts into temps, or'ing the temps to see - // if any were out of range, but that was slower - o[0] = stbi__clamp((x0 + t3) >> 17); - o[7] = stbi__clamp((x0 - t3) >> 17); - o[1] = stbi__clamp((x1 + t2) >> 17); - o[6] = stbi__clamp((x1 - t2) >> 17); - o[2] = stbi__clamp((x2 + t1) >> 17); - o[5] = stbi__clamp((x2 - t1) >> 17); - o[3] = stbi__clamp((x3 + t0) >> 17); - o[4] = stbi__clamp((x3 - t0) >> 17); - } +#define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ + int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ + p2 = s2; \ + p3 = s6; \ + p1 = (p2+p3) * stbi__f2f(0.5411961f); \ + t2 = p1 + p3*stbi__f2f(-1.847759065f); \ + t3 = p1 + p2*stbi__f2f( 0.765366865f); \ + p2 = s0; \ + p3 = s4; \ + t0 = stbi__fsh(p2+p3); \ + t1 = stbi__fsh(p2-p3); \ + x0 = t0+t3; \ + x3 = t0-t3; \ + x1 = t1+t2; \ + x2 = t1-t2; \ + t0 = s7; \ + t1 = s5; \ + t2 = s3; \ + t3 = s1; \ + p3 = t0+t2; \ + p4 = t1+t3; \ + p1 = t0+t3; \ + p2 = t1+t2; \ + p5 = (p3+p4)*stbi__f2f( 1.175875602f); \ + t0 = t0*stbi__f2f( 0.298631336f); \ + t1 = t1*stbi__f2f( 2.053119869f); \ + t2 = t2*stbi__f2f( 3.072711026f); \ + t3 = t3*stbi__f2f( 1.501321110f); \ + p1 = p5 + p1*stbi__f2f(-0.899976223f); \ + p2 = p5 + p2*stbi__f2f(-2.562915447f); \ + p3 = p3*stbi__f2f(-1.961570560f); \ + p4 = p4*stbi__f2f(-0.390180644f); \ + t3 += p1+p4; \ + t2 += p2+p3; \ + t1 += p2+p4; \ + t0 += p1+p3; + +static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) +{ + int i,val[64],*v=val; + stbi_uc *o; + short *d = data; + + // columns + for (i=0; i < 8; ++i,++d, ++v) { + // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing + if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 + && d[40]==0 && d[48]==0 && d[56]==0) { + // no shortcut 0 seconds + // (1|2|3|4|5|6|7)==0 0 seconds + // all separate -0.047 seconds + // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds + int dcterm = d[0]*4; + v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; + } else { + STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56]) + // constants scaled things up by 1<<12; let's bring them back + // down, but keep 2 extra bits of precision + x0 += 512; x1 += 512; x2 += 512; x3 += 512; + v[ 0] = (x0+t3) >> 10; + v[56] = (x0-t3) >> 10; + v[ 8] = (x1+t2) >> 10; + v[48] = (x1-t2) >> 10; + v[16] = (x2+t1) >> 10; + v[40] = (x2-t1) >> 10; + v[24] = (x3+t0) >> 10; + v[32] = (x3-t0) >> 10; + } + } + + for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { + // no fast case since the first 1D IDCT spread components out + STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) + // constants scaled things up by 1<<12, plus we had 1<<2 from first + // loop, plus horizontal and vertical each scale by sqrt(8) so together + // we've got an extra 1<<3, so 1<<17 total we need to remove. + // so we want to round that, which means adding 0.5 * 1<<17, + // aka 65536. Also, we'll end up with -128 to 127 that we want + // to encode as 0..255 by adding 128, so we'll add that before the shift + x0 += 65536 + (128<<17); + x1 += 65536 + (128<<17); + x2 += 65536 + (128<<17); + x3 += 65536 + (128<<17); + // tried computing the shifts into temps, or'ing the temps to see + // if any were out of range, but that was slower + o[0] = stbi__clamp((x0+t3) >> 17); + o[7] = stbi__clamp((x0-t3) >> 17); + o[1] = stbi__clamp((x1+t2) >> 17); + o[6] = stbi__clamp((x1-t2) >> 17); + o[2] = stbi__clamp((x2+t1) >> 17); + o[5] = stbi__clamp((x2-t1) >> 17); + o[3] = stbi__clamp((x3+t0) >> 17); + o[4] = stbi__clamp((x3-t0) >> 17); + } } #ifdef STBI_SSE2 // sse2 integer IDCT. not the fastest possible implementation but it // produces bit-identical results to the generic C version so it's // fully "transparent". -static void stbi__idct_simd(stbi_uc * out, int out_stride, short data[64]) { - // This is constructed to match our regular (generic) integer IDCT exactly. - __m128i row0, row1, row2, row3, row4, row5, row6, row7; - __m128i tmp; - -// dot product constant: even elems=x, odd elems=y -#define dct_const(x, y) _mm_setr_epi16((x), (y), (x), (y), (x), (y), (x), (y)) - -// out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) -// out(1) = c1[even]*x + c1[odd]*y -#define dct_rot(out0, out1, x, y, c0, c1) \ - __m128i c0##lo = _mm_unpacklo_epi16((x), (y)); \ - __m128i c0##hi = _mm_unpackhi_epi16((x), (y)); \ - __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ - __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ - __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ - __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) - -// out = in << 12 (in 16-bit, out 32-bit) -#define dct_widen(out, in) \ - __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ - __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) - -// wide add -#define dct_wadd(out, a, b) \ - __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ - __m128i out##_h = _mm_add_epi32(a##_h, b##_h) - -// wide sub -#define dct_wsub(out, a, b) \ - __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ - __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) - -// butterfly a/b, add bias, then shift by "s" and pack -#define dct_bfly32o(out0, out1, a, b, bias, s) \ - { \ - __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ - __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ - dct_wadd(sum, abiased, b); \ - dct_wsub(dif, abiased, b); \ - out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ - out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ - } - -// 8-bit interleave step (for transposes) -#define dct_interleave8(a, b) \ - tmp = a; \ - a = _mm_unpacklo_epi8(a, b); \ - b = _mm_unpackhi_epi8(tmp, b) - -// 16-bit interleave step (for transposes) -#define dct_interleave16(a, b) \ - tmp = a; \ - a = _mm_unpacklo_epi16(a, b); \ - b = _mm_unpackhi_epi16(tmp, b) - -#define dct_pass(bias, shift) \ - { \ - /* even part */ \ - dct_rot(t2e, t3e, row2, row6, rot0_0, rot0_1); \ - __m128i sum04 = _mm_add_epi16(row0, row4); \ - __m128i dif04 = _mm_sub_epi16(row0, row4); \ - dct_widen(t0e, sum04); \ - dct_widen(t1e, dif04); \ - dct_wadd(x0, t0e, t3e); \ - dct_wsub(x3, t0e, t3e); \ - dct_wadd(x1, t1e, t2e); \ - dct_wsub(x2, t1e, t2e); \ - /* odd part */ \ - dct_rot(y0o, y2o, row7, row3, rot2_0, rot2_1); \ - dct_rot(y1o, y3o, row5, row1, rot3_0, rot3_1); \ - __m128i sum17 = _mm_add_epi16(row1, row7); \ - __m128i sum35 = _mm_add_epi16(row3, row5); \ - dct_rot(y4o, y5o, sum17, sum35, rot1_0, rot1_1); \ - dct_wadd(x4, y0o, y4o); \ - dct_wadd(x5, y1o, y5o); \ - dct_wadd(x6, y2o, y5o); \ - dct_wadd(x7, y3o, y4o); \ - dct_bfly32o(row0, row7, x0, x7, bias, shift); \ - dct_bfly32o(row1, row6, x1, x6, bias, shift); \ - dct_bfly32o(row2, row5, x2, x5, bias, shift); \ - dct_bfly32o(row3, row4, x3, x4, bias, shift); \ - } - - __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); - __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f(0.765366865f), stbi__f2f(0.5411961f)); - __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); - __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); - __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f(0.298631336f), stbi__f2f(-1.961570560f)); - __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f(3.072711026f)); - __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f(2.053119869f), stbi__f2f(-0.390180644f)); - __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f(1.501321110f)); - - // rounding biases in column/row passes, see stbi__idct_block for explanation. - __m128i bias_0 = _mm_set1_epi32(512); - __m128i bias_1 = _mm_set1_epi32(65536 + (128 << 17)); - - // load - row0 = _mm_load_si128((const __m128i *)(data + 0 * 8)); - row1 = _mm_load_si128((const __m128i *)(data + 1 * 8)); - row2 = _mm_load_si128((const __m128i *)(data + 2 * 8)); - row3 = _mm_load_si128((const __m128i *)(data + 3 * 8)); - row4 = _mm_load_si128((const __m128i *)(data + 4 * 8)); - row5 = _mm_load_si128((const __m128i *)(data + 5 * 8)); - row6 = _mm_load_si128((const __m128i *)(data + 6 * 8)); - row7 = _mm_load_si128((const __m128i *)(data + 7 * 8)); - - // column pass - dct_pass(bias_0, 10); - - { - // 16bit 8x8 transpose pass 1 - dct_interleave16(row0, row4); - dct_interleave16(row1, row5); - dct_interleave16(row2, row6); - dct_interleave16(row3, row7); - - // transpose pass 2 - dct_interleave16(row0, row2); - dct_interleave16(row1, row3); - dct_interleave16(row4, row6); - dct_interleave16(row5, row7); - - // transpose pass 3 - dct_interleave16(row0, row1); - dct_interleave16(row2, row3); - dct_interleave16(row4, row5); - dct_interleave16(row6, row7); - } - - // row pass - dct_pass(bias_1, 17); - - { - // pack - __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 - __m128i p1 = _mm_packus_epi16(row2, row3); - __m128i p2 = _mm_packus_epi16(row4, row5); - __m128i p3 = _mm_packus_epi16(row6, row7); - - // 8bit 8x8 transpose pass 1 - dct_interleave8(p0, p2); // a0e0a1e1... - dct_interleave8(p1, p3); // c0g0c1g1... - - // transpose pass 2 - dct_interleave8(p0, p1); // a0c0e0g0... - dct_interleave8(p2, p3); // b0d0f0h0... - - // transpose pass 3 - dct_interleave8(p0, p2); // a0b0c0d0... - dct_interleave8(p1, p3); // a4b4c4d4... - - // store - _mm_storel_epi64((__m128i *)out, p0); - out += out_stride; - _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p0, 0x4e)); - out += out_stride; - _mm_storel_epi64((__m128i *)out, p2); - out += out_stride; - _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p2, 0x4e)); - out += out_stride; - _mm_storel_epi64((__m128i *)out, p1); - out += out_stride; - _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p1, 0x4e)); - out += out_stride; - _mm_storel_epi64((__m128i *)out, p3); - out += out_stride; - _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p3, 0x4e)); - } +static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) +{ + // This is constructed to match our regular (generic) integer IDCT exactly. + __m128i row0, row1, row2, row3, row4, row5, row6, row7; + __m128i tmp; + + // dot product constant: even elems=x, odd elems=y + #define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y)) + + // out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) + // out(1) = c1[even]*x + c1[odd]*y + #define dct_rot(out0,out1, x,y,c0,c1) \ + __m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \ + __m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \ + __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ + __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ + __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ + __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) + + // out = in << 12 (in 16-bit, out 32-bit) + #define dct_widen(out, in) \ + __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ + __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) + + // wide add + #define dct_wadd(out, a, b) \ + __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ + __m128i out##_h = _mm_add_epi32(a##_h, b##_h) + + // wide sub + #define dct_wsub(out, a, b) \ + __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ + __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) + + // butterfly a/b, add bias, then shift by "s" and pack + #define dct_bfly32o(out0, out1, a,b,bias,s) \ + { \ + __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ + __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ + dct_wadd(sum, abiased, b); \ + dct_wsub(dif, abiased, b); \ + out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ + out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ + } + + // 8-bit interleave step (for transposes) + #define dct_interleave8(a, b) \ + tmp = a; \ + a = _mm_unpacklo_epi8(a, b); \ + b = _mm_unpackhi_epi8(tmp, b) + + // 16-bit interleave step (for transposes) + #define dct_interleave16(a, b) \ + tmp = a; \ + a = _mm_unpacklo_epi16(a, b); \ + b = _mm_unpackhi_epi16(tmp, b) + + #define dct_pass(bias,shift) \ + { \ + /* even part */ \ + dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \ + __m128i sum04 = _mm_add_epi16(row0, row4); \ + __m128i dif04 = _mm_sub_epi16(row0, row4); \ + dct_widen(t0e, sum04); \ + dct_widen(t1e, dif04); \ + dct_wadd(x0, t0e, t3e); \ + dct_wsub(x3, t0e, t3e); \ + dct_wadd(x1, t1e, t2e); \ + dct_wsub(x2, t1e, t2e); \ + /* odd part */ \ + dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \ + dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \ + __m128i sum17 = _mm_add_epi16(row1, row7); \ + __m128i sum35 = _mm_add_epi16(row3, row5); \ + dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \ + dct_wadd(x4, y0o, y4o); \ + dct_wadd(x5, y1o, y5o); \ + dct_wadd(x6, y2o, y5o); \ + dct_wadd(x7, y3o, y4o); \ + dct_bfly32o(row0,row7, x0,x7,bias,shift); \ + dct_bfly32o(row1,row6, x1,x6,bias,shift); \ + dct_bfly32o(row2,row5, x2,x5,bias,shift); \ + dct_bfly32o(row3,row4, x3,x4,bias,shift); \ + } + + __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); + __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f)); + __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); + __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); + __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f)); + __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f)); + __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f)); + __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f)); + + // rounding biases in column/row passes, see stbi__idct_block for explanation. + __m128i bias_0 = _mm_set1_epi32(512); + __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17)); + + // load + row0 = _mm_load_si128((const __m128i *) (data + 0*8)); + row1 = _mm_load_si128((const __m128i *) (data + 1*8)); + row2 = _mm_load_si128((const __m128i *) (data + 2*8)); + row3 = _mm_load_si128((const __m128i *) (data + 3*8)); + row4 = _mm_load_si128((const __m128i *) (data + 4*8)); + row5 = _mm_load_si128((const __m128i *) (data + 5*8)); + row6 = _mm_load_si128((const __m128i *) (data + 6*8)); + row7 = _mm_load_si128((const __m128i *) (data + 7*8)); + + // column pass + dct_pass(bias_0, 10); + + { + // 16bit 8x8 transpose pass 1 + dct_interleave16(row0, row4); + dct_interleave16(row1, row5); + dct_interleave16(row2, row6); + dct_interleave16(row3, row7); + + // transpose pass 2 + dct_interleave16(row0, row2); + dct_interleave16(row1, row3); + dct_interleave16(row4, row6); + dct_interleave16(row5, row7); + + // transpose pass 3 + dct_interleave16(row0, row1); + dct_interleave16(row2, row3); + dct_interleave16(row4, row5); + dct_interleave16(row6, row7); + } + + // row pass + dct_pass(bias_1, 17); + + { + // pack + __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 + __m128i p1 = _mm_packus_epi16(row2, row3); + __m128i p2 = _mm_packus_epi16(row4, row5); + __m128i p3 = _mm_packus_epi16(row6, row7); + + // 8bit 8x8 transpose pass 1 + dct_interleave8(p0, p2); // a0e0a1e1... + dct_interleave8(p1, p3); // c0g0c1g1... + + // transpose pass 2 + dct_interleave8(p0, p1); // a0c0e0g0... + dct_interleave8(p2, p3); // b0d0f0h0... + + // transpose pass 3 + dct_interleave8(p0, p2); // a0b0c0d0... + dct_interleave8(p1, p3); // a4b4c4d4... + + // store + _mm_storel_epi64((__m128i *) out, p0); out += out_stride; + _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride; + _mm_storel_epi64((__m128i *) out, p2); out += out_stride; + _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride; + _mm_storel_epi64((__m128i *) out, p1); out += out_stride; + _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride; + _mm_storel_epi64((__m128i *) out, p3); out += out_stride; + _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e)); + } #undef dct_const #undef dct_rot @@ -2763,235 +2708,198 @@ static void stbi__idct_simd(stbi_uc * out, int out_stride, short data[64]) { // NEON integer IDCT. should produce bit-identical // results to the generic C version. -static void stbi__idct_simd(stbi_uc * out, int out_stride, short data[64]) { - int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; - - int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); - int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); - int16x4_t rot0_2 = vdup_n_s16(stbi__f2f(0.765366865f)); - int16x4_t rot1_0 = vdup_n_s16(stbi__f2f(1.175875602f)); - int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); - int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); - int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); - int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); - int16x4_t rot3_0 = vdup_n_s16(stbi__f2f(0.298631336f)); - int16x4_t rot3_1 = vdup_n_s16(stbi__f2f(2.053119869f)); - int16x4_t rot3_2 = vdup_n_s16(stbi__f2f(3.072711026f)); - int16x4_t rot3_3 = vdup_n_s16(stbi__f2f(1.501321110f)); - -#define dct_long_mul(out, inq, coeff) \ - int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ - int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) - -#define dct_long_mac(out, acc, inq, coeff) \ - int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ - int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) - -#define dct_widen(out, inq) \ - int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ - int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) +static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) +{ + int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; + + int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); + int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); + int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f)); + int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f)); + int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); + int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); + int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); + int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); + int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f)); + int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f)); + int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f)); + int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f)); + +#define dct_long_mul(out, inq, coeff) \ + int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ + int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) + +#define dct_long_mac(out, acc, inq, coeff) \ + int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ + int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) + +#define dct_widen(out, inq) \ + int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ + int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) // wide add -#define dct_wadd(out, a, b) \ - int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ - int32x4_t out##_h = vaddq_s32(a##_h, b##_h) +#define dct_wadd(out, a, b) \ + int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ + int32x4_t out##_h = vaddq_s32(a##_h, b##_h) // wide sub -#define dct_wsub(out, a, b) \ - int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ - int32x4_t out##_h = vsubq_s32(a##_h, b##_h) +#define dct_wsub(out, a, b) \ + int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ + int32x4_t out##_h = vsubq_s32(a##_h, b##_h) // butterfly a/b, then shift using "shiftop" by "s" and pack -#define dct_bfly32o(out0, out1, a, b, shiftop, s) \ - { \ - dct_wadd(sum, a, b); \ - dct_wsub(dif, a, b); \ - out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ - out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ - } - -#define dct_pass(shiftop, shift) \ - { \ - /* even part */ \ - int16x8_t sum26 = vaddq_s16(row2, row6); \ - dct_long_mul(p1e, sum26, rot0_0); \ - dct_long_mac(t2e, p1e, row6, rot0_1); \ - dct_long_mac(t3e, p1e, row2, rot0_2); \ - int16x8_t sum04 = vaddq_s16(row0, row4); \ - int16x8_t dif04 = vsubq_s16(row0, row4); \ - dct_widen(t0e, sum04); \ - dct_widen(t1e, dif04); \ - dct_wadd(x0, t0e, t3e); \ - dct_wsub(x3, t0e, t3e); \ - dct_wadd(x1, t1e, t2e); \ - dct_wsub(x2, t1e, t2e); \ - /* odd part */ \ - int16x8_t sum15 = vaddq_s16(row1, row5); \ - int16x8_t sum17 = vaddq_s16(row1, row7); \ - int16x8_t sum35 = vaddq_s16(row3, row5); \ - int16x8_t sum37 = vaddq_s16(row3, row7); \ - int16x8_t sumodd = vaddq_s16(sum17, sum35); \ - dct_long_mul(p5o, sumodd, rot1_0); \ - dct_long_mac(p1o, p5o, sum17, rot1_1); \ - dct_long_mac(p2o, p5o, sum35, rot1_2); \ - dct_long_mul(p3o, sum37, rot2_0); \ - dct_long_mul(p4o, sum15, rot2_1); \ - dct_wadd(sump13o, p1o, p3o); \ - dct_wadd(sump24o, p2o, p4o); \ - dct_wadd(sump23o, p2o, p3o); \ - dct_wadd(sump14o, p1o, p4o); \ - dct_long_mac(x4, sump13o, row7, rot3_0); \ - dct_long_mac(x5, sump24o, row5, rot3_1); \ - dct_long_mac(x6, sump23o, row3, rot3_2); \ - dct_long_mac(x7, sump14o, row1, rot3_3); \ - dct_bfly32o(row0, row7, x0, x7, shiftop, shift); \ - dct_bfly32o(row1, row6, x1, x6, shiftop, shift); \ - dct_bfly32o(row2, row5, x2, x5, shiftop, shift); \ - dct_bfly32o(row3, row4, x3, x4, shiftop, shift); \ - } - - // load - row0 = vld1q_s16(data + 0 * 8); - row1 = vld1q_s16(data + 1 * 8); - row2 = vld1q_s16(data + 2 * 8); - row3 = vld1q_s16(data + 3 * 8); - row4 = vld1q_s16(data + 4 * 8); - row5 = vld1q_s16(data + 5 * 8); - row6 = vld1q_s16(data + 6 * 8); - row7 = vld1q_s16(data + 7 * 8); - - // add DC bias - row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); - - // column pass - dct_pass(vrshrn_n_s32, 10); - - // 16bit 8x8 transpose - { +#define dct_bfly32o(out0,out1, a,b,shiftop,s) \ + { \ + dct_wadd(sum, a, b); \ + dct_wsub(dif, a, b); \ + out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ + out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ + } + +#define dct_pass(shiftop, shift) \ + { \ + /* even part */ \ + int16x8_t sum26 = vaddq_s16(row2, row6); \ + dct_long_mul(p1e, sum26, rot0_0); \ + dct_long_mac(t2e, p1e, row6, rot0_1); \ + dct_long_mac(t3e, p1e, row2, rot0_2); \ + int16x8_t sum04 = vaddq_s16(row0, row4); \ + int16x8_t dif04 = vsubq_s16(row0, row4); \ + dct_widen(t0e, sum04); \ + dct_widen(t1e, dif04); \ + dct_wadd(x0, t0e, t3e); \ + dct_wsub(x3, t0e, t3e); \ + dct_wadd(x1, t1e, t2e); \ + dct_wsub(x2, t1e, t2e); \ + /* odd part */ \ + int16x8_t sum15 = vaddq_s16(row1, row5); \ + int16x8_t sum17 = vaddq_s16(row1, row7); \ + int16x8_t sum35 = vaddq_s16(row3, row5); \ + int16x8_t sum37 = vaddq_s16(row3, row7); \ + int16x8_t sumodd = vaddq_s16(sum17, sum35); \ + dct_long_mul(p5o, sumodd, rot1_0); \ + dct_long_mac(p1o, p5o, sum17, rot1_1); \ + dct_long_mac(p2o, p5o, sum35, rot1_2); \ + dct_long_mul(p3o, sum37, rot2_0); \ + dct_long_mul(p4o, sum15, rot2_1); \ + dct_wadd(sump13o, p1o, p3o); \ + dct_wadd(sump24o, p2o, p4o); \ + dct_wadd(sump23o, p2o, p3o); \ + dct_wadd(sump14o, p1o, p4o); \ + dct_long_mac(x4, sump13o, row7, rot3_0); \ + dct_long_mac(x5, sump24o, row5, rot3_1); \ + dct_long_mac(x6, sump23o, row3, rot3_2); \ + dct_long_mac(x7, sump14o, row1, rot3_3); \ + dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \ + dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \ + dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \ + dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \ + } + + // load + row0 = vld1q_s16(data + 0*8); + row1 = vld1q_s16(data + 1*8); + row2 = vld1q_s16(data + 2*8); + row3 = vld1q_s16(data + 3*8); + row4 = vld1q_s16(data + 4*8); + row5 = vld1q_s16(data + 5*8); + row6 = vld1q_s16(data + 6*8); + row7 = vld1q_s16(data + 7*8); + + // add DC bias + row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); + + // column pass + dct_pass(vrshrn_n_s32, 10); + + // 16bit 8x8 transpose + { // these three map to a single VTRN.16, VTRN.32, and VSWP, respectively. // whether compilers actually get this is another story, sadly. -#define dct_trn16(x, y) \ - { \ - int16x8x2_t t = vtrnq_s16(x, y); \ - x = t.val[0]; \ - y = t.val[1]; \ - } -#define dct_trn32(x, y) \ - { \ - int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); \ - x = vreinterpretq_s16_s32(t.val[0]); \ - y = vreinterpretq_s16_s32(t.val[1]); \ - } -#define dct_trn64(x, y) \ - { \ - int16x8_t x0 = x; \ - int16x8_t y0 = y; \ - x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); \ - y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); \ - } - - // pass 1 - dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 - dct_trn16(row2, row3); - dct_trn16(row4, row5); - dct_trn16(row6, row7); - - // pass 2 - dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 - dct_trn32(row1, row3); - dct_trn32(row4, row6); - dct_trn32(row5, row7); - - // pass 3 - dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 - dct_trn64(row1, row5); - dct_trn64(row2, row6); - dct_trn64(row3, row7); +#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; } +#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); } +#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); } + + // pass 1 + dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 + dct_trn16(row2, row3); + dct_trn16(row4, row5); + dct_trn16(row6, row7); + + // pass 2 + dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 + dct_trn32(row1, row3); + dct_trn32(row4, row6); + dct_trn32(row5, row7); + + // pass 3 + dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 + dct_trn64(row1, row5); + dct_trn64(row2, row6); + dct_trn64(row3, row7); #undef dct_trn16 #undef dct_trn32 #undef dct_trn64 - } - - // row pass - // vrshrn_n_s32 only supports shifts up to 16, we need - // 17. so do a non-rounding shift of 16 first then follow - // up with a rounding shift by 1. - dct_pass(vshrn_n_s32, 16); - - { - // pack and round - uint8x8_t p0 = vqrshrun_n_s16(row0, 1); - uint8x8_t p1 = vqrshrun_n_s16(row1, 1); - uint8x8_t p2 = vqrshrun_n_s16(row2, 1); - uint8x8_t p3 = vqrshrun_n_s16(row3, 1); - uint8x8_t p4 = vqrshrun_n_s16(row4, 1); - uint8x8_t p5 = vqrshrun_n_s16(row5, 1); - uint8x8_t p6 = vqrshrun_n_s16(row6, 1); - uint8x8_t p7 = vqrshrun_n_s16(row7, 1); - - // again, these can translate into one instruction, but often don't. -#define dct_trn8_8(x, y) \ - { \ - uint8x8x2_t t = vtrn_u8(x, y); \ - x = t.val[0]; \ - y = t.val[1]; \ - } -#define dct_trn8_16(x, y) \ - { \ - uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); \ - x = vreinterpret_u8_u16(t.val[0]); \ - y = vreinterpret_u8_u16(t.val[1]); \ - } -#define dct_trn8_32(x, y) \ - { \ - uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); \ - x = vreinterpret_u8_u32(t.val[0]); \ - y = vreinterpret_u8_u32(t.val[1]); \ - } - - // sadly can't use interleaved stores here since we only write - // 8 bytes to each scan line! - - // 8x8 8-bit transpose pass 1 - dct_trn8_8(p0, p1); - dct_trn8_8(p2, p3); - dct_trn8_8(p4, p5); - dct_trn8_8(p6, p7); - - // pass 2 - dct_trn8_16(p0, p2); - dct_trn8_16(p1, p3); - dct_trn8_16(p4, p6); - dct_trn8_16(p5, p7); - - // pass 3 - dct_trn8_32(p0, p4); - dct_trn8_32(p1, p5); - dct_trn8_32(p2, p6); - dct_trn8_32(p3, p7); - - // store - vst1_u8(out, p0); - out += out_stride; - vst1_u8(out, p1); - out += out_stride; - vst1_u8(out, p2); - out += out_stride; - vst1_u8(out, p3); - out += out_stride; - vst1_u8(out, p4); - out += out_stride; - vst1_u8(out, p5); - out += out_stride; - vst1_u8(out, p6); - out += out_stride; - vst1_u8(out, p7); + } + + // row pass + // vrshrn_n_s32 only supports shifts up to 16, we need + // 17. so do a non-rounding shift of 16 first then follow + // up with a rounding shift by 1. + dct_pass(vshrn_n_s32, 16); + + { + // pack and round + uint8x8_t p0 = vqrshrun_n_s16(row0, 1); + uint8x8_t p1 = vqrshrun_n_s16(row1, 1); + uint8x8_t p2 = vqrshrun_n_s16(row2, 1); + uint8x8_t p3 = vqrshrun_n_s16(row3, 1); + uint8x8_t p4 = vqrshrun_n_s16(row4, 1); + uint8x8_t p5 = vqrshrun_n_s16(row5, 1); + uint8x8_t p6 = vqrshrun_n_s16(row6, 1); + uint8x8_t p7 = vqrshrun_n_s16(row7, 1); + + // again, these can translate into one instruction, but often don't. +#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; } +#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); } +#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); } + + // sadly can't use interleaved stores here since we only write + // 8 bytes to each scan line! + + // 8x8 8-bit transpose pass 1 + dct_trn8_8(p0, p1); + dct_trn8_8(p2, p3); + dct_trn8_8(p4, p5); + dct_trn8_8(p6, p7); + + // pass 2 + dct_trn8_16(p0, p2); + dct_trn8_16(p1, p3); + dct_trn8_16(p4, p6); + dct_trn8_16(p5, p7); + + // pass 3 + dct_trn8_32(p0, p4); + dct_trn8_32(p1, p5); + dct_trn8_32(p2, p6); + dct_trn8_32(p3, p7); + + // store + vst1_u8(out, p0); out += out_stride; + vst1_u8(out, p1); out += out_stride; + vst1_u8(out, p2); out += out_stride; + vst1_u8(out, p3); out += out_stride; + vst1_u8(out, p4); out += out_stride; + vst1_u8(out, p5); out += out_stride; + vst1_u8(out, p6); out += out_stride; + vst1_u8(out, p7); #undef dct_trn8_8 #undef dct_trn8_16 #undef dct_trn8_32 - } + } #undef dct_long_mul #undef dct_long_mac @@ -3004,1267 +2912,1169 @@ static void stbi__idct_simd(stbi_uc * out, int out_stride, short data[64]) { #endif // STBI_NEON -#define STBI__MARKER_none 0xff +#define STBI__MARKER_none 0xff // if there's a pending marker from the entropy stream, return that // otherwise, fetch from the stream and get a marker. if there's no // marker, return 0xff, which is never a valid marker value -static stbi_uc stbi__get_marker(stbi__jpeg * j) { - stbi_uc x; - if (j->marker != STBI__MARKER_none) { - x = j->marker; - j->marker = STBI__MARKER_none; - return x; - } - x = stbi__get8(j->s); - if (x != 0xff) - return STBI__MARKER_none; - while (x == 0xff) - x = stbi__get8(j->s); // consume repeated 0xff fill bytes - return x; +static stbi_uc stbi__get_marker(stbi__jpeg *j) +{ + stbi_uc x; + if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; } + x = stbi__get8(j->s); + if (x != 0xff) return STBI__MARKER_none; + while (x == 0xff) + x = stbi__get8(j->s); // consume repeated 0xff fill bytes + return x; } // in each scan, we'll have scan_n components, and the order // of the components is specified by order[] -#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) +#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) // after a restart interval, stbi__jpeg_reset the entropy decoder and // the dc prediction -static void stbi__jpeg_reset(stbi__jpeg * j) { - j->code_bits = 0; - j->code_buffer = 0; - j->nomore = 0; - j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0; - j->marker = STBI__MARKER_none; - j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; - j->eob_run = 0; - // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, - // since we don't even allow 1<<30 pixels -} - -static int stbi__parse_entropy_coded_data(stbi__jpeg * z) { - stbi__jpeg_reset(z); - if (!z->progressive) { - if (z->scan_n == 1) { - int i, j; - STBI_SIMD_ALIGN(short, data[64]); - int n = z->order[0]; - // non-interleaved data, we just need to process one block at a time, - // in trivial scanline order - // number of blocks to do just depends on how many actual "pixels" this - // component has, independent of interleaved MCU blocking and such - int w = (z->img_comp[n].x + 7) >> 3; - int h = (z->img_comp[n].y + 7) >> 3; - for (j = 0; j < h; ++j) { - for (i = 0; i < w; ++i) { - int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block(z, data, z->huff_dc + z->img_comp[n].hd, z->huff_ac + ha, z->fast_ac[ha], n, - z->dequant[z->img_comp[n].tq])) - return 0; - z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * j * 8 + i * 8, z->img_comp[n].w2, data); - // every data block is an MCU, so countdown the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) - stbi__grow_buffer_unsafe(z); - // if it's NOT a restart, then just bail, so we get corrupt data - // rather than no data - if (!STBI__RESTART(z->marker)) - return 1; - stbi__jpeg_reset(z); - } - } - } - return 1; - } else { // interleaved - int i, j, k, x, y; - STBI_SIMD_ALIGN(short, data[64]); - for (j = 0; j < z->img_mcu_y; ++j) { - for (i = 0; i < z->img_mcu_x; ++i) { - // scan an interleaved mcu... process scan_n components in order - for (k = 0; k < z->scan_n; ++k) { - int n = z->order[k]; - // scan out an mcu's worth of this component; that's just determined - // by the basic H and V specified for the component - for (y = 0; y < z->img_comp[n].v; ++y) { - for (x = 0; x < z->img_comp[n].h; ++x) { - int x2 = (i * z->img_comp[n].h + x) * 8; - int y2 = (j * z->img_comp[n].v + y) * 8; - int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block(z, data, z->huff_dc + z->img_comp[n].hd, z->huff_ac + ha, - z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) - return 0; - z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * y2 + x2, z->img_comp[n].w2, - data); - } - } - } - // after all interleaved components, that's an interleaved MCU, - // so now count down the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) - stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) - return 1; - stbi__jpeg_reset(z); - } - } +static void stbi__jpeg_reset(stbi__jpeg *j) +{ + j->code_bits = 0; + j->code_buffer = 0; + j->nomore = 0; + j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0; + j->marker = STBI__MARKER_none; + j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; + j->eob_run = 0; + // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, + // since we don't even allow 1<<30 pixels +} + +static int stbi__parse_entropy_coded_data(stbi__jpeg *z) +{ + stbi__jpeg_reset(z); + if (!z->progressive) { + if (z->scan_n == 1) { + int i,j; + STBI_SIMD_ALIGN(short, data[64]); + int n = z->order[0]; + // non-interleaved data, we just need to process one block at a time, + // in trivial scanline order + // number of blocks to do just depends on how many actual "pixels" this + // component has, independent of interleaved MCU blocking and such + int w = (z->img_comp[n].x+7) >> 3; + int h = (z->img_comp[n].y+7) >> 3; + for (j=0; j < h; ++j) { + for (i=0; i < w; ++i) { + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; + z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); + // every data block is an MCU, so countdown the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); + // if it's NOT a restart, then just bail, so we get corrupt data + // rather than no data + if (!STBI__RESTART(z->marker)) return 1; + stbi__jpeg_reset(z); + } } - return 1; - } - } else { - if (z->scan_n == 1) { - int i, j; - int n = z->order[0]; - // non-interleaved data, we just need to process one block at a time, - // in trivial scanline order - // number of blocks to do just depends on how many actual "pixels" this - // component has, independent of interleaved MCU blocking and such - int w = (z->img_comp[n].x + 7) >> 3; - int h = (z->img_comp[n].y + 7) >> 3; - for (j = 0; j < h; ++j) { - for (i = 0; i < w; ++i) { - short * data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); - if (z->spec_start == 0) { - if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) - return 0; - } else { + } + return 1; + } else { // interleaved + int i,j,k,x,y; + STBI_SIMD_ALIGN(short, data[64]); + for (j=0; j < z->img_mcu_y; ++j) { + for (i=0; i < z->img_mcu_x; ++i) { + // scan an interleaved mcu... process scan_n components in order + for (k=0; k < z->scan_n; ++k) { + int n = z->order[k]; + // scan out an mcu's worth of this component; that's just determined + // by the basic H and V specified for the component + for (y=0; y < z->img_comp[n].v; ++y) { + for (x=0; x < z->img_comp[n].h; ++x) { + int x2 = (i*z->img_comp[n].h + x)*8; + int y2 = (j*z->img_comp[n].v + y)*8; int ha = z->img_comp[n].ha; - if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha])) - return 0; - } - // every data block is an MCU, so countdown the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) - stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) - return 1; - stbi__jpeg_reset(z); - } - } + if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0; + z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data); + } + } + } + // after all interleaved components, that's an interleaved MCU, + // so now count down the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) return 1; + stbi__jpeg_reset(z); + } } - return 1; - } else { // interleaved - int i, j, k, x, y; - for (j = 0; j < z->img_mcu_y; ++j) { - for (i = 0; i < z->img_mcu_x; ++i) { - // scan an interleaved mcu... process scan_n components in order - for (k = 0; k < z->scan_n; ++k) { - int n = z->order[k]; - // scan out an mcu's worth of this component; that's just determined - // by the basic H and V specified for the component - for (y = 0; y < z->img_comp[n].v; ++y) { - for (x = 0; x < z->img_comp[n].h; ++x) { - int x2 = (i * z->img_comp[n].h + x); - int y2 = (j * z->img_comp[n].v + y); - short * data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w); - if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) - return 0; - } - } - } - // after all interleaved components, that's an interleaved MCU, - // so now count down the restart interval - if (--z->todo <= 0) { - if (z->code_bits < 24) - stbi__grow_buffer_unsafe(z); - if (!STBI__RESTART(z->marker)) - return 1; - stbi__jpeg_reset(z); - } - } + } + return 1; + } + } else { + if (z->scan_n == 1) { + int i,j; + int n = z->order[0]; + // non-interleaved data, we just need to process one block at a time, + // in trivial scanline order + // number of blocks to do just depends on how many actual "pixels" this + // component has, independent of interleaved MCU blocking and such + int w = (z->img_comp[n].x+7) >> 3; + int h = (z->img_comp[n].y+7) >> 3; + for (j=0; j < h; ++j) { + for (i=0; i < w; ++i) { + short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); + if (z->spec_start == 0) { + if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) + return 0; + } else { + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha])) + return 0; + } + // every data block is an MCU, so countdown the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) return 1; + stbi__jpeg_reset(z); + } } - return 1; - } - } -} - -static void stbi__jpeg_dequantize(short * data, stbi__uint16 * dequant) { - int i; - for (i = 0; i < 64; ++i) - data[i] *= dequant[i]; -} - -static void stbi__jpeg_finish(stbi__jpeg * z) { - if (z->progressive) { - // dequantize and idct the data - int i, j, n; - for (n = 0; n < z->s->img_n; ++n) { - int w = (z->img_comp[n].x + 7) >> 3; - int h = (z->img_comp[n].y + 7) >> 3; - for (j = 0; j < h; ++j) { - for (i = 0; i < w; ++i) { - short * data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); - stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); - z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * j * 8 + i * 8, z->img_comp[n].w2, data); - } + } + return 1; + } else { // interleaved + int i,j,k,x,y; + for (j=0; j < z->img_mcu_y; ++j) { + for (i=0; i < z->img_mcu_x; ++i) { + // scan an interleaved mcu... process scan_n components in order + for (k=0; k < z->scan_n; ++k) { + int n = z->order[k]; + // scan out an mcu's worth of this component; that's just determined + // by the basic H and V specified for the component + for (y=0; y < z->img_comp[n].v; ++y) { + for (x=0; x < z->img_comp[n].h; ++x) { + int x2 = (i*z->img_comp[n].h + x); + int y2 = (j*z->img_comp[n].v + y); + short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w); + if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) + return 0; + } + } + } + // after all interleaved components, that's an interleaved MCU, + // so now count down the restart interval + if (--z->todo <= 0) { + if (z->code_bits < 24) stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) return 1; + stbi__jpeg_reset(z); + } } - } - } + } + return 1; + } + } } -static int stbi__process_marker(stbi__jpeg * z, int m) { - int L; - switch (m) { - case STBI__MARKER_none: // no marker found - return stbi__err("expected marker", "Corrupt JPEG"); +static void stbi__jpeg_dequantize(short *data, stbi__uint16 *dequant) +{ + int i; + for (i=0; i < 64; ++i) + data[i] *= dequant[i]; +} - case 0xDD: // DRI - specify restart interval - if (stbi__get16be(z->s) != 4) - return stbi__err("bad DRI len", "Corrupt JPEG"); - z->restart_interval = stbi__get16be(z->s); - return 1; +static void stbi__jpeg_finish(stbi__jpeg *z) +{ + if (z->progressive) { + // dequantize and idct the data + int i,j,n; + for (n=0; n < z->s->img_n; ++n) { + int w = (z->img_comp[n].x+7) >> 3; + int h = (z->img_comp[n].y+7) >> 3; + for (j=0; j < h; ++j) { + for (i=0; i < w; ++i) { + short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); + stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); + z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data); + } + } + } + } +} - case 0xDB: // DQT - define quantization table - L = stbi__get16be(z->s) - 2; - while (L > 0) { +static int stbi__process_marker(stbi__jpeg *z, int m) +{ + int L; + switch (m) { + case STBI__MARKER_none: // no marker found + return stbi__err("expected marker","Corrupt JPEG"); + + case 0xDD: // DRI - specify restart interval + if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG"); + z->restart_interval = stbi__get16be(z->s); + return 1; + + case 0xDB: // DQT - define quantization table + L = stbi__get16be(z->s)-2; + while (L > 0) { int q = stbi__get8(z->s); int p = q >> 4, sixteen = (p != 0); - int t = q & 15, i; - if (p != 0 && p != 1) - return stbi__err("bad DQT type", "Corrupt JPEG"); - if (t > 3) - return stbi__err("bad DQT table", "Corrupt JPEG"); - - for (i = 0; i < 64; ++i) - z->dequant[t][stbi__jpeg_dezigzag[i]] = (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s)); - L -= (sixteen ? 129 : 65); - } - return L == 0; + int t = q & 15,i; + if (p != 0 && p != 1) return stbi__err("bad DQT type","Corrupt JPEG"); + if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG"); - case 0xC4: // DHT - define huffman table - L = stbi__get16be(z->s) - 2; - while (L > 0) { - stbi_uc * v; - int sizes[16], i, n = 0; + for (i=0; i < 64; ++i) + z->dequant[t][stbi__jpeg_dezigzag[i]] = (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s)); + L -= (sixteen ? 129 : 65); + } + return L==0; + + case 0xC4: // DHT - define huffman table + L = stbi__get16be(z->s)-2; + while (L > 0) { + stbi_uc *v; + int sizes[16],i,n=0; int q = stbi__get8(z->s); int tc = q >> 4; int th = q & 15; - if (tc > 1 || th > 3) - return stbi__err("bad DHT header", "Corrupt JPEG"); - for (i = 0; i < 16; ++i) { - sizes[i] = stbi__get8(z->s); - n += sizes[i]; + if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG"); + for (i=0; i < 16; ++i) { + sizes[i] = stbi__get8(z->s); + n += sizes[i]; } - if (n > 256) - return stbi__err("bad DHT header", "Corrupt JPEG"); // Loop over i < n would write past end of values! + if(n > 256) return stbi__err("bad DHT header","Corrupt JPEG"); // Loop over i < n would write past end of values! L -= 17; if (tc == 0) { - if (!stbi__build_huffman(z->huff_dc + th, sizes)) - return 0; - v = z->huff_dc[th].values; + if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0; + v = z->huff_dc[th].values; } else { - if (!stbi__build_huffman(z->huff_ac + th, sizes)) - return 0; - v = z->huff_ac[th].values; + if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0; + v = z->huff_ac[th].values; } - for (i = 0; i < n; ++i) - v[i] = stbi__get8(z->s); + for (i=0; i < n; ++i) + v[i] = stbi__get8(z->s); if (tc != 0) - stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); + stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); L -= n; - } - return L == 0; - } - - // check for comment block or APP blocks - if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { - L = stbi__get16be(z->s); - if (L < 2) { - if (m == 0xFE) - return stbi__err("bad COM len", "Corrupt JPEG"); - else - return stbi__err("bad APP len", "Corrupt JPEG"); - } - L -= 2; - - if (m == 0xE0 && L >= 5) { // JFIF APP0 segment - static const unsigned char tag[5] = {'J', 'F', 'I', 'F', '\0'}; - int ok = 1; - int i; - for (i = 0; i < 5; ++i) - if (stbi__get8(z->s) != tag[i]) - ok = 0; - L -= 5; - if (ok) - z->jfif = 1; - } else if (m == 0xEE && L >= 12) { // Adobe APP14 segment - static const unsigned char tag[6] = {'A', 'd', 'o', 'b', 'e', '\0'}; - int ok = 1; - int i; - for (i = 0; i < 6; ++i) - if (stbi__get8(z->s) != tag[i]) - ok = 0; + } + return L==0; + } + + // check for comment block or APP blocks + if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { + L = stbi__get16be(z->s); + if (L < 2) { + if (m == 0xFE) + return stbi__err("bad COM len","Corrupt JPEG"); + else + return stbi__err("bad APP len","Corrupt JPEG"); + } + L -= 2; + + if (m == 0xE0 && L >= 5) { // JFIF APP0 segment + static const unsigned char tag[5] = {'J','F','I','F','\0'}; + int ok = 1; + int i; + for (i=0; i < 5; ++i) + if (stbi__get8(z->s) != tag[i]) + ok = 0; + L -= 5; + if (ok) + z->jfif = 1; + } else if (m == 0xEE && L >= 12) { // Adobe APP14 segment + static const unsigned char tag[6] = {'A','d','o','b','e','\0'}; + int ok = 1; + int i; + for (i=0; i < 6; ++i) + if (stbi__get8(z->s) != tag[i]) + ok = 0; + L -= 6; + if (ok) { + stbi__get8(z->s); // version + stbi__get16be(z->s); // flags0 + stbi__get16be(z->s); // flags1 + z->app14_color_transform = stbi__get8(z->s); // color transform L -= 6; - if (ok) { - stbi__get8(z->s); // version - stbi__get16be(z->s); // flags0 - stbi__get16be(z->s); // flags1 - z->app14_color_transform = stbi__get8(z->s); // color transform - L -= 6; - } - } + } + } - stbi__skip(z->s, L); - return 1; - } + stbi__skip(z->s, L); + return 1; + } - return stbi__err("unknown marker", "Corrupt JPEG"); + return stbi__err("unknown marker","Corrupt JPEG"); } // after we see SOS -static int stbi__process_scan_header(stbi__jpeg * z) { - int i; - int Ls = stbi__get16be(z->s); - z->scan_n = stbi__get8(z->s); - if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int)z->s->img_n) - return stbi__err("bad SOS component count", "Corrupt JPEG"); - if (Ls != 6 + 2 * z->scan_n) - return stbi__err("bad SOS len", "Corrupt JPEG"); - for (i = 0; i < z->scan_n; ++i) { - int id = stbi__get8(z->s), which; - int q = stbi__get8(z->s); - for (which = 0; which < z->s->img_n; ++which) - if (z->img_comp[which].id == id) - break; - if (which == z->s->img_n) - return 0; // no match - z->img_comp[which].hd = q >> 4; - if (z->img_comp[which].hd > 3) - return stbi__err("bad DC huff", "Corrupt JPEG"); - z->img_comp[which].ha = q & 15; - if (z->img_comp[which].ha > 3) - return stbi__err("bad AC huff", "Corrupt JPEG"); - z->order[i] = which; - } - - { - int aa; - z->spec_start = stbi__get8(z->s); - z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 - aa = stbi__get8(z->s); - z->succ_high = (aa >> 4); - z->succ_low = (aa & 15); - if (z->progressive) { - if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) - return stbi__err("bad SOS", "Corrupt JPEG"); - } else { - if (z->spec_start != 0) - return stbi__err("bad SOS", "Corrupt JPEG"); - if (z->succ_high != 0 || z->succ_low != 0) - return stbi__err("bad SOS", "Corrupt JPEG"); - z->spec_end = 63; - } - } - - return 1; +static int stbi__process_scan_header(stbi__jpeg *z) +{ + int i; + int Ls = stbi__get16be(z->s); + z->scan_n = stbi__get8(z->s); + if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad SOS component count","Corrupt JPEG"); + if (Ls != 6+2*z->scan_n) return stbi__err("bad SOS len","Corrupt JPEG"); + for (i=0; i < z->scan_n; ++i) { + int id = stbi__get8(z->s), which; + int q = stbi__get8(z->s); + for (which = 0; which < z->s->img_n; ++which) + if (z->img_comp[which].id == id) + break; + if (which == z->s->img_n) return 0; // no match + z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG"); + z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG"); + z->order[i] = which; + } + + { + int aa; + z->spec_start = stbi__get8(z->s); + z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 + aa = stbi__get8(z->s); + z->succ_high = (aa >> 4); + z->succ_low = (aa & 15); + if (z->progressive) { + if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) + return stbi__err("bad SOS", "Corrupt JPEG"); + } else { + if (z->spec_start != 0) return stbi__err("bad SOS","Corrupt JPEG"); + if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS","Corrupt JPEG"); + z->spec_end = 63; + } + } + + return 1; +} + +static int stbi__free_jpeg_components(stbi__jpeg *z, int ncomp, int why) +{ + int i; + for (i=0; i < ncomp; ++i) { + if (z->img_comp[i].raw_data) { + STBI_FREE(z->img_comp[i].raw_data); + z->img_comp[i].raw_data = NULL; + z->img_comp[i].data = NULL; + } + if (z->img_comp[i].raw_coeff) { + STBI_FREE(z->img_comp[i].raw_coeff); + z->img_comp[i].raw_coeff = 0; + z->img_comp[i].coeff = 0; + } + if (z->img_comp[i].linebuf) { + STBI_FREE(z->img_comp[i].linebuf); + z->img_comp[i].linebuf = NULL; + } + } + return why; +} + +static int stbi__process_frame_header(stbi__jpeg *z, int scan) +{ + stbi__context *s = z->s; + int Lf,p,i,q, h_max=1,v_max=1,c; + Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG + p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline + s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG + s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires + if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); + if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); + c = stbi__get8(s); + if (c != 3 && c != 1 && c != 4) return stbi__err("bad component count","Corrupt JPEG"); + s->img_n = c; + for (i=0; i < c; ++i) { + z->img_comp[i].data = NULL; + z->img_comp[i].linebuf = NULL; + } + + if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG"); + + z->rgb = 0; + for (i=0; i < s->img_n; ++i) { + static const unsigned char rgb[3] = { 'R', 'G', 'B' }; + z->img_comp[i].id = stbi__get8(s); + if (s->img_n == 3 && z->img_comp[i].id == rgb[i]) + ++z->rgb; + q = stbi__get8(s); + z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG"); + z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG"); + z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG"); + } + + if (scan != STBI__SCAN_load) return 1; + + if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) return stbi__err("too large", "Image too large to decode"); + + for (i=0; i < s->img_n; ++i) { + if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; + if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; + } + + // check that plane subsampling factors are integer ratios; our resamplers can't deal with fractional ratios + // and I've never seen a non-corrupted JPEG file actually use them + for (i=0; i < s->img_n; ++i) { + if (h_max % z->img_comp[i].h != 0) return stbi__err("bad H","Corrupt JPEG"); + if (v_max % z->img_comp[i].v != 0) return stbi__err("bad V","Corrupt JPEG"); + } + + // compute interleaved mcu info + z->img_h_max = h_max; + z->img_v_max = v_max; + z->img_mcu_w = h_max * 8; + z->img_mcu_h = v_max * 8; + // these sizes can't be more than 17 bits + z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; + z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; + + for (i=0; i < s->img_n; ++i) { + // number of effective pixels (e.g. for non-interleaved MCU) + z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; + z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; + // to simplify generation, we'll allocate enough memory to decode + // the bogus oversized data from using interleaved MCUs and their + // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't + // discard the extra data until colorspace conversion + // + // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier) + // so these muls can't overflow with 32-bit ints (which we require) + z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; + z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; + z->img_comp[i].coeff = 0; + z->img_comp[i].raw_coeff = 0; + z->img_comp[i].linebuf = NULL; + z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15); + if (z->img_comp[i].raw_data == NULL) + return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); + // align blocks for idct using mmx/sse + z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); + if (z->progressive) { + // w2, h2 are multiples of 8 (see above) + z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8; + z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8; + z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15); + if (z->img_comp[i].raw_coeff == NULL) + return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory")); + z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15); + } + } + + return 1; } -static int stbi__free_jpeg_components(stbi__jpeg * z, int ncomp, int why) { - int i; - for (i = 0; i < ncomp; ++i) { - if (z->img_comp[i].raw_data) { - STBI_FREE(z->img_comp[i].raw_data); - z->img_comp[i].raw_data = NULL; - z->img_comp[i].data = NULL; - } - if (z->img_comp[i].raw_coeff) { - STBI_FREE(z->img_comp[i].raw_coeff); - z->img_comp[i].raw_coeff = 0; - z->img_comp[i].coeff = 0; - } - if (z->img_comp[i].linebuf) { - STBI_FREE(z->img_comp[i].linebuf); - z->img_comp[i].linebuf = NULL; - } - } - return why; -} - -static int stbi__process_frame_header(stbi__jpeg * z, int scan) { - stbi__context * s = z->s; - int Lf, p, i, q, h_max = 1, v_max = 1, c; - Lf = stbi__get16be(s); - if (Lf < 11) - return stbi__err("bad SOF len", "Corrupt JPEG"); // JPEG - p = stbi__get8(s); - if (p != 8) - return stbi__err("only 8-bit", "JPEG format not supported: 8-bit only"); // JPEG baseline - s->img_y = stbi__get16be(s); - if (s->img_y == 0) - return stbi__err("no header height", - "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG - s->img_x = stbi__get16be(s); - if (s->img_x == 0) - return stbi__err("0 width", "Corrupt JPEG"); // JPEG requires - if (s->img_y > STBI_MAX_DIMENSIONS) - return stbi__err("too large", "Very large image (corrupt?)"); - if (s->img_x > STBI_MAX_DIMENSIONS) - return stbi__err("too large", "Very large image (corrupt?)"); - c = stbi__get8(s); - if (c != 3 && c != 1 && c != 4) - return stbi__err("bad component count", "Corrupt JPEG"); - s->img_n = c; - for (i = 0; i < c; ++i) { - z->img_comp[i].data = NULL; - z->img_comp[i].linebuf = NULL; - } - - if (Lf != 8 + 3 * s->img_n) - return stbi__err("bad SOF len", "Corrupt JPEG"); - - z->rgb = 0; - for (i = 0; i < s->img_n; ++i) { - static const unsigned char rgb[3] = {'R', 'G', 'B'}; - z->img_comp[i].id = stbi__get8(s); - if (s->img_n == 3 && z->img_comp[i].id == rgb[i]) - ++z->rgb; - q = stbi__get8(s); - z->img_comp[i].h = (q >> 4); - if (!z->img_comp[i].h || z->img_comp[i].h > 4) - return stbi__err("bad H", "Corrupt JPEG"); - z->img_comp[i].v = q & 15; - if (!z->img_comp[i].v || z->img_comp[i].v > 4) - return stbi__err("bad V", "Corrupt JPEG"); - z->img_comp[i].tq = stbi__get8(s); - if (z->img_comp[i].tq > 3) - return stbi__err("bad TQ", "Corrupt JPEG"); - } - - if (scan != STBI__SCAN_load) - return 1; - - if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) - return stbi__err("too large", "Image too large to decode"); - - for (i = 0; i < s->img_n; ++i) { - if (z->img_comp[i].h > h_max) - h_max = z->img_comp[i].h; - if (z->img_comp[i].v > v_max) - v_max = z->img_comp[i].v; - } - - // check that plane subsampling factors are integer ratios; our resamplers can't deal with fractional ratios - // and I've never seen a non-corrupted JPEG file actually use them - for (i = 0; i < s->img_n; ++i) { - if (h_max % z->img_comp[i].h != 0) - return stbi__err("bad H", "Corrupt JPEG"); - if (v_max % z->img_comp[i].v != 0) - return stbi__err("bad V", "Corrupt JPEG"); - } - - // compute interleaved mcu info - z->img_h_max = h_max; - z->img_v_max = v_max; - z->img_mcu_w = h_max * 8; - z->img_mcu_h = v_max * 8; - // these sizes can't be more than 17 bits - z->img_mcu_x = (s->img_x + z->img_mcu_w - 1) / z->img_mcu_w; - z->img_mcu_y = (s->img_y + z->img_mcu_h - 1) / z->img_mcu_h; - - for (i = 0; i < s->img_n; ++i) { - // number of effective pixels (e.g. for non-interleaved MCU) - z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max - 1) / h_max; - z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max - 1) / v_max; - // to simplify generation, we'll allocate enough memory to decode - // the bogus oversized data from using interleaved MCUs and their - // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't - // discard the extra data until colorspace conversion - // - // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier) - // so these muls can't overflow with 32-bit ints (which we require) - z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; - z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; - z->img_comp[i].coeff = 0; - z->img_comp[i].raw_coeff = 0; - z->img_comp[i].linebuf = NULL; - z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15); - if (z->img_comp[i].raw_data == NULL) - return stbi__free_jpeg_components(z, i + 1, stbi__err("outofmem", "Out of memory")); - // align blocks for idct using mmx/sse - z->img_comp[i].data = (stbi_uc *)(((size_t)z->img_comp[i].raw_data + 15) & ~15); - if (z->progressive) { - // w2, h2 are multiples of 8 (see above) - z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8; - z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8; - z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15); - if (z->img_comp[i].raw_coeff == NULL) - return stbi__free_jpeg_components(z, i + 1, stbi__err("outofmem", "Out of memory")); - z->img_comp[i].coeff = (short *)(((size_t)z->img_comp[i].raw_coeff + 15) & ~15); - } - } +// use comparisons since in some cases we handle more than one case (e.g. SOF) +#define stbi__DNL(x) ((x) == 0xdc) +#define stbi__SOI(x) ((x) == 0xd8) +#define stbi__EOI(x) ((x) == 0xd9) +#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) +#define stbi__SOS(x) ((x) == 0xda) - return 1; -} +#define stbi__SOF_progressive(x) ((x) == 0xc2) -// use comparisons since in some cases we handle more than one case (e.g. SOF) -#define stbi__DNL(x) ((x) == 0xdc) -#define stbi__SOI(x) ((x) == 0xd8) -#define stbi__EOI(x) ((x) == 0xd9) -#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) -#define stbi__SOS(x) ((x) == 0xda) - -#define stbi__SOF_progressive(x) ((x) == 0xc2) - -static int stbi__decode_jpeg_header(stbi__jpeg * z, int scan) { - int m; - z->jfif = 0; - z->app14_color_transform = -1; // valid values are 0,1,2 - z->marker = STBI__MARKER_none; // initialize cached marker to empty - m = stbi__get_marker(z); - if (!stbi__SOI(m)) - return stbi__err("no SOI", "Corrupt JPEG"); - if (scan == STBI__SCAN_type) - return 1; - m = stbi__get_marker(z); - while (!stbi__SOF(m)) { - if (!stbi__process_marker(z, m)) - return 0; - m = stbi__get_marker(z); - while (m == STBI__MARKER_none) { - // some files have extra padding after their blocks, so ok, we'll scan - if (stbi__at_eof(z->s)) - return stbi__err("no SOF", "Corrupt JPEG"); - m = stbi__get_marker(z); - } - } - z->progressive = stbi__SOF_progressive(m); - if (!stbi__process_frame_header(z, scan)) - return 0; - return 1; -} - -static int stbi__skip_jpeg_junk_at_end(stbi__jpeg * j) { - // some JPEGs have junk at end, skip over it but if we find what looks - // like a valid marker, resume there - while (!stbi__at_eof(j->s)) { - int x = stbi__get8(j->s); - while (x == 255) { // might be a marker - if (stbi__at_eof(j->s)) - return STBI__MARKER_none; - x = stbi__get8(j->s); - if (x != 0x00 && x != 0xff) { - // not a stuffed zero or lead-in to another marker, looks - // like an actual marker, return it - return x; - } - // stuffed zero has x=0 now which ends the loop, meaning we go - // back to regular scan loop. - // repeated 0xff keeps trying to read the next byte of the marker. - } - } - return STBI__MARKER_none; +static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) +{ + int m; + z->jfif = 0; + z->app14_color_transform = -1; // valid values are 0,1,2 + z->marker = STBI__MARKER_none; // initialize cached marker to empty + m = stbi__get_marker(z); + if (!stbi__SOI(m)) return stbi__err("no SOI","Corrupt JPEG"); + if (scan == STBI__SCAN_type) return 1; + m = stbi__get_marker(z); + while (!stbi__SOF(m)) { + if (!stbi__process_marker(z,m)) return 0; + m = stbi__get_marker(z); + while (m == STBI__MARKER_none) { + // some files have extra padding after their blocks, so ok, we'll scan + if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG"); + m = stbi__get_marker(z); + } + } + z->progressive = stbi__SOF_progressive(m); + if (!stbi__process_frame_header(z, scan)) return 0; + return 1; +} + +static stbi_uc stbi__skip_jpeg_junk_at_end(stbi__jpeg *j) +{ + // some JPEGs have junk at end, skip over it but if we find what looks + // like a valid marker, resume there + while (!stbi__at_eof(j->s)) { + stbi_uc x = stbi__get8(j->s); + while (x == 0xff) { // might be a marker + if (stbi__at_eof(j->s)) return STBI__MARKER_none; + x = stbi__get8(j->s); + if (x != 0x00 && x != 0xff) { + // not a stuffed zero or lead-in to another marker, looks + // like an actual marker, return it + return x; + } + // stuffed zero has x=0 now which ends the loop, meaning we go + // back to regular scan loop. + // repeated 0xff keeps trying to read the next byte of the marker. + } + } + return STBI__MARKER_none; } // decode image to YCbCr format -static int stbi__decode_jpeg_image(stbi__jpeg * j) { - int m; - for (m = 0; m < 4; m++) { - j->img_comp[m].raw_data = NULL; - j->img_comp[m].raw_coeff = NULL; - } - j->restart_interval = 0; - if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) - return 0; - m = stbi__get_marker(j); - while (!stbi__EOI(m)) { - if (stbi__SOS(m)) { - if (!stbi__process_scan_header(j)) - return 0; - if (!stbi__parse_entropy_coded_data(j)) - return 0; - if (j->marker == STBI__MARKER_none) { - j->marker = stbi__skip_jpeg_junk_at_end(j); - // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0 - } - m = stbi__get_marker(j); - if (STBI__RESTART(m)) - m = stbi__get_marker(j); - } else if (stbi__DNL(m)) { - int Ld = stbi__get16be(j->s); - stbi__uint32 NL = stbi__get16be(j->s); - if (Ld != 4) - return stbi__err("bad DNL len", "Corrupt JPEG"); - if (NL != j->s->img_y) - return stbi__err("bad DNL height", "Corrupt JPEG"); - m = stbi__get_marker(j); - } else { - if (!stbi__process_marker(j, m)) - return 1; +static int stbi__decode_jpeg_image(stbi__jpeg *j) +{ + int m; + for (m = 0; m < 4; m++) { + j->img_comp[m].raw_data = NULL; + j->img_comp[m].raw_coeff = NULL; + } + j->restart_interval = 0; + if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0; + m = stbi__get_marker(j); + while (!stbi__EOI(m)) { + if (stbi__SOS(m)) { + if (!stbi__process_scan_header(j)) return 0; + if (!stbi__parse_entropy_coded_data(j)) return 0; + if (j->marker == STBI__MARKER_none ) { + j->marker = stbi__skip_jpeg_junk_at_end(j); + // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0 + } + m = stbi__get_marker(j); + if (STBI__RESTART(m)) m = stbi__get_marker(j); - } - } - if (j->progressive) - stbi__jpeg_finish(j); - return 1; + } else if (stbi__DNL(m)) { + int Ld = stbi__get16be(j->s); + stbi__uint32 NL = stbi__get16be(j->s); + if (Ld != 4) return stbi__err("bad DNL len", "Corrupt JPEG"); + if (NL != j->s->img_y) return stbi__err("bad DNL height", "Corrupt JPEG"); + m = stbi__get_marker(j); + } else { + if (!stbi__process_marker(j, m)) return 1; + m = stbi__get_marker(j); + } + } + if (j->progressive) + stbi__jpeg_finish(j); + return 1; } // static jfif-centered resampling (across block boundaries) -typedef stbi_uc * (*resample_row_func)(stbi_uc * out, stbi_uc * in0, stbi_uc * in1, int w, int hs); +typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1, + int w, int hs); -#define stbi__div4(x) ((stbi_uc)((x) >> 2)) +#define stbi__div4(x) ((stbi_uc) ((x) >> 2)) -static stbi_uc * resample_row_1(stbi_uc * out, stbi_uc * in_near, stbi_uc * in_far, int w, int hs) { - STBI_NOTUSED(out); - STBI_NOTUSED(in_far); - STBI_NOTUSED(w); - STBI_NOTUSED(hs); - return in_near; +static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + STBI_NOTUSED(out); + STBI_NOTUSED(in_far); + STBI_NOTUSED(w); + STBI_NOTUSED(hs); + return in_near; } -static stbi_uc * stbi__resample_row_v_2(stbi_uc * out, stbi_uc * in_near, stbi_uc * in_far, int w, int hs) { - // need to generate two samples vertically for every one in input - int i; - STBI_NOTUSED(hs); - for (i = 0; i < w; ++i) - out[i] = stbi__div4(3 * in_near[i] + in_far[i] + 2); - return out; +static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate two samples vertically for every one in input + int i; + STBI_NOTUSED(hs); + for (i=0; i < w; ++i) + out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2); + return out; } -static stbi_uc * stbi__resample_row_h_2(stbi_uc * out, stbi_uc * in_near, stbi_uc * in_far, int w, int hs) { - // need to generate two samples horizontally for every one in input - int i; - stbi_uc * input = in_near; +static stbi_uc* stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate two samples horizontally for every one in input + int i; + stbi_uc *input = in_near; - if (w == 1) { - // if only one sample, can't do any interpolation - out[0] = out[1] = input[0]; - return out; - } + if (w == 1) { + // if only one sample, can't do any interpolation + out[0] = out[1] = input[0]; + return out; + } - out[0] = input[0]; - out[1] = stbi__div4(input[0] * 3 + input[1] + 2); - for (i = 1; i < w - 1; ++i) { - int n = 3 * input[i] + 2; - out[i * 2 + 0] = stbi__div4(n + input[i - 1]); - out[i * 2 + 1] = stbi__div4(n + input[i + 1]); - } - out[i * 2 + 0] = stbi__div4(input[w - 2] * 3 + input[w - 1] + 2); - out[i * 2 + 1] = input[w - 1]; + out[0] = input[0]; + out[1] = stbi__div4(input[0]*3 + input[1] + 2); + for (i=1; i < w-1; ++i) { + int n = 3*input[i]+2; + out[i*2+0] = stbi__div4(n+input[i-1]); + out[i*2+1] = stbi__div4(n+input[i+1]); + } + out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2); + out[i*2+1] = input[w-1]; - STBI_NOTUSED(in_far); - STBI_NOTUSED(hs); + STBI_NOTUSED(in_far); + STBI_NOTUSED(hs); - return out; + return out; } -#define stbi__div16(x) ((stbi_uc)((x) >> 4)) +#define stbi__div16(x) ((stbi_uc) ((x) >> 4)) -static stbi_uc * stbi__resample_row_hv_2(stbi_uc * out, stbi_uc * in_near, stbi_uc * in_far, int w, int hs) { - // need to generate 2x2 samples for every one in input - int i, t0, t1; - if (w == 1) { - out[0] = out[1] = stbi__div4(3 * in_near[0] + in_far[0] + 2); - return out; - } +static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate 2x2 samples for every one in input + int i,t0,t1; + if (w == 1) { + out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); + return out; + } - t1 = 3 * in_near[0] + in_far[0]; - out[0] = stbi__div4(t1 + 2); - for (i = 1; i < w; ++i) { - t0 = t1; - t1 = 3 * in_near[i] + in_far[i]; - out[i * 2 - 1] = stbi__div16(3 * t0 + t1 + 8); - out[i * 2] = stbi__div16(3 * t1 + t0 + 8); - } - out[w * 2 - 1] = stbi__div4(t1 + 2); + t1 = 3*in_near[0] + in_far[0]; + out[0] = stbi__div4(t1+2); + for (i=1; i < w; ++i) { + t0 = t1; + t1 = 3*in_near[i]+in_far[i]; + out[i*2-1] = stbi__div16(3*t0 + t1 + 8); + out[i*2 ] = stbi__div16(3*t1 + t0 + 8); + } + out[w*2-1] = stbi__div4(t1+2); - STBI_NOTUSED(hs); + STBI_NOTUSED(hs); - return out; + return out; } #if defined(STBI_SSE2) || defined(STBI_NEON) -static stbi_uc * stbi__resample_row_hv_2_simd(stbi_uc * out, stbi_uc * in_near, stbi_uc * in_far, int w, int hs) { - // need to generate 2x2 samples for every one in input - int i = 0, t0, t1; - - if (w == 1) { - out[0] = out[1] = stbi__div4(3 * in_near[0] + in_far[0] + 2); - return out; - } - - t1 = 3 * in_near[0] + in_far[0]; - // process groups of 8 pixels for as long as we can. - // note we can't handle the last pixel in a row in this loop - // because we need to handle the filter boundary conditions. - for (; i < ((w - 1) & ~7); i += 8) { +static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate 2x2 samples for every one in input + int i=0,t0,t1; + + if (w == 1) { + out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2); + return out; + } + + t1 = 3*in_near[0] + in_far[0]; + // process groups of 8 pixels for as long as we can. + // note we can't handle the last pixel in a row in this loop + // because we need to handle the filter boundary conditions. + for (; i < ((w-1) & ~7); i += 8) { #if defined(STBI_SSE2) - // load and perform the vertical filtering pass - // this uses 3*x + y = 4*x + (y - x) - __m128i zero = _mm_setzero_si128(); - __m128i farb = _mm_loadl_epi64((__m128i *)(in_far + i)); - __m128i nearb = _mm_loadl_epi64((__m128i *)(in_near + i)); - __m128i farw = _mm_unpacklo_epi8(farb, zero); - __m128i nearw = _mm_unpacklo_epi8(nearb, zero); - __m128i diff = _mm_sub_epi16(farw, nearw); - __m128i nears = _mm_slli_epi16(nearw, 2); - __m128i curr = _mm_add_epi16(nears, diff); // current row - - // horizontal filter works the same based on shifted vers of current - // row. "prev" is current row shifted right by 1 pixel; we need to - // insert the previous pixel value (from t1). - // "next" is current row shifted left by 1 pixel, with first pixel - // of next block of 8 pixels added in. - __m128i prv0 = _mm_slli_si128(curr, 2); - __m128i nxt0 = _mm_srli_si128(curr, 2); - __m128i prev = _mm_insert_epi16(prv0, t1, 0); - __m128i next = _mm_insert_epi16(nxt0, 3 * in_near[i + 8] + in_far[i + 8], 7); - - // horizontal filter, polyphase implementation since it's convenient: - // even pixels = 3*cur + prev = cur*4 + (prev - cur) - // odd pixels = 3*cur + next = cur*4 + (next - cur) - // note the shared term. - __m128i bias = _mm_set1_epi16(8); - __m128i curs = _mm_slli_epi16(curr, 2); - __m128i prvd = _mm_sub_epi16(prev, curr); - __m128i nxtd = _mm_sub_epi16(next, curr); - __m128i curb = _mm_add_epi16(curs, bias); - __m128i even = _mm_add_epi16(prvd, curb); - __m128i odd = _mm_add_epi16(nxtd, curb); - - // interleave even and odd pixels, then undo scaling. - __m128i int0 = _mm_unpacklo_epi16(even, odd); - __m128i int1 = _mm_unpackhi_epi16(even, odd); - __m128i de0 = _mm_srli_epi16(int0, 4); - __m128i de1 = _mm_srli_epi16(int1, 4); - - // pack and write output - __m128i outv = _mm_packus_epi16(de0, de1); - _mm_storeu_si128((__m128i *)(out + i * 2), outv); + // load and perform the vertical filtering pass + // this uses 3*x + y = 4*x + (y - x) + __m128i zero = _mm_setzero_si128(); + __m128i farb = _mm_loadl_epi64((__m128i *) (in_far + i)); + __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i)); + __m128i farw = _mm_unpacklo_epi8(farb, zero); + __m128i nearw = _mm_unpacklo_epi8(nearb, zero); + __m128i diff = _mm_sub_epi16(farw, nearw); + __m128i nears = _mm_slli_epi16(nearw, 2); + __m128i curr = _mm_add_epi16(nears, diff); // current row + + // horizontal filter works the same based on shifted vers of current + // row. "prev" is current row shifted right by 1 pixel; we need to + // insert the previous pixel value (from t1). + // "next" is current row shifted left by 1 pixel, with first pixel + // of next block of 8 pixels added in. + __m128i prv0 = _mm_slli_si128(curr, 2); + __m128i nxt0 = _mm_srli_si128(curr, 2); + __m128i prev = _mm_insert_epi16(prv0, t1, 0); + __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7); + + // horizontal filter, polyphase implementation since it's convenient: + // even pixels = 3*cur + prev = cur*4 + (prev - cur) + // odd pixels = 3*cur + next = cur*4 + (next - cur) + // note the shared term. + __m128i bias = _mm_set1_epi16(8); + __m128i curs = _mm_slli_epi16(curr, 2); + __m128i prvd = _mm_sub_epi16(prev, curr); + __m128i nxtd = _mm_sub_epi16(next, curr); + __m128i curb = _mm_add_epi16(curs, bias); + __m128i even = _mm_add_epi16(prvd, curb); + __m128i odd = _mm_add_epi16(nxtd, curb); + + // interleave even and odd pixels, then undo scaling. + __m128i int0 = _mm_unpacklo_epi16(even, odd); + __m128i int1 = _mm_unpackhi_epi16(even, odd); + __m128i de0 = _mm_srli_epi16(int0, 4); + __m128i de1 = _mm_srli_epi16(int1, 4); + + // pack and write output + __m128i outv = _mm_packus_epi16(de0, de1); + _mm_storeu_si128((__m128i *) (out + i*2), outv); #elif defined(STBI_NEON) - // load and perform the vertical filtering pass - // this uses 3*x + y = 4*x + (y - x) - uint8x8_t farb = vld1_u8(in_far + i); - uint8x8_t nearb = vld1_u8(in_near + i); - int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); - int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); - int16x8_t curr = vaddq_s16(nears, diff); // current row - - // horizontal filter works the same based on shifted vers of current - // row. "prev" is current row shifted right by 1 pixel; we need to - // insert the previous pixel value (from t1). - // "next" is current row shifted left by 1 pixel, with first pixel - // of next block of 8 pixels added in. - int16x8_t prv0 = vextq_s16(curr, curr, 7); - int16x8_t nxt0 = vextq_s16(curr, curr, 1); - int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); - int16x8_t next = vsetq_lane_s16(3 * in_near[i + 8] + in_far[i + 8], nxt0, 7); - - // horizontal filter, polyphase implementation since it's convenient: - // even pixels = 3*cur + prev = cur*4 + (prev - cur) - // odd pixels = 3*cur + next = cur*4 + (next - cur) - // note the shared term. - int16x8_t curs = vshlq_n_s16(curr, 2); - int16x8_t prvd = vsubq_s16(prev, curr); - int16x8_t nxtd = vsubq_s16(next, curr); - int16x8_t even = vaddq_s16(curs, prvd); - int16x8_t odd = vaddq_s16(curs, nxtd); - - // undo scaling and round, then store with even/odd phases interleaved - uint8x8x2_t o; - o.val[0] = vqrshrun_n_s16(even, 4); - o.val[1] = vqrshrun_n_s16(odd, 4); - vst2_u8(out + i * 2, o); -#endif - - // "previous" value for next iter - t1 = 3 * in_near[i + 7] + in_far[i + 7]; - } - - t0 = t1; - t1 = 3 * in_near[i] + in_far[i]; - out[i * 2] = stbi__div16(3 * t1 + t0 + 8); - - for (++i; i < w; ++i) { - t0 = t1; - t1 = 3 * in_near[i] + in_far[i]; - out[i * 2 - 1] = stbi__div16(3 * t0 + t1 + 8); - out[i * 2] = stbi__div16(3 * t1 + t0 + 8); - } - out[w * 2 - 1] = stbi__div4(t1 + 2); - - STBI_NOTUSED(hs); - - return out; -} -#endif - -static stbi_uc * stbi__resample_row_generic(stbi_uc * out, stbi_uc * in_near, stbi_uc * in_far, int w, int hs) { - // resample with nearest-neighbor - int i, j; - STBI_NOTUSED(in_far); - for (i = 0; i < w; ++i) - for (j = 0; j < hs; ++j) - out[i * hs + j] = in_near[i]; - return out; + // load and perform the vertical filtering pass + // this uses 3*x + y = 4*x + (y - x) + uint8x8_t farb = vld1_u8(in_far + i); + uint8x8_t nearb = vld1_u8(in_near + i); + int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); + int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); + int16x8_t curr = vaddq_s16(nears, diff); // current row + + // horizontal filter works the same based on shifted vers of current + // row. "prev" is current row shifted right by 1 pixel; we need to + // insert the previous pixel value (from t1). + // "next" is current row shifted left by 1 pixel, with first pixel + // of next block of 8 pixels added in. + int16x8_t prv0 = vextq_s16(curr, curr, 7); + int16x8_t nxt0 = vextq_s16(curr, curr, 1); + int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); + int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7); + + // horizontal filter, polyphase implementation since it's convenient: + // even pixels = 3*cur + prev = cur*4 + (prev - cur) + // odd pixels = 3*cur + next = cur*4 + (next - cur) + // note the shared term. + int16x8_t curs = vshlq_n_s16(curr, 2); + int16x8_t prvd = vsubq_s16(prev, curr); + int16x8_t nxtd = vsubq_s16(next, curr); + int16x8_t even = vaddq_s16(curs, prvd); + int16x8_t odd = vaddq_s16(curs, nxtd); + + // undo scaling and round, then store with even/odd phases interleaved + uint8x8x2_t o; + o.val[0] = vqrshrun_n_s16(even, 4); + o.val[1] = vqrshrun_n_s16(odd, 4); + vst2_u8(out + i*2, o); +#endif + + // "previous" value for next iter + t1 = 3*in_near[i+7] + in_far[i+7]; + } + + t0 = t1; + t1 = 3*in_near[i] + in_far[i]; + out[i*2] = stbi__div16(3*t1 + t0 + 8); + + for (++i; i < w; ++i) { + t0 = t1; + t1 = 3*in_near[i]+in_far[i]; + out[i*2-1] = stbi__div16(3*t0 + t1 + 8); + out[i*2 ] = stbi__div16(3*t1 + t0 + 8); + } + out[w*2-1] = stbi__div4(t1+2); + + STBI_NOTUSED(hs); + + return out; +} +#endif + +static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // resample with nearest-neighbor + int i,j; + STBI_NOTUSED(in_far); + for (i=0; i < w; ++i) + for (j=0; j < hs; ++j) + out[i*hs+j] = in_near[i]; + return out; } // this is a reduced-precision calculation of YCbCr-to-RGB introduced // to make sure the code produces the same results in both SIMD and scalar -#define stbi__float2fixed(x) (((int)((x)*4096.0f + 0.5f)) << 8) -static void stbi__YCbCr_to_RGB_row(stbi_uc * out, const stbi_uc * y, const stbi_uc * pcb, const stbi_uc * pcr, int count, - int step) { - int i; - for (i = 0; i < count; ++i) { - int y_fixed = (y[i] << 20) + (1 << 19); // rounding - int r, g, b; - int cr = pcr[i] - 128; - int cb = pcb[i] - 128; - r = y_fixed + cr * stbi__float2fixed(1.40200f); - g = y_fixed + (cr * -stbi__float2fixed(0.71414f)) + ((cb * -stbi__float2fixed(0.34414f)) & 0xffff0000); - b = y_fixed + cb * stbi__float2fixed(1.77200f); - r >>= 20; - g >>= 20; - b >>= 20; - if ((unsigned)r > 255) { - if (r < 0) - r = 0; - else - r = 255; - } - if ((unsigned)g > 255) { - if (g < 0) - g = 0; - else - g = 255; - } - if ((unsigned)b > 255) { - if (b < 0) - b = 0; - else - b = 255; - } - out[0] = (stbi_uc)r; - out[1] = (stbi_uc)g; - out[2] = (stbi_uc)b; - out[3] = 255; - out += step; - } +#define stbi__float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8) +static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) +{ + int i; + for (i=0; i < count; ++i) { + int y_fixed = (y[i] << 20) + (1<<19); // rounding + int r,g,b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr* stbi__float2fixed(1.40200f); + g = y_fixed + (cr*-stbi__float2fixed(0.71414f)) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000); + b = y_fixed + cb* stbi__float2fixed(1.77200f); + r >>= 20; + g >>= 20; + b >>= 20; + if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } + if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } + if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } } #if defined(STBI_SSE2) || defined(STBI_NEON) -static void stbi__YCbCr_to_RGB_simd(stbi_uc * out, stbi_uc const * y, stbi_uc const * pcb, stbi_uc const * pcr, int count, - int step) { - int i = 0; +static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step) +{ + int i = 0; #ifdef STBI_SSE2 - // step == 3 is pretty ugly on the final interleave, and i'm not convinced - // it's useful in practice (you wouldn't use it for textures, for example). - // so just accelerate step == 4 case. - if (step == 4) { - // this is a fairly straightforward implementation and not super-optimized. - __m128i signflip = _mm_set1_epi8(-0x80); - __m128i cr_const0 = _mm_set1_epi16((short)(1.40200f * 4096.0f + 0.5f)); - __m128i cr_const1 = _mm_set1_epi16(-(short)(0.71414f * 4096.0f + 0.5f)); - __m128i cb_const0 = _mm_set1_epi16(-(short)(0.34414f * 4096.0f + 0.5f)); - __m128i cb_const1 = _mm_set1_epi16((short)(1.77200f * 4096.0f + 0.5f)); - __m128i y_bias = _mm_set1_epi8((char)(unsigned char)128); - __m128i xw = _mm_set1_epi16(255); // alpha channel - - for (; i + 7 < count; i += 8) { - // load - __m128i y_bytes = _mm_loadl_epi64((__m128i *)(y + i)); - __m128i cr_bytes = _mm_loadl_epi64((__m128i *)(pcr + i)); - __m128i cb_bytes = _mm_loadl_epi64((__m128i *)(pcb + i)); - __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 - __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 - - // unpack to short (and left-shift cr, cb by 8) - __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); - __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); - __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); - - // color transform - __m128i yws = _mm_srli_epi16(yw, 4); - __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); - __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); - __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); - __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); - __m128i rws = _mm_add_epi16(cr0, yws); - __m128i gwt = _mm_add_epi16(cb0, yws); - __m128i bws = _mm_add_epi16(yws, cb1); - __m128i gws = _mm_add_epi16(gwt, cr1); - - // descale - __m128i rw = _mm_srai_epi16(rws, 4); - __m128i bw = _mm_srai_epi16(bws, 4); - __m128i gw = _mm_srai_epi16(gws, 4); - - // back to byte, set up for transpose - __m128i brb = _mm_packus_epi16(rw, bw); - __m128i gxb = _mm_packus_epi16(gw, xw); - - // transpose to interleave channels - __m128i t0 = _mm_unpacklo_epi8(brb, gxb); - __m128i t1 = _mm_unpackhi_epi8(brb, gxb); - __m128i o0 = _mm_unpacklo_epi16(t0, t1); - __m128i o1 = _mm_unpackhi_epi16(t0, t1); - - // store - _mm_storeu_si128((__m128i *)(out + 0), o0); - _mm_storeu_si128((__m128i *)(out + 16), o1); - out += 32; - } - } + // step == 3 is pretty ugly on the final interleave, and i'm not convinced + // it's useful in practice (you wouldn't use it for textures, for example). + // so just accelerate step == 4 case. + if (step == 4) { + // this is a fairly straightforward implementation and not super-optimized. + __m128i signflip = _mm_set1_epi8(-0x80); + __m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f)); + __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f)); + __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f)); + __m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f)); + __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128); + __m128i xw = _mm_set1_epi16(255); // alpha channel + + for (; i+7 < count; i += 8) { + // load + __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i)); + __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i)); + __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i)); + __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 + __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 + + // unpack to short (and left-shift cr, cb by 8) + __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); + __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); + __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); + + // color transform + __m128i yws = _mm_srli_epi16(yw, 4); + __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); + __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); + __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); + __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); + __m128i rws = _mm_add_epi16(cr0, yws); + __m128i gwt = _mm_add_epi16(cb0, yws); + __m128i bws = _mm_add_epi16(yws, cb1); + __m128i gws = _mm_add_epi16(gwt, cr1); + + // descale + __m128i rw = _mm_srai_epi16(rws, 4); + __m128i bw = _mm_srai_epi16(bws, 4); + __m128i gw = _mm_srai_epi16(gws, 4); + + // back to byte, set up for transpose + __m128i brb = _mm_packus_epi16(rw, bw); + __m128i gxb = _mm_packus_epi16(gw, xw); + + // transpose to interleave channels + __m128i t0 = _mm_unpacklo_epi8(brb, gxb); + __m128i t1 = _mm_unpackhi_epi8(brb, gxb); + __m128i o0 = _mm_unpacklo_epi16(t0, t1); + __m128i o1 = _mm_unpackhi_epi16(t0, t1); + + // store + _mm_storeu_si128((__m128i *) (out + 0), o0); + _mm_storeu_si128((__m128i *) (out + 16), o1); + out += 32; + } + } #endif #ifdef STBI_NEON - // in this version, step=3 support would be easy to add. but is there demand? - if (step == 4) { - // this is a fairly straightforward implementation and not super-optimized. - uint8x8_t signflip = vdup_n_u8(0x80); - int16x8_t cr_const0 = vdupq_n_s16((short)(1.40200f * 4096.0f + 0.5f)); - int16x8_t cr_const1 = vdupq_n_s16(-(short)(0.71414f * 4096.0f + 0.5f)); - int16x8_t cb_const0 = vdupq_n_s16(-(short)(0.34414f * 4096.0f + 0.5f)); - int16x8_t cb_const1 = vdupq_n_s16((short)(1.77200f * 4096.0f + 0.5f)); - - for (; i + 7 < count; i += 8) { - // load - uint8x8_t y_bytes = vld1_u8(y + i); - uint8x8_t cr_bytes = vld1_u8(pcr + i); - uint8x8_t cb_bytes = vld1_u8(pcb + i); - int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); - int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); - - // expand to s16 - int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); - int16x8_t crw = vshll_n_s8(cr_biased, 7); - int16x8_t cbw = vshll_n_s8(cb_biased, 7); - - // color transform - int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); - int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); - int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); - int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); - int16x8_t rws = vaddq_s16(yws, cr0); - int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); - int16x8_t bws = vaddq_s16(yws, cb1); - - // undo scaling, round, convert to byte - uint8x8x4_t o; - o.val[0] = vqrshrun_n_s16(rws, 4); - o.val[1] = vqrshrun_n_s16(gws, 4); - o.val[2] = vqrshrun_n_s16(bws, 4); - o.val[3] = vdup_n_u8(255); - - // store, interleaving r/g/b/a - vst4_u8(out, o); - out += 8 * 4; - } - } -#endif - - for (; i < count; ++i) { - int y_fixed = (y[i] << 20) + (1 << 19); // rounding - int r, g, b; - int cr = pcr[i] - 128; - int cb = pcb[i] - 128; - r = y_fixed + cr * stbi__float2fixed(1.40200f); - g = y_fixed + cr * -stbi__float2fixed(0.71414f) + ((cb * -stbi__float2fixed(0.34414f)) & 0xffff0000); - b = y_fixed + cb * stbi__float2fixed(1.77200f); - r >>= 20; - g >>= 20; - b >>= 20; - if ((unsigned)r > 255) { - if (r < 0) - r = 0; - else - r = 255; - } - if ((unsigned)g > 255) { - if (g < 0) - g = 0; - else - g = 255; - } - if ((unsigned)b > 255) { - if (b < 0) - b = 0; - else - b = 255; - } - out[0] = (stbi_uc)r; - out[1] = (stbi_uc)g; - out[2] = (stbi_uc)b; - out[3] = 255; - out += step; - } + // in this version, step=3 support would be easy to add. but is there demand? + if (step == 4) { + // this is a fairly straightforward implementation and not super-optimized. + uint8x8_t signflip = vdup_n_u8(0x80); + int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f)); + int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f)); + int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f)); + int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f)); + + for (; i+7 < count; i += 8) { + // load + uint8x8_t y_bytes = vld1_u8(y + i); + uint8x8_t cr_bytes = vld1_u8(pcr + i); + uint8x8_t cb_bytes = vld1_u8(pcb + i); + int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); + int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); + + // expand to s16 + int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); + int16x8_t crw = vshll_n_s8(cr_biased, 7); + int16x8_t cbw = vshll_n_s8(cb_biased, 7); + + // color transform + int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); + int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); + int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); + int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); + int16x8_t rws = vaddq_s16(yws, cr0); + int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); + int16x8_t bws = vaddq_s16(yws, cb1); + + // undo scaling, round, convert to byte + uint8x8x4_t o; + o.val[0] = vqrshrun_n_s16(rws, 4); + o.val[1] = vqrshrun_n_s16(gws, 4); + o.val[2] = vqrshrun_n_s16(bws, 4); + o.val[3] = vdup_n_u8(255); + + // store, interleaving r/g/b/a + vst4_u8(out, o); + out += 8*4; + } + } +#endif + + for (; i < count; ++i) { + int y_fixed = (y[i] << 20) + (1<<19); // rounding + int r,g,b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr* stbi__float2fixed(1.40200f); + g = y_fixed + cr*-stbi__float2fixed(0.71414f) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000); + b = y_fixed + cb* stbi__float2fixed(1.77200f); + r >>= 20; + g >>= 20; + b >>= 20; + if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } + if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } + if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } } #endif // set up the kernels -static void stbi__setup_jpeg(stbi__jpeg * j) { - j->idct_block_kernel = stbi__idct_block; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; +static void stbi__setup_jpeg(stbi__jpeg *j) +{ + j->idct_block_kernel = stbi__idct_block; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; #ifdef STBI_SSE2 - if (stbi__sse2_available()) { - j->idct_block_kernel = stbi__idct_simd; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; - } + if (stbi__sse2_available()) { + j->idct_block_kernel = stbi__idct_simd; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; + } #endif #ifdef STBI_NEON - j->idct_block_kernel = stbi__idct_simd; - j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; - j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; + j->idct_block_kernel = stbi__idct_simd; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; #endif } // clean up the temporary component buffers -static void stbi__cleanup_jpeg(stbi__jpeg * j) { stbi__free_jpeg_components(j, j->s->img_n, 0); } - -typedef struct { - resample_row_func resample; - stbi_uc *line0, *line1; - int hs, vs; // expansion factor in each axis - int w_lores; // horizontal pixels pre-expansion - int ystep; // how far through vertical expansion we are - int ypos; // which pre-expansion row we're on +static void stbi__cleanup_jpeg(stbi__jpeg *j) +{ + stbi__free_jpeg_components(j, j->s->img_n, 0); +} + +typedef struct +{ + resample_row_func resample; + stbi_uc *line0,*line1; + int hs,vs; // expansion factor in each axis + int w_lores; // horizontal pixels pre-expansion + int ystep; // how far through vertical expansion we are + int ypos; // which pre-expansion row we're on } stbi__resample; // fast 0..255 * 0..255 => 0..255 rounded multiplication -static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y) { - unsigned int t = x * y + 128; - return (stbi_uc)((t + (t >> 8)) >> 8); +static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y) +{ + unsigned int t = x*y + 128; + return (stbi_uc) ((t + (t >>8)) >> 8); } -static stbi_uc * load_jpeg_image(stbi__jpeg * z, int * out_x, int * out_y, int * comp, int req_comp) { - int n, decode_n, is_rgb; - z->s->img_n = 0; // make stbi__cleanup_jpeg safe - - // validate req_comp - if (req_comp < 0 || req_comp > 4) - return stbi__errpuc("bad req_comp", "Internal error"); - - // load a jpeg image from whichever source, but leave in YCbCr format - if (!stbi__decode_jpeg_image(z)) { - stbi__cleanup_jpeg(z); - return NULL; - } - - // determine actual number of components to generate - n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1; - - is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif)); - - if (z->s->img_n == 3 && n < 3 && !is_rgb) - decode_n = 1; - else - decode_n = z->s->img_n; - - // nothing to do if no components requested; check this now to avoid - // accessing uninitialized coutput[0] later - if (decode_n <= 0) { - stbi__cleanup_jpeg(z); - return NULL; - } - - // resample and color-convert - { - int k; - unsigned int i, j; - stbi_uc * output; - stbi_uc * coutput[4] = {NULL, NULL, NULL, NULL}; - - stbi__resample res_comp[4]; - - for (k = 0; k < decode_n; ++k) { - stbi__resample * r = &res_comp[k]; - - // allocate line buffer big enough for upsampling off the edges - // with upsample factor of 4 - z->img_comp[k].linebuf = (stbi_uc *)stbi__malloc(z->s->img_x + 3); - if (!z->img_comp[k].linebuf) { - stbi__cleanup_jpeg(z); - return stbi__errpuc("outofmem", "Out of memory"); - } - - r->hs = z->img_h_max / z->img_comp[k].h; - r->vs = z->img_v_max / z->img_comp[k].v; - r->ystep = r->vs >> 1; - r->w_lores = (z->s->img_x + r->hs - 1) / r->hs; - r->ypos = 0; - r->line0 = r->line1 = z->img_comp[k].data; - - if (r->hs == 1 && r->vs == 1) - r->resample = resample_row_1; - else if (r->hs == 1 && r->vs == 2) - r->resample = stbi__resample_row_v_2; - else if (r->hs == 2 && r->vs == 1) - r->resample = stbi__resample_row_h_2; - else if (r->hs == 2 && r->vs == 2) - r->resample = z->resample_row_hv_2_kernel; - else - r->resample = stbi__resample_row_generic; - } - - // can't error after this so, this is safe - output = (stbi_uc *)stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1); - if (!output) { - stbi__cleanup_jpeg(z); - return stbi__errpuc("outofmem", "Out of memory"); - } - - // now go ahead and resample - for (j = 0; j < z->s->img_y; ++j) { - stbi_uc * out = output + n * z->s->img_x * j; - for (k = 0; k < decode_n; ++k) { - stbi__resample * r = &res_comp[k]; - int y_bot = r->ystep >= (r->vs >> 1); - coutput[k] = r->resample(z->img_comp[k].linebuf, y_bot ? r->line1 : r->line0, y_bot ? r->line0 : r->line1, - r->w_lores, r->hs); - if (++r->ystep >= r->vs) { - r->ystep = 0; - r->line0 = r->line1; - if (++r->ypos < z->img_comp[k].y) - r->line1 += z->img_comp[k].w2; - } +static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) +{ + int n, decode_n, is_rgb; + z->s->img_n = 0; // make stbi__cleanup_jpeg safe + + // validate req_comp + if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); + + // load a jpeg image from whichever source, but leave in YCbCr format + if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; } + + // determine actual number of components to generate + n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1; + + is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif)); + + if (z->s->img_n == 3 && n < 3 && !is_rgb) + decode_n = 1; + else + decode_n = z->s->img_n; + + // nothing to do if no components requested; check this now to avoid + // accessing uninitialized coutput[0] later + if (decode_n <= 0) { stbi__cleanup_jpeg(z); return NULL; } + + // resample and color-convert + { + int k; + unsigned int i,j; + stbi_uc *output; + stbi_uc *coutput[4] = { NULL, NULL, NULL, NULL }; + + stbi__resample res_comp[4]; + + for (k=0; k < decode_n; ++k) { + stbi__resample *r = &res_comp[k]; + + // allocate line buffer big enough for upsampling off the edges + // with upsample factor of 4 + z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3); + if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } + + r->hs = z->img_h_max / z->img_comp[k].h; + r->vs = z->img_v_max / z->img_comp[k].v; + r->ystep = r->vs >> 1; + r->w_lores = (z->s->img_x + r->hs-1) / r->hs; + r->ypos = 0; + r->line0 = r->line1 = z->img_comp[k].data; + + if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; + else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2; + else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2; + else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel; + else r->resample = stbi__resample_row_generic; + } + + // can't error after this so, this is safe + output = (stbi_uc *) stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1); + if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); } + + // now go ahead and resample + for (j=0; j < z->s->img_y; ++j) { + stbi_uc *out = output + n * z->s->img_x * j; + for (k=0; k < decode_n; ++k) { + stbi__resample *r = &res_comp[k]; + int y_bot = r->ystep >= (r->vs >> 1); + coutput[k] = r->resample(z->img_comp[k].linebuf, + y_bot ? r->line1 : r->line0, + y_bot ? r->line0 : r->line1, + r->w_lores, r->hs); + if (++r->ystep >= r->vs) { + r->ystep = 0; + r->line0 = r->line1; + if (++r->ypos < z->img_comp[k].y) + r->line1 += z->img_comp[k].w2; } - if (n >= 3) { - stbi_uc * y = coutput[0]; - if (z->s->img_n == 3) { - if (is_rgb) { - for (i = 0; i < z->s->img_x; ++i) { - out[0] = y[i]; - out[1] = coutput[1][i]; - out[2] = coutput[2][i]; - out[3] = 255; - out += n; - } - } else { - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - } - } else if (z->s->img_n == 4) { - if (z->app14_color_transform == 0) { // CMYK - for (i = 0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - out[0] = stbi__blinn_8x8(coutput[0][i], m); - out[1] = stbi__blinn_8x8(coutput[1][i], m); - out[2] = stbi__blinn_8x8(coutput[2][i], m); - out[3] = 255; - out += n; - } - } else if (z->app14_color_transform == 2) { // YCCK - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - for (i = 0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - out[0] = stbi__blinn_8x8(255 - out[0], m); - out[1] = stbi__blinn_8x8(255 - out[1], m); - out[2] = stbi__blinn_8x8(255 - out[2], m); - out += n; - } - } else { // YCbCr + alpha? Ignore the fourth channel for now - z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); - } - } else - for (i = 0; i < z->s->img_x; ++i) { - out[0] = out[1] = out[2] = y[i]; - out[3] = 255; // not used if n==3 - out += n; - } + } + if (n >= 3) { + stbi_uc *y = coutput[0]; + if (z->s->img_n == 3) { + if (is_rgb) { + for (i=0; i < z->s->img_x; ++i) { + out[0] = y[i]; + out[1] = coutput[1][i]; + out[2] = coutput[2][i]; + out[3] = 255; + out += n; + } + } else { + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); + } + } else if (z->s->img_n == 4) { + if (z->app14_color_transform == 0) { // CMYK + for (i=0; i < z->s->img_x; ++i) { + stbi_uc m = coutput[3][i]; + out[0] = stbi__blinn_8x8(coutput[0][i], m); + out[1] = stbi__blinn_8x8(coutput[1][i], m); + out[2] = stbi__blinn_8x8(coutput[2][i], m); + out[3] = 255; + out += n; + } + } else if (z->app14_color_transform == 2) { // YCCK + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); + for (i=0; i < z->s->img_x; ++i) { + stbi_uc m = coutput[3][i]; + out[0] = stbi__blinn_8x8(255 - out[0], m); + out[1] = stbi__blinn_8x8(255 - out[1], m); + out[2] = stbi__blinn_8x8(255 - out[2], m); + out += n; + } + } else { // YCbCr + alpha? Ignore the fourth channel for now + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); + } + } else + for (i=0; i < z->s->img_x; ++i) { + out[0] = out[1] = out[2] = y[i]; + out[3] = 255; // not used if n==3 + out += n; + } + } else { + if (is_rgb) { + if (n == 1) + for (i=0; i < z->s->img_x; ++i) + *out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); + else { + for (i=0; i < z->s->img_x; ++i, out += 2) { + out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); + out[1] = 255; + } + } + } else if (z->s->img_n == 4 && z->app14_color_transform == 0) { + for (i=0; i < z->s->img_x; ++i) { + stbi_uc m = coutput[3][i]; + stbi_uc r = stbi__blinn_8x8(coutput[0][i], m); + stbi_uc g = stbi__blinn_8x8(coutput[1][i], m); + stbi_uc b = stbi__blinn_8x8(coutput[2][i], m); + out[0] = stbi__compute_y(r, g, b); + out[1] = 255; + out += n; + } + } else if (z->s->img_n == 4 && z->app14_color_transform == 2) { + for (i=0; i < z->s->img_x; ++i) { + out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]); + out[1] = 255; + out += n; + } } else { - if (is_rgb) { - if (n == 1) - for (i = 0; i < z->s->img_x; ++i) - *out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); - else { - for (i = 0; i < z->s->img_x; ++i, out += 2) { - out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); - out[1] = 255; - } - } - } else if (z->s->img_n == 4 && z->app14_color_transform == 0) { - for (i = 0; i < z->s->img_x; ++i) { - stbi_uc m = coutput[3][i]; - stbi_uc r = stbi__blinn_8x8(coutput[0][i], m); - stbi_uc g = stbi__blinn_8x8(coutput[1][i], m); - stbi_uc b = stbi__blinn_8x8(coutput[2][i], m); - out[0] = stbi__compute_y(r, g, b); - out[1] = 255; - out += n; - } - } else if (z->s->img_n == 4 && z->app14_color_transform == 2) { - for (i = 0; i < z->s->img_x; ++i) { - out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]); - out[1] = 255; - out += n; - } - } else { - stbi_uc * y = coutput[0]; - if (n == 1) - for (i = 0; i < z->s->img_x; ++i) - out[i] = y[i]; - else - for (i = 0; i < z->s->img_x; ++i) { - *out++ = y[i]; - *out++ = 255; - } - } + stbi_uc *y = coutput[0]; + if (n == 1) + for (i=0; i < z->s->img_x; ++i) out[i] = y[i]; + else + for (i=0; i < z->s->img_x; ++i) { *out++ = y[i]; *out++ = 255; } } - } - stbi__cleanup_jpeg(z); - *out_x = z->s->img_x; - *out_y = z->s->img_y; - if (comp) - *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output - return output; - } + } + } + stbi__cleanup_jpeg(z); + *out_x = z->s->img_x; + *out_y = z->s->img_y; + if (comp) *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output + return output; + } } -static void * stbi__jpeg_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri) { - unsigned char * result; - stbi__jpeg * j = (stbi__jpeg *)stbi__malloc(sizeof(stbi__jpeg)); - if (!j) - return stbi__errpuc("outofmem", "Out of memory"); - memset(j, 0, sizeof(stbi__jpeg)); - STBI_NOTUSED(ri); - j->s = s; - stbi__setup_jpeg(j); - result = load_jpeg_image(j, x, y, comp, req_comp); - STBI_FREE(j); - return result; -} - -static int stbi__jpeg_test(stbi__context * s) { - int r; - stbi__jpeg * j = (stbi__jpeg *)stbi__malloc(sizeof(stbi__jpeg)); - if (!j) - return stbi__err("outofmem", "Out of memory"); - memset(j, 0, sizeof(stbi__jpeg)); - j->s = s; - stbi__setup_jpeg(j); - r = stbi__decode_jpeg_header(j, STBI__SCAN_type); - stbi__rewind(s); - STBI_FREE(j); - return r; -} - -static int stbi__jpeg_info_raw(stbi__jpeg * j, int * x, int * y, int * comp) { - if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) { - stbi__rewind(j->s); - return 0; - } - if (x) - *x = j->s->img_x; - if (y) - *y = j->s->img_y; - if (comp) - *comp = j->s->img_n >= 3 ? 3 : 1; - return 1; +static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + unsigned char* result; + stbi__jpeg* j = (stbi__jpeg*) stbi__malloc(sizeof(stbi__jpeg)); + if (!j) return stbi__errpuc("outofmem", "Out of memory"); + memset(j, 0, sizeof(stbi__jpeg)); + STBI_NOTUSED(ri); + j->s = s; + stbi__setup_jpeg(j); + result = load_jpeg_image(j, x,y,comp,req_comp); + STBI_FREE(j); + return result; +} + +static int stbi__jpeg_test(stbi__context *s) +{ + int r; + stbi__jpeg* j = (stbi__jpeg*)stbi__malloc(sizeof(stbi__jpeg)); + if (!j) return stbi__err("outofmem", "Out of memory"); + memset(j, 0, sizeof(stbi__jpeg)); + j->s = s; + stbi__setup_jpeg(j); + r = stbi__decode_jpeg_header(j, STBI__SCAN_type); + stbi__rewind(s); + STBI_FREE(j); + return r; +} + +static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) +{ + if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) { + stbi__rewind( j->s ); + return 0; + } + if (x) *x = j->s->img_x; + if (y) *y = j->s->img_y; + if (comp) *comp = j->s->img_n >= 3 ? 3 : 1; + return 1; } -static int stbi__jpeg_info(stbi__context * s, int * x, int * y, int * comp) { - int result; - stbi__jpeg * j = (stbi__jpeg *)(stbi__malloc(sizeof(stbi__jpeg))); - if (!j) - return stbi__err("outofmem", "Out of memory"); - memset(j, 0, sizeof(stbi__jpeg)); - j->s = s; - result = stbi__jpeg_info_raw(j, x, y, comp); - STBI_FREE(j); - return result; +static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) +{ + int result; + stbi__jpeg* j = (stbi__jpeg*) (stbi__malloc(sizeof(stbi__jpeg))); + if (!j) return stbi__err("outofmem", "Out of memory"); + memset(j, 0, sizeof(stbi__jpeg)); + j->s = s; + result = stbi__jpeg_info_raw(j, x, y, comp); + STBI_FREE(j); + return result; } #endif @@ -4278,381 +4088,383 @@ static int stbi__jpeg_info(stbi__context * s, int * x, int * y, int * comp) { #ifndef STBI_NO_ZLIB // fast-way is faster to check than jpeg huffman, but slow way is slower -#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables -#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) +#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables +#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) #define STBI__ZNSYMS 288 // number of symbols in literal/length alphabet // zlib-style huffman encoding // (jpegs packs from left, zlib from right, so can't share code) -typedef struct { - stbi__uint16 fast[1 << STBI__ZFAST_BITS]; - stbi__uint16 firstcode[16]; - int maxcode[17]; - stbi__uint16 firstsymbol[16]; - stbi_uc size[STBI__ZNSYMS]; - stbi__uint16 value[STBI__ZNSYMS]; +typedef struct +{ + stbi__uint16 fast[1 << STBI__ZFAST_BITS]; + stbi__uint16 firstcode[16]; + int maxcode[17]; + stbi__uint16 firstsymbol[16]; + stbi_uc size[STBI__ZNSYMS]; + stbi__uint16 value[STBI__ZNSYMS]; } stbi__zhuffman; -stbi_inline static int stbi__bitreverse16(int n) { - n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); - n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); - n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); - n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); - return n; -} - -stbi_inline static int stbi__bit_reverse(int v, int bits) { - STBI_ASSERT(bits <= 16); - // to bit reverse n bits, reverse 16 and shift - // e.g. 11 bits, bit reverse and shift away 5 - return stbi__bitreverse16(v) >> (16 - bits); -} - -static int stbi__zbuild_huffman(stbi__zhuffman * z, const stbi_uc * sizelist, int num) { - int i, k = 0; - int code, next_code[16], sizes[17]; - - // DEFLATE spec for generating codes - memset(sizes, 0, sizeof(sizes)); - memset(z->fast, 0, sizeof(z->fast)); - for (i = 0; i < num; ++i) - ++sizes[sizelist[i]]; - sizes[0] = 0; - for (i = 1; i < 16; ++i) - if (sizes[i] > (1 << i)) - return stbi__err("bad sizes", "Corrupt PNG"); - code = 0; - for (i = 1; i < 16; ++i) { - next_code[i] = code; - z->firstcode[i] = (stbi__uint16)code; - z->firstsymbol[i] = (stbi__uint16)k; - code = (code + sizes[i]); - if (sizes[i]) - if (code - 1 >= (1 << i)) - return stbi__err("bad codelengths", "Corrupt PNG"); - z->maxcode[i] = code << (16 - i); // preshift for inner loop - code <<= 1; - k += sizes[i]; - } - z->maxcode[16] = 0x10000; // sentinel - for (i = 0; i < num; ++i) { - int s = sizelist[i]; - if (s) { - int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; - stbi__uint16 fastv = (stbi__uint16)((s << 9) | i); - z->size[c] = (stbi_uc)s; - z->value[c] = (stbi__uint16)i; - if (s <= STBI__ZFAST_BITS) { - int j = stbi__bit_reverse(next_code[s], s); - while (j < (1 << STBI__ZFAST_BITS)) { - z->fast[j] = fastv; - j += (1 << s); - } - } - ++next_code[s]; - } - } - return 1; +stbi_inline static int stbi__bitreverse16(int n) +{ + n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); + n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); + n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); + n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); + return n; } -// zlib-from-memory implementation for PNG reading -// because PNG allows splitting the zlib stream arbitrarily, -// and it's annoying structurally to have PNG call ZLIB call PNG, -// we require PNG read all the IDATs and combine them into a single -// memory buffer - -typedef struct { - stbi_uc *zbuffer, *zbuffer_end; - int num_bits; - stbi__uint32 code_buffer; - - char * zout; - char * zout_start; - char * zout_end; - int z_expandable; - - stbi__zhuffman z_length, z_distance; -} stbi__zbuf; - -stbi_inline static int stbi__zeof(stbi__zbuf * z) { return (z->zbuffer >= z->zbuffer_end); } - -stbi_inline static stbi_uc stbi__zget8(stbi__zbuf * z) { return stbi__zeof(z) ? 0 : *z->zbuffer++; } +stbi_inline static int stbi__bit_reverse(int v, int bits) +{ + STBI_ASSERT(bits <= 16); + // to bit reverse n bits, reverse 16 and shift + // e.g. 11 bits, bit reverse and shift away 5 + return stbi__bitreverse16(v) >> (16-bits); +} -static void stbi__fill_bits(stbi__zbuf * z) { - do { - if (z->code_buffer >= (1U << z->num_bits)) { - z->zbuffer = z->zbuffer_end; /* treat this as EOF so we fail. */ - return; - } - z->code_buffer |= (unsigned int)stbi__zget8(z) << z->num_bits; - z->num_bits += 8; - } while (z->num_bits <= 24); -} - -stbi_inline static unsigned int stbi__zreceive(stbi__zbuf * z, int n) { - unsigned int k; - if (z->num_bits < n) - stbi__fill_bits(z); - k = z->code_buffer & ((1 << n) - 1); - z->code_buffer >>= n; - z->num_bits -= n; - return k; -} - -static int stbi__zhuffman_decode_slowpath(stbi__zbuf * a, stbi__zhuffman * z) { - int b, s, k; - // not resolved by fast table, so compute it the slow way - // use jpeg approach, which requires MSbits at top - k = stbi__bit_reverse(a->code_buffer, 16); - for (s = STBI__ZFAST_BITS + 1;; ++s) - if (k < z->maxcode[s]) - break; - if (s >= 16) - return -1; // invalid code! - // code size is s, so: - b = (k >> (16 - s)) - z->firstcode[s] + z->firstsymbol[s]; - if (b >= STBI__ZNSYMS) - return -1; // some data was corrupt somewhere! - if (z->size[b] != s) - return -1; // was originally an assert, but report failure instead. - a->code_buffer >>= s; - a->num_bits -= s; - return z->value[b]; -} - -stbi_inline static int stbi__zhuffman_decode(stbi__zbuf * a, stbi__zhuffman * z) { - int b, s; - if (a->num_bits < 16) { - if (stbi__zeof(a)) { - return -1; /* report error for unexpected end of data. */ - } - stbi__fill_bits(a); - } - b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; - if (b) { - s = b >> 9; - a->code_buffer >>= s; - a->num_bits -= s; - return b & 511; - } - return stbi__zhuffman_decode_slowpath(a, z); -} - -static int stbi__zexpand(stbi__zbuf * z, char * zout, int n) // need to make room for n bytes -{ - char * q; - unsigned int cur, limit, old_limit; - z->zout = zout; - if (!z->z_expandable) - return stbi__err("output buffer limit", "Corrupt PNG"); - cur = (unsigned int)(z->zout - z->zout_start); - limit = old_limit = (unsigned)(z->zout_end - z->zout_start); - if (UINT_MAX - cur < (unsigned)n) - return stbi__err("outofmem", "Out of memory"); - while (cur + n > limit) { - if (limit > UINT_MAX / 2) - return stbi__err("outofmem", "Out of memory"); - limit *= 2; - } - q = (char *)STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); - STBI_NOTUSED(old_limit); - if (q == NULL) - return stbi__err("outofmem", "Out of memory"); - z->zout_start = q; - z->zout = q + cur; - z->zout_end = q + limit; - return 1; -} - -static const int stbi__zlength_base[31] = {3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, - 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; - -static const int stbi__zlength_extra[31] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, - 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0}; - -static const int stbi__zdist_base[32] = {1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, - 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, - 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; - -static const int stbi__zdist_extra[32] = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, - 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; - -static int stbi__parse_huffman_block(stbi__zbuf * a) { - char * zout = a->zout; - for (;;) { - int z = stbi__zhuffman_decode(a, &a->z_length); - if (z < 256) { - if (z < 0) - return stbi__err("bad huffman code", "Corrupt PNG"); // error in huffman codes - if (zout >= a->zout_end) { - if (!stbi__zexpand(a, zout, 1)) - return 0; - zout = a->zout; - } - *zout++ = (char)z; - } else { - stbi_uc * p; - int len, dist; - if (z == 256) { - a->zout = zout; - return 1; - } - if (z >= 286) - return stbi__err("bad huffman code", - "Corrupt PNG"); // per DEFLATE, length codes 286 and 287 must not appear in compressed data - z -= 257; - len = stbi__zlength_base[z]; - if (stbi__zlength_extra[z]) - len += stbi__zreceive(a, stbi__zlength_extra[z]); - z = stbi__zhuffman_decode(a, &a->z_distance); - if (z < 0 || z >= 30) - return stbi__err("bad huffman code", - "Corrupt PNG"); // per DEFLATE, distance codes 30 and 31 must not appear in compressed data - dist = stbi__zdist_base[z]; - if (stbi__zdist_extra[z]) - dist += stbi__zreceive(a, stbi__zdist_extra[z]); - if (zout - a->zout_start < dist) - return stbi__err("bad dist", "Corrupt PNG"); - if (zout + len > a->zout_end) { - if (!stbi__zexpand(a, zout, len)) - return 0; - zout = a->zout; - } - p = (stbi_uc *)(zout - dist); - if (dist == 1) { // run of one byte; common in images. - stbi_uc v = *p; - if (len) { - do - *zout++ = v; - while (--len); - } - } else { - if (len) { - do - *zout++ = *p++; - while (--len); - } +static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, int num) +{ + int i,k=0; + int code, next_code[16], sizes[17]; + + // DEFLATE spec for generating codes + memset(sizes, 0, sizeof(sizes)); + memset(z->fast, 0, sizeof(z->fast)); + for (i=0; i < num; ++i) + ++sizes[sizelist[i]]; + sizes[0] = 0; + for (i=1; i < 16; ++i) + if (sizes[i] > (1 << i)) + return stbi__err("bad sizes", "Corrupt PNG"); + code = 0; + for (i=1; i < 16; ++i) { + next_code[i] = code; + z->firstcode[i] = (stbi__uint16) code; + z->firstsymbol[i] = (stbi__uint16) k; + code = (code + sizes[i]); + if (sizes[i]) + if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG"); + z->maxcode[i] = code << (16-i); // preshift for inner loop + code <<= 1; + k += sizes[i]; + } + z->maxcode[16] = 0x10000; // sentinel + for (i=0; i < num; ++i) { + int s = sizelist[i]; + if (s) { + int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; + stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i); + z->size [c] = (stbi_uc ) s; + z->value[c] = (stbi__uint16) i; + if (s <= STBI__ZFAST_BITS) { + int j = stbi__bit_reverse(next_code[s],s); + while (j < (1 << STBI__ZFAST_BITS)) { + z->fast[j] = fastv; + j += (1 << s); } - } - } + } + ++next_code[s]; + } + } + return 1; +} + +// zlib-from-memory implementation for PNG reading +// because PNG allows splitting the zlib stream arbitrarily, +// and it's annoying structurally to have PNG call ZLIB call PNG, +// we require PNG read all the IDATs and combine them into a single +// memory buffer + +typedef struct +{ + stbi_uc *zbuffer, *zbuffer_end; + int num_bits; + int hit_zeof_once; + stbi__uint32 code_buffer; + + char *zout; + char *zout_start; + char *zout_end; + int z_expandable; + + stbi__zhuffman z_length, z_distance; +} stbi__zbuf; + +stbi_inline static int stbi__zeof(stbi__zbuf *z) +{ + return (z->zbuffer >= z->zbuffer_end); } -static int stbi__compute_huffman_codes(stbi__zbuf * a) { - static const stbi_uc length_dezigzag[19] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; - stbi__zhuffman z_codelength; - stbi_uc lencodes[286 + 32 + 137]; // padding for maximum single op - stbi_uc codelength_sizes[19]; - int i, n; +stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) +{ + return stbi__zeof(z) ? 0 : *z->zbuffer++; +} - int hlit = stbi__zreceive(a, 5) + 257; - int hdist = stbi__zreceive(a, 5) + 1; - int hclen = stbi__zreceive(a, 4) + 4; - int ntot = hlit + hdist; +static void stbi__fill_bits(stbi__zbuf *z) +{ + do { + if (z->code_buffer >= (1U << z->num_bits)) { + z->zbuffer = z->zbuffer_end; /* treat this as EOF so we fail. */ + return; + } + z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits; + z->num_bits += 8; + } while (z->num_bits <= 24); +} - memset(codelength_sizes, 0, sizeof(codelength_sizes)); - for (i = 0; i < hclen; ++i) { - int s = stbi__zreceive(a, 3); - codelength_sizes[length_dezigzag[i]] = (stbi_uc)s; - } - if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) - return 0; +stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) +{ + unsigned int k; + if (z->num_bits < n) stbi__fill_bits(z); + k = z->code_buffer & ((1 << n) - 1); + z->code_buffer >>= n; + z->num_bits -= n; + return k; +} - n = 0; - while (n < ntot) { - int c = stbi__zhuffman_decode(a, &z_codelength); - if (c < 0 || c >= 19) - return stbi__err("bad codelengths", "Corrupt PNG"); - if (c < 16) - lencodes[n++] = (stbi_uc)c; - else { - stbi_uc fill = 0; - if (c == 16) { - c = stbi__zreceive(a, 2) + 3; - if (n == 0) - return stbi__err("bad codelengths", "Corrupt PNG"); - fill = lencodes[n - 1]; - } else if (c == 17) { - c = stbi__zreceive(a, 3) + 3; - } else if (c == 18) { - c = stbi__zreceive(a, 7) + 11; - } else { - return stbi__err("bad codelengths", "Corrupt PNG"); +static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) +{ + int b,s,k; + // not resolved by fast table, so compute it the slow way + // use jpeg approach, which requires MSbits at top + k = stbi__bit_reverse(a->code_buffer, 16); + for (s=STBI__ZFAST_BITS+1; ; ++s) + if (k < z->maxcode[s]) + break; + if (s >= 16) return -1; // invalid code! + // code size is s, so: + b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; + if (b >= STBI__ZNSYMS) return -1; // some data was corrupt somewhere! + if (z->size[b] != s) return -1; // was originally an assert, but report failure instead. + a->code_buffer >>= s; + a->num_bits -= s; + return z->value[b]; +} + +stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) +{ + int b,s; + if (a->num_bits < 16) { + if (stbi__zeof(a)) { + if (!a->hit_zeof_once) { + // This is the first time we hit eof, insert 16 extra padding btis + // to allow us to keep going; if we actually consume any of them + // though, that is invalid data. This is caught later. + a->hit_zeof_once = 1; + a->num_bits += 16; // add 16 implicit zero bits + } else { + // We already inserted our extra 16 padding bits and are again + // out, this stream is actually prematurely terminated. + return -1; + } + } else { + stbi__fill_bits(a); + } + } + b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; + if (b) { + s = b >> 9; + a->code_buffer >>= s; + a->num_bits -= s; + return b & 511; + } + return stbi__zhuffman_decode_slowpath(a, z); +} + +static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) // need to make room for n bytes +{ + char *q; + unsigned int cur, limit, old_limit; + z->zout = zout; + if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG"); + cur = (unsigned int) (z->zout - z->zout_start); + limit = old_limit = (unsigned) (z->zout_end - z->zout_start); + if (UINT_MAX - cur < (unsigned) n) return stbi__err("outofmem", "Out of memory"); + while (cur + n > limit) { + if(limit > UINT_MAX / 2) return stbi__err("outofmem", "Out of memory"); + limit *= 2; + } + q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); + STBI_NOTUSED(old_limit); + if (q == NULL) return stbi__err("outofmem", "Out of memory"); + z->zout_start = q; + z->zout = q + cur; + z->zout_end = q + limit; + return 1; +} + +static const int stbi__zlength_base[31] = { + 3,4,5,6,7,8,9,10,11,13, + 15,17,19,23,27,31,35,43,51,59, + 67,83,99,115,131,163,195,227,258,0,0 }; + +static const int stbi__zlength_extra[31]= +{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; + +static const int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, +257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; + +static const int stbi__zdist_extra[32] = +{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; + +static int stbi__parse_huffman_block(stbi__zbuf *a) +{ + char *zout = a->zout; + for(;;) { + int z = stbi__zhuffman_decode(a, &a->z_length); + if (z < 256) { + if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes + if (zout >= a->zout_end) { + if (!stbi__zexpand(a, zout, 1)) return 0; + zout = a->zout; + } + *zout++ = (char) z; + } else { + stbi_uc *p; + int len,dist; + if (z == 256) { + a->zout = zout; + if (a->hit_zeof_once && a->num_bits < 16) { + // The first time we hit zeof, we inserted 16 extra zero bits into our bit + // buffer so the decoder can just do its speculative decoding. But if we + // actually consumed any of those bits (which is the case when num_bits < 16), + // the stream actually read past the end so it is malformed. + return stbi__err("unexpected end","Corrupt PNG"); } - if (ntot - n < c) - return stbi__err("bad codelengths", "Corrupt PNG"); - memset(lencodes + n, fill, c); - n += c; - } - } - if (n != ntot) - return stbi__err("bad codelengths", "Corrupt PNG"); - if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) - return 0; - if (!stbi__zbuild_huffman(&a->z_distance, lencodes + hlit, hdist)) - return 0; - return 1; -} - -static int stbi__parse_uncompressed_block(stbi__zbuf * a) { - stbi_uc header[4]; - int len, nlen, k; - if (a->num_bits & 7) - stbi__zreceive(a, a->num_bits & 7); // discard - // drain the bit-packed data into header - k = 0; - while (a->num_bits > 0) { - header[k++] = (stbi_uc)(a->code_buffer & 255); // suppress MSVC run-time check - a->code_buffer >>= 8; - a->num_bits -= 8; - } - if (a->num_bits < 0) - return stbi__err("zlib corrupt", "Corrupt PNG"); - // now fill header the normal way - while (k < 4) - header[k++] = stbi__zget8(a); - len = header[1] * 256 + header[0]; - nlen = header[3] * 256 + header[2]; - if (nlen != (len ^ 0xffff)) - return stbi__err("zlib corrupt", "Corrupt PNG"); - if (a->zbuffer + len > a->zbuffer_end) - return stbi__err("read past buffer", "Corrupt PNG"); - if (a->zout + len > a->zout_end) - if (!stbi__zexpand(a, a->zout, len)) - return 0; - memcpy(a->zout, a->zbuffer, len); - a->zbuffer += len; - a->zout += len; - return 1; -} - -static int stbi__parse_zlib_header(stbi__zbuf * a) { - int cmf = stbi__zget8(a); - int cm = cmf & 15; - /* int cinfo = cmf >> 4; */ - int flg = stbi__zget8(a); - if (stbi__zeof(a)) - return stbi__err("bad zlib header", "Corrupt PNG"); // zlib spec - if ((cmf * 256 + flg) % 31 != 0) - return stbi__err("bad zlib header", "Corrupt PNG"); // zlib spec - if (flg & 32) - return stbi__err("no preset dict", "Corrupt PNG"); // preset dictionary not allowed in png - if (cm != 8) - return stbi__err("bad compression", "Corrupt PNG"); // DEFLATE required for png - // window = 1 << (8 + cinfo)... but who cares, we fully buffer output - return 1; -} - -static const stbi_uc stbi__zdefault_length[STBI__ZNSYMS] = { - 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, - 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, - 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, - 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, - 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, - 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, - 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, - 9, 9, 9, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8}; -static const stbi_uc stbi__zdefault_distance[32] = {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, - 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; + return 1; + } + if (z >= 286) return stbi__err("bad huffman code","Corrupt PNG"); // per DEFLATE, length codes 286 and 287 must not appear in compressed data + z -= 257; + len = stbi__zlength_base[z]; + if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]); + z = stbi__zhuffman_decode(a, &a->z_distance); + if (z < 0 || z >= 30) return stbi__err("bad huffman code","Corrupt PNG"); // per DEFLATE, distance codes 30 and 31 must not appear in compressed data + dist = stbi__zdist_base[z]; + if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]); + if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG"); + if (len > a->zout_end - zout) { + if (!stbi__zexpand(a, zout, len)) return 0; + zout = a->zout; + } + p = (stbi_uc *) (zout - dist); + if (dist == 1) { // run of one byte; common in images. + stbi_uc v = *p; + if (len) { do *zout++ = v; while (--len); } + } else { + if (len) { do *zout++ = *p++; while (--len); } + } + } + } +} + +static int stbi__compute_huffman_codes(stbi__zbuf *a) +{ + static const stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; + stbi__zhuffman z_codelength; + stbi_uc lencodes[286+32+137];//padding for maximum single op + stbi_uc codelength_sizes[19]; + int i,n; + + int hlit = stbi__zreceive(a,5) + 257; + int hdist = stbi__zreceive(a,5) + 1; + int hclen = stbi__zreceive(a,4) + 4; + int ntot = hlit + hdist; + + memset(codelength_sizes, 0, sizeof(codelength_sizes)); + for (i=0; i < hclen; ++i) { + int s = stbi__zreceive(a,3); + codelength_sizes[length_dezigzag[i]] = (stbi_uc) s; + } + if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; + + n = 0; + while (n < ntot) { + int c = stbi__zhuffman_decode(a, &z_codelength); + if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG"); + if (c < 16) + lencodes[n++] = (stbi_uc) c; + else { + stbi_uc fill = 0; + if (c == 16) { + c = stbi__zreceive(a,2)+3; + if (n == 0) return stbi__err("bad codelengths", "Corrupt PNG"); + fill = lencodes[n-1]; + } else if (c == 17) { + c = stbi__zreceive(a,3)+3; + } else if (c == 18) { + c = stbi__zreceive(a,7)+11; + } else { + return stbi__err("bad codelengths", "Corrupt PNG"); + } + if (ntot - n < c) return stbi__err("bad codelengths", "Corrupt PNG"); + memset(lencodes+n, fill, c); + n += c; + } + } + if (n != ntot) return stbi__err("bad codelengths","Corrupt PNG"); + if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; + if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; + return 1; +} + +static int stbi__parse_uncompressed_block(stbi__zbuf *a) +{ + stbi_uc header[4]; + int len,nlen,k; + if (a->num_bits & 7) + stbi__zreceive(a, a->num_bits & 7); // discard + // drain the bit-packed data into header + k = 0; + while (a->num_bits > 0) { + header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check + a->code_buffer >>= 8; + a->num_bits -= 8; + } + if (a->num_bits < 0) return stbi__err("zlib corrupt","Corrupt PNG"); + // now fill header the normal way + while (k < 4) + header[k++] = stbi__zget8(a); + len = header[1] * 256 + header[0]; + nlen = header[3] * 256 + header[2]; + if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG"); + if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG"); + if (a->zout + len > a->zout_end) + if (!stbi__zexpand(a, a->zout, len)) return 0; + memcpy(a->zout, a->zbuffer, len); + a->zbuffer += len; + a->zout += len; + return 1; +} + +static int stbi__parse_zlib_header(stbi__zbuf *a) +{ + int cmf = stbi__zget8(a); + int cm = cmf & 15; + /* int cinfo = cmf >> 4; */ + int flg = stbi__zget8(a); + if (stbi__zeof(a)) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec + if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec + if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png + if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png + // window = 1 << (8 + cinfo)... but who cares, we fully buffer output + return 1; +} + +static const stbi_uc stbi__zdefault_length[STBI__ZNSYMS] = +{ + 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, + 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, + 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, + 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, + 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, + 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, + 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, + 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, + 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8 +}; +static const stbi_uc stbi__zdefault_distance[32] = +{ + 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 +}; /* Init algorithm: { @@ -4666,122 +4478,118 @@ Init algorithm: } */ -static int stbi__parse_zlib(stbi__zbuf * a, int parse_header) { - int final, type; - if (parse_header) - if (!stbi__parse_zlib_header(a)) - return 0; - a->num_bits = 0; - a->code_buffer = 0; - do { - final = stbi__zreceive(a, 1); - type = stbi__zreceive(a, 2); - if (type == 0) { - if (!stbi__parse_uncompressed_block(a)) - return 0; - } else if (type == 3) { - return 0; - } else { - if (type == 1) { - // use fixed code lengths - if (!stbi__zbuild_huffman(&a->z_length, stbi__zdefault_length, STBI__ZNSYMS)) - return 0; - if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) - return 0; - } else { - if (!stbi__compute_huffman_codes(a)) - return 0; - } - if (!stbi__parse_huffman_block(a)) - return 0; - } - } while (!final); - return 1; -} - -static int stbi__do_zlib(stbi__zbuf * a, char * obuf, int olen, int exp, int parse_header) { - a->zout_start = obuf; - a->zout = obuf; - a->zout_end = obuf + olen; - a->z_expandable = exp; - - return stbi__parse_zlib(a, parse_header); -} - -STBIDEF char * stbi_zlib_decode_malloc_guesssize(const char * buffer, int len, int initial_size, int * outlen) { - stbi__zbuf a; - char * p = (char *)stbi__malloc(initial_size); - if (p == NULL) - return NULL; - a.zbuffer = (stbi_uc *)buffer; - a.zbuffer_end = (stbi_uc *)buffer + len; - if (stbi__do_zlib(&a, p, initial_size, 1, 1)) { - if (outlen) - *outlen = (int)(a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } -} +static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) +{ + int final, type; + if (parse_header) + if (!stbi__parse_zlib_header(a)) return 0; + a->num_bits = 0; + a->code_buffer = 0; + a->hit_zeof_once = 0; + do { + final = stbi__zreceive(a,1); + type = stbi__zreceive(a,2); + if (type == 0) { + if (!stbi__parse_uncompressed_block(a)) return 0; + } else if (type == 3) { + return 0; + } else { + if (type == 1) { + // use fixed code lengths + if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , STBI__ZNSYMS)) return 0; + if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0; + } else { + if (!stbi__compute_huffman_codes(a)) return 0; + } + if (!stbi__parse_huffman_block(a)) return 0; + } + } while (!final); + return 1; +} + +static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) +{ + a->zout_start = obuf; + a->zout = obuf; + a->zout_end = obuf + olen; + a->z_expandable = exp; -STBIDEF char * stbi_zlib_decode_malloc(char const * buffer, int len, int * outlen) { - return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); + return stbi__parse_zlib(a, parse_header); } -STBIDEF char * stbi_zlib_decode_malloc_guesssize_headerflag(const char * buffer, int len, int initial_size, int * outlen, - int parse_header) { - stbi__zbuf a; - char * p = (char *)stbi__malloc(initial_size); - if (p == NULL) - return NULL; - a.zbuffer = (stbi_uc *)buffer; - a.zbuffer_end = (stbi_uc *)buffer + len; - if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { - if (outlen) - *outlen = (int)(a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } +STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) +{ + stbi__zbuf a; + char *p = (char *) stbi__malloc(initial_size); + if (p == NULL) return NULL; + a.zbuffer = (stbi_uc *) buffer; + a.zbuffer_end = (stbi_uc *) buffer + len; + if (stbi__do_zlib(&a, p, initial_size, 1, 1)) { + if (outlen) *outlen = (int) (a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) +{ + return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); } -STBIDEF int stbi_zlib_decode_buffer(char * obuffer, int olen, char const * ibuffer, int ilen) { - stbi__zbuf a; - a.zbuffer = (stbi_uc *)ibuffer; - a.zbuffer_end = (stbi_uc *)ibuffer + ilen; - if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) - return (int)(a.zout - a.zout_start); - else - return -1; -} - -STBIDEF char * stbi_zlib_decode_noheader_malloc(char const * buffer, int len, int * outlen) { - stbi__zbuf a; - char * p = (char *)stbi__malloc(16384); - if (p == NULL) - return NULL; - a.zbuffer = (stbi_uc *)buffer; - a.zbuffer_end = (stbi_uc *)buffer + len; - if (stbi__do_zlib(&a, p, 16384, 1, 0)) { - if (outlen) - *outlen = (int)(a.zout - a.zout_start); - return a.zout_start; - } else { - STBI_FREE(a.zout_start); - return NULL; - } +STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) +{ + stbi__zbuf a; + char *p = (char *) stbi__malloc(initial_size); + if (p == NULL) return NULL; + a.zbuffer = (stbi_uc *) buffer; + a.zbuffer_end = (stbi_uc *) buffer + len; + if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { + if (outlen) *outlen = (int) (a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) +{ + stbi__zbuf a; + a.zbuffer = (stbi_uc *) ibuffer; + a.zbuffer_end = (stbi_uc *) ibuffer + ilen; + if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) + return (int) (a.zout - a.zout_start); + else + return -1; } -STBIDEF int stbi_zlib_decode_noheader_buffer(char * obuffer, int olen, const char * ibuffer, int ilen) { - stbi__zbuf a; - a.zbuffer = (stbi_uc *)ibuffer; - a.zbuffer_end = (stbi_uc *)ibuffer + ilen; - if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) - return (int)(a.zout - a.zout_start); - else - return -1; +STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) +{ + stbi__zbuf a; + char *p = (char *) stbi__malloc(16384); + if (p == NULL) return NULL; + a.zbuffer = (stbi_uc *) buffer; + a.zbuffer_end = (stbi_uc *) buffer+len; + if (stbi__do_zlib(&a, p, 16384, 1, 0)) { + if (outlen) *outlen = (int) (a.zout - a.zout_start); + return a.zout_start; + } else { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) +{ + stbi__zbuf a; + a.zbuffer = (stbi_uc *) ibuffer; + a.zbuffer_end = (stbi_uc *) ibuffer + ilen; + if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) + return (int) (a.zout - a.zout_start); + else + return -1; } #endif @@ -4796,1303 +4604,1131 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char * obuffer, int olen, const cha // - uses stb_zlib, a PD zlib implementation with fast huffman decoding #ifndef STBI_NO_PNG -typedef struct { - stbi__uint32 length; - stbi__uint32 type; +typedef struct +{ + stbi__uint32 length; + stbi__uint32 type; } stbi__pngchunk; -static stbi__pngchunk stbi__get_chunk_header(stbi__context * s) { - stbi__pngchunk c; - c.length = stbi__get32be(s); - c.type = stbi__get32be(s); - return c; +static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) +{ + stbi__pngchunk c; + c.length = stbi__get32be(s); + c.type = stbi__get32be(s); + return c; } -static int stbi__check_png_header(stbi__context * s) { - static const stbi_uc png_sig[8] = {137, 80, 78, 71, 13, 10, 26, 10}; - int i; - for (i = 0; i < 8; ++i) - if (stbi__get8(s) != png_sig[i]) - return stbi__err("bad png sig", "Not a PNG"); - return 1; +static int stbi__check_png_header(stbi__context *s) +{ + static const stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 }; + int i; + for (i=0; i < 8; ++i) + if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG"); + return 1; } -typedef struct { - stbi__context * s; - stbi_uc *idata, *expanded, *out; - int depth; +typedef struct +{ + stbi__context *s; + stbi_uc *idata, *expanded, *out; + int depth; } stbi__png; + enum { - STBI__F_none = 0, - STBI__F_sub = 1, - STBI__F_up = 2, - STBI__F_avg = 3, - STBI__F_paeth = 4, - // synthetic filters used for first scanline to avoid needing a dummy row of 0s - STBI__F_avg_first, - STBI__F_paeth_first + STBI__F_none=0, + STBI__F_sub=1, + STBI__F_up=2, + STBI__F_avg=3, + STBI__F_paeth=4, + // synthetic filter used for first scanline to avoid needing a dummy row of 0s + STBI__F_avg_first }; -static stbi_uc first_row_filter[5] = {STBI__F_none, STBI__F_sub, STBI__F_none, STBI__F_avg_first, STBI__F_paeth_first}; +static stbi_uc first_row_filter[5] = +{ + STBI__F_none, + STBI__F_sub, + STBI__F_none, + STBI__F_avg_first, + STBI__F_sub // Paeth with b=c=0 turns out to be equivalent to sub +}; -static int stbi__paeth(int a, int b, int c) { - int p = a + b - c; - int pa = abs(p - a); - int pb = abs(p - b); - int pc = abs(p - c); - if (pa <= pb && pa <= pc) - return a; - if (pb <= pc) - return b; - return c; +static int stbi__paeth(int a, int b, int c) +{ + // This formulation looks very different from the reference in the PNG spec, but is + // actually equivalent and has favorable data dependencies and admits straightforward + // generation of branch-free code, which helps performance significantly. + int thresh = c*3 - (a + b); + int lo = a < b ? a : b; + int hi = a < b ? b : a; + int t0 = (hi <= thresh) ? lo : c; + int t1 = (thresh <= lo) ? hi : t0; + return t1; +} + +static const stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 }; + +// adds an extra all-255 alpha channel +// dest == src is legal +// img_n must be 1 or 3 +static void stbi__create_png_alpha_expand8(stbi_uc *dest, stbi_uc *src, stbi__uint32 x, int img_n) +{ + int i; + // must process data backwards since we allow dest==src + if (img_n == 1) { + for (i=x-1; i >= 0; --i) { + dest[i*2+1] = 255; + dest[i*2+0] = src[i]; + } + } else { + STBI_ASSERT(img_n == 3); + for (i=x-1; i >= 0; --i) { + dest[i*4+3] = 255; + dest[i*4+2] = src[i*3+2]; + dest[i*4+1] = src[i*3+1]; + dest[i*4+0] = src[i*3+0]; + } + } } -static const stbi_uc stbi__depth_scale_table[9] = {0, 0xff, 0x55, 0, 0x11, 0, 0, 0, 0x01}; - // create the png data from post-deflated data -static int stbi__create_png_image_raw(stbi__png * a, stbi_uc * raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, - stbi__uint32 y, int depth, int color) { - int bytes = (depth == 16 ? 2 : 1); - stbi__context * s = a->s; - stbi__uint32 i, j, stride = x * out_n * bytes; - stbi__uint32 img_len, img_width_bytes; - int k; - int img_n = s->img_n; // copy it into a local for later - - int output_bytes = out_n * bytes; - int filter_bytes = img_n * bytes; - int width = x; - - STBI_ASSERT(out_n == s->img_n || out_n == s->img_n + 1); - a->out = (stbi_uc *)stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into - if (!a->out) - return stbi__err("outofmem", "Out of memory"); - - if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) - return stbi__err("too large", "Corrupt PNG"); - img_width_bytes = (((img_n * x * depth) + 7) >> 3); - img_len = (img_width_bytes + 1) * y; - - // we used to check for exact match between raw_len and img_len on non-interlaced PNGs, - // but issue #276 reported a PNG in the wild that had extra data at the end (all zeros), - // so just check for raw_len < img_len always. - if (raw_len < img_len) - return stbi__err("not enough pixels", "Corrupt PNG"); - - for (j = 0; j < y; ++j) { - stbi_uc * cur = a->out + stride * j; - stbi_uc * prior; - int filter = *raw++; - - if (filter > 4) - return stbi__err("invalid filter", "Corrupt PNG"); - - if (depth < 8) { - if (img_width_bytes > x) - return stbi__err("invalid width", "Corrupt PNG"); - cur += x * out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place - filter_bytes = 1; - width = img_width_bytes; - } - prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above - - // if first row, use special filter that doesn't sample previous row - if (j == 0) - filter = first_row_filter[filter]; - - // handle first byte explicitly - for (k = 0; k < filter_bytes; ++k) { - switch (filter) { - case STBI__F_none: - cur[k] = raw[k]; - break; - case STBI__F_sub: - cur[k] = raw[k]; - break; - case STBI__F_up: - cur[k] = STBI__BYTECAST(raw[k] + prior[k]); - break; - case STBI__F_avg: - cur[k] = STBI__BYTECAST(raw[k] + (prior[k] >> 1)); - break; - case STBI__F_paeth: - cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0, prior[k], 0)); - break; - case STBI__F_avg_first: - cur[k] = raw[k]; - break; - case STBI__F_paeth_first: - cur[k] = raw[k]; - break; - } - } - - if (depth == 8) { - if (img_n != out_n) - cur[img_n] = 255; // first pixel - raw += img_n; - cur += out_n; - prior += out_n; - } else if (depth == 16) { - if (img_n != out_n) { - cur[filter_bytes] = 255; // first pixel top byte - cur[filter_bytes + 1] = 255; // first pixel bottom byte - } - raw += filter_bytes; - cur += output_bytes; - prior += output_bytes; - } else { - raw += 1; - cur += 1; - prior += 1; - } - - // this is a little gross, so that we don't switch per-pixel or per-component - if (depth < 8 || img_n == out_n) { - int nk = (width - 1) * filter_bytes; -#define STBI__CASE(f) \ - case f: \ - for (k = 0; k < nk; ++k) - switch (filter) { - // "none" filter turns into a memcpy here; make that explicit. - case STBI__F_none: - memcpy(cur, raw, nk); - break; - STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k - filter_bytes]); } - break; - STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } - break; - STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k - filter_bytes]) >> 1)); } - break; - STBI__CASE(STBI__F_paeth) { - cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - filter_bytes], prior[k], prior[k - filter_bytes])); - } - break; - STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k - filter_bytes] >> 1)); } - break; - STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - filter_bytes], 0, 0)); } - break; - } -#undef STBI__CASE - raw += nk; - } else { - STBI_ASSERT(img_n + 1 == out_n); -#define STBI__CASE(f) \ - case f: \ - for (i = x - 1; i >= 1; --i, cur[filter_bytes] = 255, raw += filter_bytes, cur += output_bytes, prior += output_bytes) \ - for (k = 0; k < filter_bytes; ++k) - switch (filter) { - STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } - break; - STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k - output_bytes]); } - break; - STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } - break; - STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k - output_bytes]) >> 1)); } - break; - STBI__CASE(STBI__F_paeth) { - cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - output_bytes], prior[k], prior[k - output_bytes])); - } - break; - STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k - output_bytes] >> 1)); } - break; - STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - output_bytes], 0, 0)); } - break; - } -#undef STBI__CASE - - // the loop above sets the high byte of the pixels' alpha, but for - // 16 bit png files we also need the low byte set. we'll do that here. - if (depth == 16) { - cur = a->out + stride * j; // start at the beginning of the row again - for (i = 0; i < x; ++i, cur += output_bytes) { - cur[filter_bytes + 1] = 255; - } - } - } - } - - // we make a separate pass to expand bits to pixels; for performance, - // this could run two scanlines behind the above code, so it won't - // intefere with filtering but will still be in the cache. - if (depth < 8) { - for (j = 0; j < y; ++j) { - stbi_uc * cur = a->out + stride * j; - stbi_uc * in = a->out + stride * j + x * out_n - img_width_bytes; - // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for - // 1/2/4-bit png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that - // will be skipped in the later loop - stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range - - // note that the final byte might overshoot and write more data than desired. - // we can allocate enough data that this never writes out of memory, but it - // could also overwrite the next scanline. can it overwrite non-empty data - // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel. - // so we need to explicitly clamp the final ones - - if (depth == 4) { - for (k = x * img_n; k >= 2; k -= 2, ++in) { - *cur++ = scale * ((*in >> 4)); - *cur++ = scale * ((*in) & 0x0f); - } - if (k > 0) - *cur++ = scale * ((*in >> 4)); - } else if (depth == 2) { - for (k = x * img_n; k >= 4; k -= 4, ++in) { - *cur++ = scale * ((*in >> 6)); - *cur++ = scale * ((*in >> 4) & 0x03); - *cur++ = scale * ((*in >> 2) & 0x03); - *cur++ = scale * ((*in) & 0x03); - } - if (k > 0) - *cur++ = scale * ((*in >> 6)); - if (k > 1) - *cur++ = scale * ((*in >> 4) & 0x03); - if (k > 2) - *cur++ = scale * ((*in >> 2) & 0x03); - } else if (depth == 1) { - for (k = x * img_n; k >= 8; k -= 8, ++in) { - *cur++ = scale * ((*in >> 7)); - *cur++ = scale * ((*in >> 6) & 0x01); - *cur++ = scale * ((*in >> 5) & 0x01); - *cur++ = scale * ((*in >> 4) & 0x01); - *cur++ = scale * ((*in >> 3) & 0x01); - *cur++ = scale * ((*in >> 2) & 0x01); - *cur++ = scale * ((*in >> 1) & 0x01); - *cur++ = scale * ((*in) & 0x01); - } - if (k > 0) - *cur++ = scale * ((*in >> 7)); - if (k > 1) - *cur++ = scale * ((*in >> 6) & 0x01); - if (k > 2) - *cur++ = scale * ((*in >> 5) & 0x01); - if (k > 3) - *cur++ = scale * ((*in >> 4) & 0x01); - if (k > 4) - *cur++ = scale * ((*in >> 3) & 0x01); - if (k > 5) - *cur++ = scale * ((*in >> 2) & 0x01); - if (k > 6) - *cur++ = scale * ((*in >> 1) & 0x01); +static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color) +{ + int bytes = (depth == 16 ? 2 : 1); + stbi__context *s = a->s; + stbi__uint32 i,j,stride = x*out_n*bytes; + stbi__uint32 img_len, img_width_bytes; + stbi_uc *filter_buf; + int all_ok = 1; + int k; + int img_n = s->img_n; // copy it into a local for later + + int output_bytes = out_n*bytes; + int filter_bytes = img_n*bytes; + int width = x; + + STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1); + a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into + if (!a->out) return stbi__err("outofmem", "Out of memory"); + + // note: error exits here don't need to clean up a->out individually, + // stbi__do_png always does on error. + if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) return stbi__err("too large", "Corrupt PNG"); + img_width_bytes = (((img_n * x * depth) + 7) >> 3); + if (!stbi__mad2sizes_valid(img_width_bytes, y, img_width_bytes)) return stbi__err("too large", "Corrupt PNG"); + img_len = (img_width_bytes + 1) * y; + + // we used to check for exact match between raw_len and img_len on non-interlaced PNGs, + // but issue #276 reported a PNG in the wild that had extra data at the end (all zeros), + // so just check for raw_len < img_len always. + if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG"); + + // Allocate two scan lines worth of filter workspace buffer. + filter_buf = (stbi_uc *) stbi__malloc_mad2(img_width_bytes, 2, 0); + if (!filter_buf) return stbi__err("outofmem", "Out of memory"); + + // Filtering for low-bit-depth images + if (depth < 8) { + filter_bytes = 1; + width = img_width_bytes; + } + + for (j=0; j < y; ++j) { + // cur/prior filter buffers alternate + stbi_uc *cur = filter_buf + (j & 1)*img_width_bytes; + stbi_uc *prior = filter_buf + (~j & 1)*img_width_bytes; + stbi_uc *dest = a->out + stride*j; + int nk = width * filter_bytes; + int filter = *raw++; + + // check filter type + if (filter > 4) { + all_ok = stbi__err("invalid filter","Corrupt PNG"); + break; + } + + // if first row, use special filter that doesn't sample previous row + if (j == 0) filter = first_row_filter[filter]; + + // perform actual filtering + switch (filter) { + case STBI__F_none: + memcpy(cur, raw, nk); + break; + case STBI__F_sub: + memcpy(cur, raw, filter_bytes); + for (k = filter_bytes; k < nk; ++k) + cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); + break; + case STBI__F_up: + for (k = 0; k < nk; ++k) + cur[k] = STBI__BYTECAST(raw[k] + prior[k]); + break; + case STBI__F_avg: + for (k = 0; k < filter_bytes; ++k) + cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); + for (k = filter_bytes; k < nk; ++k) + cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); + break; + case STBI__F_paeth: + for (k = 0; k < filter_bytes; ++k) + cur[k] = STBI__BYTECAST(raw[k] + prior[k]); // prior[k] == stbi__paeth(0,prior[k],0) + for (k = filter_bytes; k < nk; ++k) + cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes], prior[k], prior[k-filter_bytes])); + break; + case STBI__F_avg_first: + memcpy(cur, raw, filter_bytes); + for (k = filter_bytes; k < nk; ++k) + cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); + break; + } + + raw += nk; + + // expand decoded bits in cur to dest, also adding an extra alpha channel if desired + if (depth < 8) { + stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range + stbi_uc *in = cur; + stbi_uc *out = dest; + stbi_uc inb = 0; + stbi__uint32 nsmp = x*img_n; + + // expand bits to bytes first + if (depth == 4) { + for (i=0; i < nsmp; ++i) { + if ((i & 1) == 0) inb = *in++; + *out++ = scale * (inb >> 4); + inb <<= 4; } - if (img_n != out_n) { - int q; - // insert alpha = 255 - cur = a->out + stride * j; - if (img_n == 1) { - for (q = x - 1; q >= 0; --q) { - cur[q * 2 + 1] = 255; - cur[q * 2 + 0] = cur[q]; - } - } else { - STBI_ASSERT(img_n == 3); - for (q = x - 1; q >= 0; --q) { - cur[q * 4 + 3] = 255; - cur[q * 4 + 2] = cur[q * 3 + 2]; - cur[q * 4 + 1] = cur[q * 3 + 1]; - cur[q * 4 + 0] = cur[q * 3 + 0]; - } - } + } else if (depth == 2) { + for (i=0; i < nsmp; ++i) { + if ((i & 3) == 0) inb = *in++; + *out++ = scale * (inb >> 6); + inb <<= 2; } - } - } else if (depth == 16) { - // force the image data from big-endian to platform-native. - // this is done in a separate pass due to the decoding relying - // on the data being untouched, but could probably be done - // per-line during decode if care is taken. - stbi_uc * cur = a->out; - stbi__uint16 * cur16 = (stbi__uint16 *)cur; - - for (i = 0; i < x * y * out_n; ++i, cur16++, cur += 2) { - *cur16 = (cur[0] << 8) | cur[1]; - } - } - - return 1; -} - -static int stbi__create_png_image(stbi__png * a, stbi_uc * image_data, stbi__uint32 image_data_len, int out_n, int depth, - int color, int interlaced) { - int bytes = (depth == 16 ? 2 : 1); - int out_bytes = out_n * bytes; - stbi_uc * final; - int p; - if (!interlaced) - return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); - - // de-interlacing - final = (stbi_uc *)stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0); - if (!final) - return stbi__err("outofmem", "Out of memory"); - for (p = 0; p < 7; ++p) { - int xorig[] = {0, 4, 0, 2, 0, 1, 0}; - int yorig[] = {0, 0, 4, 0, 2, 0, 1}; - int xspc[] = {8, 8, 4, 4, 2, 2, 1}; - int yspc[] = {8, 8, 8, 4, 4, 2, 2}; - int i, j, x, y; - // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 - x = (a->s->img_x - xorig[p] + xspc[p] - 1) / xspc[p]; - y = (a->s->img_y - yorig[p] + yspc[p] - 1) / yspc[p]; - if (x && y) { - stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; - if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) { - STBI_FREE(final); - return 0; + } else { + STBI_ASSERT(depth == 1); + for (i=0; i < nsmp; ++i) { + if ((i & 7) == 0) inb = *in++; + *out++ = scale * (inb >> 7); + inb <<= 1; } - for (j = 0; j < y; ++j) { - for (i = 0; i < x; ++i) { - int out_y = j * yspc[p] + yorig[p]; - int out_x = i * xspc[p] + xorig[p]; - memcpy(final + out_y * a->s->img_x * out_bytes + out_x * out_bytes, a->out + (j * x + i) * out_bytes, - out_bytes); - } + } + + // insert alpha=255 values if desired + if (img_n != out_n) + stbi__create_png_alpha_expand8(dest, dest, x, img_n); + } else if (depth == 8) { + if (img_n == out_n) + memcpy(dest, cur, x*img_n); + else + stbi__create_png_alpha_expand8(dest, cur, x, img_n); + } else if (depth == 16) { + // convert the image data from big-endian to platform-native + stbi__uint16 *dest16 = (stbi__uint16*)dest; + stbi__uint32 nsmp = x*img_n; + + if (img_n == out_n) { + for (i = 0; i < nsmp; ++i, ++dest16, cur += 2) + *dest16 = (cur[0] << 8) | cur[1]; + } else { + STBI_ASSERT(img_n+1 == out_n); + if (img_n == 1) { + for (i = 0; i < x; ++i, dest16 += 2, cur += 2) { + dest16[0] = (cur[0] << 8) | cur[1]; + dest16[1] = 0xffff; + } + } else { + STBI_ASSERT(img_n == 3); + for (i = 0; i < x; ++i, dest16 += 4, cur += 6) { + dest16[0] = (cur[0] << 8) | cur[1]; + dest16[1] = (cur[2] << 8) | cur[3]; + dest16[2] = (cur[4] << 8) | cur[5]; + dest16[3] = 0xffff; + } } - STBI_FREE(a->out); - image_data += img_len; - image_data_len -= img_len; - } - } - a->out = final; + } + } + } - return 1; -} - -static int stbi__compute_transparency(stbi__png * z, stbi_uc tc[3], int out_n) { - stbi__context * s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi_uc * p = z->out; + STBI_FREE(filter_buf); + if (!all_ok) return 0; - // compute color-based transparency, assuming we've - // already got 255 as the alpha value in the output - STBI_ASSERT(out_n == 2 || out_n == 4); - - if (out_n == 2) { - for (i = 0; i < pixel_count; ++i) { - p[1] = (p[0] == tc[0] ? 0 : 255); - p += 2; - } - } else { - for (i = 0; i < pixel_count; ++i) { - if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) - p[3] = 0; - p += 4; - } - } - return 1; + return 1; } -static int stbi__compute_transparency16(stbi__png * z, stbi__uint16 tc[3], int out_n) { - stbi__context * s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi__uint16 * p = (stbi__uint16 *)z->out; - - // compute color-based transparency, assuming we've - // already got 65535 as the alpha value in the output - STBI_ASSERT(out_n == 2 || out_n == 4); +static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced) +{ + int bytes = (depth == 16 ? 2 : 1); + int out_bytes = out_n * bytes; + stbi_uc *final; + int p; + if (!interlaced) + return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); + + // de-interlacing + final = (stbi_uc *) stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0); + if (!final) return stbi__err("outofmem", "Out of memory"); + for (p=0; p < 7; ++p) { + int xorig[] = { 0,4,0,2,0,1,0 }; + int yorig[] = { 0,0,4,0,2,0,1 }; + int xspc[] = { 8,8,4,4,2,2,1 }; + int yspc[] = { 8,8,8,4,4,2,2 }; + int i,j,x,y; + // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 + x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p]; + y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p]; + if (x && y) { + stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; + if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) { + STBI_FREE(final); + return 0; + } + for (j=0; j < y; ++j) { + for (i=0; i < x; ++i) { + int out_y = j*yspc[p]+yorig[p]; + int out_x = i*xspc[p]+xorig[p]; + memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes, + a->out + (j*x+i)*out_bytes, out_bytes); + } + } + STBI_FREE(a->out); + image_data += img_len; + image_data_len -= img_len; + } + } + a->out = final; - if (out_n == 2) { - for (i = 0; i < pixel_count; ++i) { - p[1] = (p[0] == tc[0] ? 0 : 65535); - p += 2; - } - } else { - for (i = 0; i < pixel_count; ++i) { - if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) - p[3] = 0; - p += 4; - } - } - return 1; + return 1; } -static int stbi__expand_png_palette(stbi__png * a, stbi_uc * palette, int len, int pal_img_n) { - stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; - stbi_uc *p, *temp_out, *orig = a->out; - - p = (stbi_uc *)stbi__malloc_mad2(pixel_count, pal_img_n, 0); - if (p == NULL) - return stbi__err("outofmem", "Out of memory"); - - // between here and free(out) below, exitting would leak - temp_out = p; - - if (pal_img_n == 3) { - for (i = 0; i < pixel_count; ++i) { - int n = orig[i] * 4; - p[0] = palette[n]; - p[1] = palette[n + 1]; - p[2] = palette[n + 2]; - p += 3; - } - } else { - for (i = 0; i < pixel_count; ++i) { - int n = orig[i] * 4; - p[0] = palette[n]; - p[1] = palette[n + 1]; - p[2] = palette[n + 2]; - p[3] = palette[n + 3]; - p += 4; - } - } - STBI_FREE(a->out); - a->out = temp_out; - - STBI_NOTUSED(len); - - return 1; +static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi_uc *p = z->out; + + // compute color-based transparency, assuming we've + // already got 255 as the alpha value in the output + STBI_ASSERT(out_n == 2 || out_n == 4); + + if (out_n == 2) { + for (i=0; i < pixel_count; ++i) { + p[1] = (p[0] == tc[0] ? 0 : 255); + p += 2; + } + } else { + for (i=0; i < pixel_count; ++i) { + if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) + p[3] = 0; + p += 4; + } + } + return 1; +} + +static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi__uint16 *p = (stbi__uint16*) z->out; + + // compute color-based transparency, assuming we've + // already got 65535 as the alpha value in the output + STBI_ASSERT(out_n == 2 || out_n == 4); + + if (out_n == 2) { + for (i = 0; i < pixel_count; ++i) { + p[1] = (p[0] == tc[0] ? 0 : 65535); + p += 2; + } + } else { + for (i = 0; i < pixel_count; ++i) { + if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) + p[3] = 0; + p += 4; + } + } + return 1; +} + +static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n) +{ + stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; + stbi_uc *p, *temp_out, *orig = a->out; + + p = (stbi_uc *) stbi__malloc_mad2(pixel_count, pal_img_n, 0); + if (p == NULL) return stbi__err("outofmem", "Out of memory"); + + // between here and free(out) below, exitting would leak + temp_out = p; + + if (pal_img_n == 3) { + for (i=0; i < pixel_count; ++i) { + int n = orig[i]*4; + p[0] = palette[n ]; + p[1] = palette[n+1]; + p[2] = palette[n+2]; + p += 3; + } + } else { + for (i=0; i < pixel_count; ++i) { + int n = orig[i]*4; + p[0] = palette[n ]; + p[1] = palette[n+1]; + p[2] = palette[n+2]; + p[3] = palette[n+3]; + p += 4; + } + } + STBI_FREE(a->out); + a->out = temp_out; + + STBI_NOTUSED(len); + + return 1; } static int stbi__unpremultiply_on_load_global = 0; static int stbi__de_iphone_flag_global = 0; -STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) { - stbi__unpremultiply_on_load_global = flag_true_if_should_unpremultiply; +STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) +{ + stbi__unpremultiply_on_load_global = flag_true_if_should_unpremultiply; } -STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) { - stbi__de_iphone_flag_global = flag_true_if_should_convert; +STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) +{ + stbi__de_iphone_flag_global = flag_true_if_should_convert; } #ifndef STBI_THREAD_LOCAL -#define stbi__unpremultiply_on_load stbi__unpremultiply_on_load_global -#define stbi__de_iphone_flag stbi__de_iphone_flag_global +#define stbi__unpremultiply_on_load stbi__unpremultiply_on_load_global +#define stbi__de_iphone_flag stbi__de_iphone_flag_global #else static STBI_THREAD_LOCAL int stbi__unpremultiply_on_load_local, stbi__unpremultiply_on_load_set; static STBI_THREAD_LOCAL int stbi__de_iphone_flag_local, stbi__de_iphone_flag_set; -STBIDEF void stbi_set_unpremultiply_on_load_thread(int flag_true_if_should_unpremultiply) { - stbi__unpremultiply_on_load_local = flag_true_if_should_unpremultiply; - stbi__unpremultiply_on_load_set = 1; +STBIDEF void stbi_set_unpremultiply_on_load_thread(int flag_true_if_should_unpremultiply) +{ + stbi__unpremultiply_on_load_local = flag_true_if_should_unpremultiply; + stbi__unpremultiply_on_load_set = 1; } -STBIDEF void stbi_convert_iphone_png_to_rgb_thread(int flag_true_if_should_convert) { - stbi__de_iphone_flag_local = flag_true_if_should_convert; - stbi__de_iphone_flag_set = 1; +STBIDEF void stbi_convert_iphone_png_to_rgb_thread(int flag_true_if_should_convert) +{ + stbi__de_iphone_flag_local = flag_true_if_should_convert; + stbi__de_iphone_flag_set = 1; } -#define stbi__unpremultiply_on_load \ - (stbi__unpremultiply_on_load_set ? stbi__unpremultiply_on_load_local : stbi__unpremultiply_on_load_global) -#define stbi__de_iphone_flag (stbi__de_iphone_flag_set ? stbi__de_iphone_flag_local : stbi__de_iphone_flag_global) +#define stbi__unpremultiply_on_load (stbi__unpremultiply_on_load_set \ + ? stbi__unpremultiply_on_load_local \ + : stbi__unpremultiply_on_load_global) +#define stbi__de_iphone_flag (stbi__de_iphone_flag_set \ + ? stbi__de_iphone_flag_local \ + : stbi__de_iphone_flag_global) #endif // STBI_THREAD_LOCAL -static void stbi__de_iphone(stbi__png * z) { - stbi__context * s = z->s; - stbi__uint32 i, pixel_count = s->img_x * s->img_y; - stbi_uc * p = z->out; - - if (s->img_out_n == 3) { // convert bgr to rgb - for (i = 0; i < pixel_count; ++i) { +static void stbi__de_iphone(stbi__png *z) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi_uc *p = z->out; + + if (s->img_out_n == 3) { // convert bgr to rgb + for (i=0; i < pixel_count; ++i) { + stbi_uc t = p[0]; + p[0] = p[2]; + p[2] = t; + p += 3; + } + } else { + STBI_ASSERT(s->img_out_n == 4); + if (stbi__unpremultiply_on_load) { + // convert bgr to rgb and unpremultiply + for (i=0; i < pixel_count; ++i) { + stbi_uc a = p[3]; + stbi_uc t = p[0]; + if (a) { + stbi_uc half = a / 2; + p[0] = (p[2] * 255 + half) / a; + p[1] = (p[1] * 255 + half) / a; + p[2] = ( t * 255 + half) / a; + } else { + p[0] = p[2]; + p[2] = t; + } + p += 4; + } + } else { + // convert bgr to rgb + for (i=0; i < pixel_count; ++i) { stbi_uc t = p[0]; p[0] = p[2]; p[2] = t; - p += 3; - } - } else { - STBI_ASSERT(s->img_out_n == 4); - if (stbi__unpremultiply_on_load) { - // convert bgr to rgb and unpremultiply - for (i = 0; i < pixel_count; ++i) { - stbi_uc a = p[3]; - stbi_uc t = p[0]; - if (a) { - stbi_uc half = a / 2; - p[0] = (p[2] * 255 + half) / a; - p[1] = (p[1] * 255 + half) / a; - p[2] = (t * 255 + half) / a; - } else { - p[0] = p[2]; - p[2] = t; - } - p += 4; - } - } else { - // convert bgr to rgb - for (i = 0; i < pixel_count; ++i) { - stbi_uc t = p[0]; - p[0] = p[2]; - p[2] = t; - p += 4; - } - } - } + p += 4; + } + } + } } -#define STBI__PNG_TYPE(a, b, c, d) (((unsigned)(a) << 24) + ((unsigned)(b) << 16) + ((unsigned)(c) << 8) + (unsigned)(d)) +#define STBI__PNG_TYPE(a,b,c,d) (((unsigned) (a) << 24) + ((unsigned) (b) << 16) + ((unsigned) (c) << 8) + (unsigned) (d)) -static int stbi__parse_png_file(stbi__png * z, int scan, int req_comp) { - stbi_uc palette[1024], pal_img_n = 0; - stbi_uc has_trans = 0, tc[3] = {0}; - stbi__uint16 tc16[3]; - stbi__uint32 ioff = 0, idata_limit = 0, i, pal_len = 0; - int first = 1, k, interlace = 0, color = 0, is_iphone = 0; - stbi__context * s = z->s; +static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) +{ + stbi_uc palette[1024], pal_img_n=0; + stbi_uc has_trans=0, tc[3]={0}; + stbi__uint16 tc16[3]; + stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0; + int first=1,k,interlace=0, color=0, is_iphone=0; + stbi__context *s = z->s; - z->expanded = NULL; - z->idata = NULL; - z->out = NULL; + z->expanded = NULL; + z->idata = NULL; + z->out = NULL; - if (!stbi__check_png_header(s)) - return 0; + if (!stbi__check_png_header(s)) return 0; - if (scan == STBI__SCAN_type) - return 1; + if (scan == STBI__SCAN_type) return 1; - for (;;) { - stbi__pngchunk c = stbi__get_chunk_header(s); - switch (c.type) { - case STBI__PNG_TYPE('C', 'g', 'B', 'I'): + for (;;) { + stbi__pngchunk c = stbi__get_chunk_header(s); + switch (c.type) { + case STBI__PNG_TYPE('C','g','B','I'): is_iphone = 1; stbi__skip(s, c.length); break; - case STBI__PNG_TYPE('I', 'H', 'D', 'R'): { - int comp, filter; - if (!first) - return stbi__err("multiple IHDR", "Corrupt PNG"); + case STBI__PNG_TYPE('I','H','D','R'): { + int comp,filter; + if (!first) return stbi__err("multiple IHDR","Corrupt PNG"); first = 0; - if (c.length != 13) - return stbi__err("bad IHDR len", "Corrupt PNG"); + if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG"); s->img_x = stbi__get32be(s); s->img_y = stbi__get32be(s); - if (s->img_y > STBI_MAX_DIMENSIONS) - return stbi__err("too large", "Very large image (corrupt?)"); - if (s->img_x > STBI_MAX_DIMENSIONS) - return stbi__err("too large", "Very large image (corrupt?)"); - z->depth = stbi__get8(s); - if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) - return stbi__err("1/2/4/8/16-bit only", "PNG not supported: 1/2/4/8/16-bit only"); - color = stbi__get8(s); - if (color > 6) - return stbi__err("bad ctype", "Corrupt PNG"); - if (color == 3 && z->depth == 16) - return stbi__err("bad ctype", "Corrupt PNG"); - if (color == 3) - pal_img_n = 3; - else if (color & 1) - return stbi__err("bad ctype", "Corrupt PNG"); - comp = stbi__get8(s); - if (comp) - return stbi__err("bad comp method", "Corrupt PNG"); - filter = stbi__get8(s); - if (filter) - return stbi__err("bad filter method", "Corrupt PNG"); - interlace = stbi__get8(s); - if (interlace > 1) - return stbi__err("bad interlace method", "Corrupt PNG"); - if (!s->img_x || !s->img_y) - return stbi__err("0-pixel image", "Corrupt PNG"); + if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); + if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); + z->depth = stbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return stbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only"); + color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG"); + if (color == 3 && z->depth == 16) return stbi__err("bad ctype","Corrupt PNG"); + if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG"); + comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG"); + filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG"); + interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG"); + if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG"); if (!pal_img_n) { - s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); - if ((1 << 30) / s->img_x / s->img_n < s->img_y) - return stbi__err("too large", "Image too large to decode"); + s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); + if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); } else { - // if paletted, then pal_n is our final components, and - // img_n is # components to decompress/filter. - s->img_n = 1; - if ((1 << 30) / s->img_x / 4 < s->img_y) - return stbi__err("too large", "Corrupt PNG"); + // if paletted, then pal_n is our final components, and + // img_n is # components to decompress/filter. + s->img_n = 1; + if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG"); } // even with SCAN_header, have to scan to see if we have a tRNS break; - } + } - case STBI__PNG_TYPE('P', 'L', 'T', 'E'): { - if (first) - return stbi__err("first not IHDR", "Corrupt PNG"); - if (c.length > 256 * 3) - return stbi__err("invalid PLTE", "Corrupt PNG"); + case STBI__PNG_TYPE('P','L','T','E'): { + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG"); pal_len = c.length / 3; - if (pal_len * 3 != c.length) - return stbi__err("invalid PLTE", "Corrupt PNG"); - for (i = 0; i < pal_len; ++i) { - palette[i * 4 + 0] = stbi__get8(s); - palette[i * 4 + 1] = stbi__get8(s); - palette[i * 4 + 2] = stbi__get8(s); - palette[i * 4 + 3] = 255; + if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG"); + for (i=0; i < pal_len; ++i) { + palette[i*4+0] = stbi__get8(s); + palette[i*4+1] = stbi__get8(s); + palette[i*4+2] = stbi__get8(s); + palette[i*4+3] = 255; } break; - } + } - case STBI__PNG_TYPE('t', 'R', 'N', 'S'): { - if (first) - return stbi__err("first not IHDR", "Corrupt PNG"); - if (z->idata) - return stbi__err("tRNS after IDAT", "Corrupt PNG"); + case STBI__PNG_TYPE('t','R','N','S'): { + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG"); if (pal_img_n) { - if (scan == STBI__SCAN_header) { - s->img_n = 4; - return 1; - } - if (pal_len == 0) - return stbi__err("tRNS before PLTE", "Corrupt PNG"); - if (c.length > pal_len) - return stbi__err("bad tRNS len", "Corrupt PNG"); - pal_img_n = 4; - for (i = 0; i < c.length; ++i) - palette[i * 4 + 3] = stbi__get8(s); + if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; } + if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG"); + if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG"); + pal_img_n = 4; + for (i=0; i < c.length; ++i) + palette[i*4+3] = stbi__get8(s); } else { - if (!(s->img_n & 1)) - return stbi__err("tRNS with alpha", "Corrupt PNG"); - if (c.length != (stbi__uint32)s->img_n * 2) - return stbi__err("bad tRNS len", "Corrupt PNG"); - has_trans = 1; - // non-paletted with tRNS = constant alpha. if header-scanning, we can stop now. - if (scan == STBI__SCAN_header) { - ++s->img_n; - return 1; - } - if (z->depth == 16) { - for (k = 0; k < s->img_n; ++k) - tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is - } else { - for (k = 0; k < s->img_n; ++k) - tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * - stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger - } + if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG"); + if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG"); + has_trans = 1; + // non-paletted with tRNS = constant alpha. if header-scanning, we can stop now. + if (scan == STBI__SCAN_header) { ++s->img_n; return 1; } + if (z->depth == 16) { + for (k = 0; k < s->img_n && k < 3; ++k) // extra loop test to suppress false GCC warning + tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is + } else { + for (k = 0; k < s->img_n && k < 3; ++k) + tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger + } } break; - } + } - case STBI__PNG_TYPE('I', 'D', 'A', 'T'): { - if (first) - return stbi__err("first not IHDR", "Corrupt PNG"); - if (pal_img_n && !pal_len) - return stbi__err("no PLTE", "Corrupt PNG"); + case STBI__PNG_TYPE('I','D','A','T'): { + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG"); if (scan == STBI__SCAN_header) { - // header scan definitely stops at first IDAT - if (pal_img_n) - s->img_n = pal_img_n; - return 1; + // header scan definitely stops at first IDAT + if (pal_img_n) + s->img_n = pal_img_n; + return 1; } - if (c.length > (1u << 30)) - return stbi__err("IDAT size limit", "IDAT section larger than 2^30 bytes"); - if ((int)(ioff + c.length) < (int)ioff) - return 0; + if (c.length > (1u << 30)) return stbi__err("IDAT size limit", "IDAT section larger than 2^30 bytes"); + if ((int)(ioff + c.length) < (int)ioff) return 0; if (ioff + c.length > idata_limit) { - stbi__uint32 idata_limit_old = idata_limit; - stbi_uc * p; - if (idata_limit == 0) - idata_limit = c.length > 4096 ? c.length : 4096; - while (ioff + c.length > idata_limit) - idata_limit *= 2; - STBI_NOTUSED(idata_limit_old); - p = (stbi_uc *)STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); - if (p == NULL) - return stbi__err("outofmem", "Out of memory"); - z->idata = p; + stbi__uint32 idata_limit_old = idata_limit; + stbi_uc *p; + if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; + while (ioff + c.length > idata_limit) + idata_limit *= 2; + STBI_NOTUSED(idata_limit_old); + p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory"); + z->idata = p; } - if (!stbi__getn(s, z->idata + ioff, c.length)) - return stbi__err("outofdata", "Corrupt PNG"); + if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG"); ioff += c.length; break; - } + } - case STBI__PNG_TYPE('I', 'E', 'N', 'D'): { + case STBI__PNG_TYPE('I','E','N','D'): { stbi__uint32 raw_len, bpl; - if (first) - return stbi__err("first not IHDR", "Corrupt PNG"); - if (scan != STBI__SCAN_load) - return 1; - if (z->idata == NULL) - return stbi__err("no IDAT", "Corrupt PNG"); + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); + if (scan != STBI__SCAN_load) return 1; + if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG"); // initial guess for decoded data size to avoid unnecessary reallocs bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */; - z->expanded = (stbi_uc *)stbi_zlib_decode_malloc_guesssize_headerflag((char *)z->idata, ioff, raw_len, - (int *)&raw_len, !is_iphone); - if (z->expanded == NULL) - return 0; // zlib should set error - STBI_FREE(z->idata); - z->idata = NULL; - if ((req_comp == s->img_n + 1 && req_comp != 3 && !pal_img_n) || has_trans) - s->img_out_n = s->img_n + 1; + z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone); + if (z->expanded == NULL) return 0; // zlib should set error + STBI_FREE(z->idata); z->idata = NULL; + if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) + s->img_out_n = s->img_n+1; else - s->img_out_n = s->img_n; - if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) - return 0; + s->img_out_n = s->img_n; + if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0; if (has_trans) { - if (z->depth == 16) { - if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) - return 0; - } else { - if (!stbi__compute_transparency(z, tc, s->img_out_n)) - return 0; - } + if (z->depth == 16) { + if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0; + } else { + if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0; + } } if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) - stbi__de_iphone(z); + stbi__de_iphone(z); if (pal_img_n) { - // pal_img_n == 3 or 4 - s->img_n = pal_img_n; // record the actual colors we had - s->img_out_n = pal_img_n; - if (req_comp >= 3) - s->img_out_n = req_comp; - if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) - return 0; + // pal_img_n == 3 or 4 + s->img_n = pal_img_n; // record the actual colors we had + s->img_out_n = pal_img_n; + if (req_comp >= 3) s->img_out_n = req_comp; + if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) + return 0; } else if (has_trans) { - // non-paletted image with tRNS -> source image has (constant) alpha - ++s->img_n; + // non-paletted image with tRNS -> source image has (constant) alpha + ++s->img_n; } - STBI_FREE(z->expanded); - z->expanded = NULL; + STBI_FREE(z->expanded); z->expanded = NULL; // end of PNG chunk, read and skip CRC stbi__get32be(s); return 1; - } + } - default: + default: // if critical, fail - if (first) - return stbi__err("first not IHDR", "Corrupt PNG"); + if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if ((c.type & (1 << 29)) == 0) { -#ifndef STBI_NO_FAILURE_STRINGS - // not threadsafe - static char invalid_chunk[] = "XXXX PNG chunk not known"; - invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); - invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); - invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); - invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); -#endif - return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type"); + #ifndef STBI_NO_FAILURE_STRINGS + // not threadsafe + static char invalid_chunk[] = "XXXX PNG chunk not known"; + invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); + invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); + invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); + invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); + #endif + return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type"); } stbi__skip(s, c.length); break; - } - // end of PNG chunk, read and skip CRC - stbi__get32be(s); - } + } + // end of PNG chunk, read and skip CRC + stbi__get32be(s); + } } -static void * stbi__do_png(stbi__png * p, int * x, int * y, int * n, int req_comp, stbi__result_info * ri) { - void * result = NULL; - if (req_comp < 0 || req_comp > 4) - return stbi__errpuc("bad req_comp", "Internal error"); - if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { - if (p->depth <= 8) - ri->bits_per_channel = 8; - else if (p->depth == 16) - ri->bits_per_channel = 16; - else - return stbi__errpuc("bad bits_per_channel", "PNG not supported: unsupported color depth"); - result = p->out; - p->out = NULL; - if (req_comp && req_comp != p->s->img_out_n) { - if (ri->bits_per_channel == 8) - result = stbi__convert_format((unsigned char *)result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); - else - result = stbi__convert_format16((stbi__uint16 *)result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); - p->s->img_out_n = req_comp; - if (result == NULL) - return result; - } - *x = p->s->img_x; - *y = p->s->img_y; - if (n) - *n = p->s->img_n; - } - STBI_FREE(p->out); - p->out = NULL; - STBI_FREE(p->expanded); - p->expanded = NULL; - STBI_FREE(p->idata); - p->idata = NULL; +static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri) +{ + void *result=NULL; + if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error"); + if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { + if (p->depth <= 8) + ri->bits_per_channel = 8; + else if (p->depth == 16) + ri->bits_per_channel = 16; + else + return stbi__errpuc("bad bits_per_channel", "PNG not supported: unsupported color depth"); + result = p->out; + p->out = NULL; + if (req_comp && req_comp != p->s->img_out_n) { + if (ri->bits_per_channel == 8) + result = stbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); + else + result = stbi__convert_format16((stbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); + p->s->img_out_n = req_comp; + if (result == NULL) return result; + } + *x = p->s->img_x; + *y = p->s->img_y; + if (n) *n = p->s->img_n; + } + STBI_FREE(p->out); p->out = NULL; + STBI_FREE(p->expanded); p->expanded = NULL; + STBI_FREE(p->idata); p->idata = NULL; + + return result; +} + +static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi__png p; + p.s = s; + return stbi__do_png(&p, x,y,comp,req_comp, ri); +} - return result; +static int stbi__png_test(stbi__context *s) +{ + int r; + r = stbi__check_png_header(s); + stbi__rewind(s); + return r; } -static void * stbi__png_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri) { - stbi__png p; - p.s = s; - return stbi__do_png(&p, x, y, comp, req_comp, ri); +static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) +{ + if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) { + stbi__rewind( p->s ); + return 0; + } + if (x) *x = p->s->img_x; + if (y) *y = p->s->img_y; + if (comp) *comp = p->s->img_n; + return 1; } -static int stbi__png_test(stbi__context * s) { - int r; - r = stbi__check_png_header(s); - stbi__rewind(s); - return r; +static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) +{ + stbi__png p; + p.s = s; + return stbi__png_info_raw(&p, x, y, comp); } -static int stbi__png_info_raw(stbi__png * p, int * x, int * y, int * comp) { - if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) { - stbi__rewind(p->s); - return 0; - } - if (x) - *x = p->s->img_x; - if (y) - *y = p->s->img_y; - if (comp) - *comp = p->s->img_n; - return 1; -} - -static int stbi__png_info(stbi__context * s, int * x, int * y, int * comp) { - stbi__png p; - p.s = s; - return stbi__png_info_raw(&p, x, y, comp); -} - -static int stbi__png_is16(stbi__context * s) { - stbi__png p; - p.s = s; - if (!stbi__png_info_raw(&p, NULL, NULL, NULL)) - return 0; - if (p.depth != 16) { - stbi__rewind(p.s); - return 0; - } - return 1; +static int stbi__png_is16(stbi__context *s) +{ + stbi__png p; + p.s = s; + if (!stbi__png_info_raw(&p, NULL, NULL, NULL)) + return 0; + if (p.depth != 16) { + stbi__rewind(p.s); + return 0; + } + return 1; } #endif // Microsoft/Windows BMP image #ifndef STBI_NO_BMP -static int stbi__bmp_test_raw(stbi__context * s) { - int r; - int sz; - if (stbi__get8(s) != 'B') - return 0; - if (stbi__get8(s) != 'M') - return 0; - stbi__get32le(s); // discard filesize - stbi__get16le(s); // discard reserved - stbi__get16le(s); // discard reserved - stbi__get32le(s); // discard data offset - sz = stbi__get32le(s); - r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); - return r; -} - -static int stbi__bmp_test(stbi__context * s) { - int r = stbi__bmp_test_raw(s); - stbi__rewind(s); - return r; +static int stbi__bmp_test_raw(stbi__context *s) +{ + int r; + int sz; + if (stbi__get8(s) != 'B') return 0; + if (stbi__get8(s) != 'M') return 0; + stbi__get32le(s); // discard filesize + stbi__get16le(s); // discard reserved + stbi__get16le(s); // discard reserved + stbi__get32le(s); // discard data offset + sz = stbi__get32le(s); + r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); + return r; +} + +static int stbi__bmp_test(stbi__context *s) +{ + int r = stbi__bmp_test_raw(s); + stbi__rewind(s); + return r; } + // returns 0..31 for the highest set bit -static int stbi__high_bit(unsigned int z) { - int n = 0; - if (z == 0) - return -1; - if (z >= 0x10000) { - n += 16; - z >>= 16; - } - if (z >= 0x00100) { - n += 8; - z >>= 8; - } - if (z >= 0x00010) { - n += 4; - z >>= 4; - } - if (z >= 0x00004) { - n += 2; - z >>= 2; - } - if (z >= 0x00002) { - n += 1; /* >>= 1;*/ - } - return n; +static int stbi__high_bit(unsigned int z) +{ + int n=0; + if (z == 0) return -1; + if (z >= 0x10000) { n += 16; z >>= 16; } + if (z >= 0x00100) { n += 8; z >>= 8; } + if (z >= 0x00010) { n += 4; z >>= 4; } + if (z >= 0x00004) { n += 2; z >>= 2; } + if (z >= 0x00002) { n += 1;/* >>= 1;*/ } + return n; } -static int stbi__bitcount(unsigned int a) { - a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 - a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 - a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits - a = (a + (a >> 8)); // max 16 per 8 bits - a = (a + (a >> 16)); // max 32 per 8 bits - return a & 0xff; +static int stbi__bitcount(unsigned int a) +{ + a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 + a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 + a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits + a = (a + (a >> 8)); // max 16 per 8 bits + a = (a + (a >> 16)); // max 32 per 8 bits + return a & 0xff; } // extract an arbitrarily-aligned N-bit value (N=bits) // from v, and then make it 8-bits long and fractionally // extend it to full full range. -static int stbi__shiftsigned(unsigned int v, int shift, int bits) { - static unsigned int mul_table[9] = { - 0, - 0xff /*0b11111111*/, - 0x55 /*0b01010101*/, - 0x49 /*0b01001001*/, - 0x11 /*0b00010001*/, - 0x21 /*0b00100001*/, - 0x41 /*0b01000001*/, - 0x81 /*0b10000001*/, - 0x01 /*0b00000001*/, - }; - static unsigned int shift_table[9] = { - 0, 0, 0, 1, 0, 2, 4, 6, 0, - }; - if (shift < 0) - v <<= -shift; - else - v >>= shift; - STBI_ASSERT(v < 256); - v >>= (8 - bits); - STBI_ASSERT(bits >= 0 && bits <= 8); - return (int)((unsigned)v * mul_table[bits]) >> shift_table[bits]; -} - -typedef struct { - int bpp, offset, hsz; - unsigned int mr, mg, mb, ma, all_a; - int extra_read; +static int stbi__shiftsigned(unsigned int v, int shift, int bits) +{ + static unsigned int mul_table[9] = { + 0, + 0xff/*0b11111111*/, 0x55/*0b01010101*/, 0x49/*0b01001001*/, 0x11/*0b00010001*/, + 0x21/*0b00100001*/, 0x41/*0b01000001*/, 0x81/*0b10000001*/, 0x01/*0b00000001*/, + }; + static unsigned int shift_table[9] = { + 0, 0,0,1,0,2,4,6,0, + }; + if (shift < 0) + v <<= -shift; + else + v >>= shift; + STBI_ASSERT(v < 256); + v >>= (8-bits); + STBI_ASSERT(bits >= 0 && bits <= 8); + return (int) ((unsigned) v * mul_table[bits]) >> shift_table[bits]; +} + +typedef struct +{ + int bpp, offset, hsz; + unsigned int mr,mg,mb,ma, all_a; + int extra_read; } stbi__bmp_data; -static int stbi__bmp_set_mask_defaults(stbi__bmp_data * info, int compress) { - // BI_BITFIELDS specifies masks explicitly, don't override - if (compress == 3) - return 1; - - if (compress == 0) { - if (info->bpp == 16) { - info->mr = 31u << 10; - info->mg = 31u << 5; - info->mb = 31u << 0; - } else if (info->bpp == 32) { - info->mr = 0xffu << 16; - info->mg = 0xffu << 8; - info->mb = 0xffu << 0; - info->ma = 0xffu << 24; - info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0 - } else { - // otherwise, use defaults, which is all-0 - info->mr = info->mg = info->mb = info->ma = 0; - } - return 1; - } - return 0; // error -} - -static void * stbi__bmp_parse_header(stbi__context * s, stbi__bmp_data * info) { - int hsz; - if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') - return stbi__errpuc("not BMP", "Corrupt BMP"); - stbi__get32le(s); // discard filesize - stbi__get16le(s); // discard reserved - stbi__get16le(s); // discard reserved - info->offset = stbi__get32le(s); - info->hsz = hsz = stbi__get32le(s); - info->mr = info->mg = info->mb = info->ma = 0; - info->extra_read = 14; - - if (info->offset < 0) - return stbi__errpuc("bad BMP", "bad BMP"); - - if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) - return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); - if (hsz == 12) { - s->img_x = stbi__get16le(s); - s->img_y = stbi__get16le(s); - } else { - s->img_x = stbi__get32le(s); - s->img_y = stbi__get32le(s); - } - if (stbi__get16le(s) != 1) - return stbi__errpuc("bad BMP", "bad BMP"); - info->bpp = stbi__get16le(s); - if (hsz != 12) { - int compress = stbi__get32le(s); - if (compress == 1 || compress == 2) - return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); - if (compress >= 4) - return stbi__errpuc("BMP JPEG/PNG", - "BMP type not supported: unsupported compression"); // this includes PNG/JPEG modes - if (compress == 3 && info->bpp != 16 && info->bpp != 32) - return stbi__errpuc("bad BMP", "bad BMP"); // bitfields requires 16 or 32 bits/pixel - stbi__get32le(s); // discard sizeof - stbi__get32le(s); // discard hres - stbi__get32le(s); // discard vres - stbi__get32le(s); // discard colorsused - stbi__get32le(s); // discard max important - if (hsz == 40 || hsz == 56) { - if (hsz == 56) { - stbi__get32le(s); - stbi__get32le(s); - stbi__get32le(s); - stbi__get32le(s); - } - if (info->bpp == 16 || info->bpp == 32) { - if (compress == 0) { - stbi__bmp_set_mask_defaults(info, compress); - } else if (compress == 3) { - info->mr = stbi__get32le(s); - info->mg = stbi__get32le(s); - info->mb = stbi__get32le(s); - info->extra_read += 12; - // not documented, but generated by photoshop and handled by mspaint - if (info->mr == info->mg && info->mg == info->mb) { - // ?!?!? - return stbi__errpuc("bad BMP", "bad BMP"); - } - } else - return stbi__errpuc("bad BMP", "bad BMP"); - } - } else { - // V4/V5 header - int i; - if (hsz != 108 && hsz != 124) - return stbi__errpuc("bad BMP", "bad BMP"); - info->mr = stbi__get32le(s); - info->mg = stbi__get32le(s); - info->mb = stbi__get32le(s); - info->ma = stbi__get32le(s); - if (compress != 3) // override mr/mg/mb unless in BI_BITFIELDS mode, as per docs - stbi__bmp_set_mask_defaults(info, compress); - stbi__get32le(s); // discard color space - for (i = 0; i < 12; ++i) - stbi__get32le(s); // discard color space parameters - if (hsz == 124) { - stbi__get32le(s); // discard rendering intent - stbi__get32le(s); // discard offset of profile data - stbi__get32le(s); // discard size of profile data - stbi__get32le(s); // discard reserved - } - } - } - return (void *)1; -} - -static void * stbi__bmp_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri) { - stbi_uc * out; - unsigned int mr = 0, mg = 0, mb = 0, ma = 0, all_a; - stbi_uc pal[256][4]; - int psize = 0, i, j, width; - int flip_vertically, pad, target; - stbi__bmp_data info; - STBI_NOTUSED(ri); - - info.all_a = 255; - if (stbi__bmp_parse_header(s, &info) == NULL) - return NULL; // error code already set - - flip_vertically = ((int)s->img_y) > 0; - s->img_y = abs((int)s->img_y); - - if (s->img_y > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - if (s->img_x > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - - mr = info.mr; - mg = info.mg; - mb = info.mb; - ma = info.ma; - all_a = info.all_a; - - if (info.hsz == 12) { - if (info.bpp < 24) - psize = (info.offset - info.extra_read - 24) / 3; - } else { - if (info.bpp < 16) - psize = (info.offset - info.extra_read - info.hsz) >> 2; - } - if (psize == 0) { - // accept some number of extra bytes after the header, but if the offset points either to before - // the header ends or implies a large amount of extra data, reject the file as malformed - int bytes_read_so_far = s->callback_already_read + (int)(s->img_buffer - s->img_buffer_original); - int header_limit = 1024; // max we actually read is below 256 bytes currently. - int extra_data_limit = 256 * 4; // what ordinarily goes here is a palette; 256 entries*4 bytes is its max size. - if (bytes_read_so_far <= 0 || bytes_read_so_far > header_limit) { - return stbi__errpuc("bad header", "Corrupt BMP"); - } - // we established that bytes_read_so_far is positive and sensible. - // the first half of this test rejects offsets that are either too small positives, or - // negative, and guarantees that info.offset >= bytes_read_so_far > 0. this in turn - // ensures the number computed in the second half of the test can't overflow. - if (info.offset < bytes_read_so_far || info.offset - bytes_read_so_far > extra_data_limit) { - return stbi__errpuc("bad offset", "Corrupt BMP"); - } else { - stbi__skip(s, info.offset - bytes_read_so_far); - } - } - - if (info.bpp == 24 && ma == 0xff000000) - s->img_n = 3; - else - s->img_n = ma ? 4 : 3; - if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 - target = req_comp; - else - target = s->img_n; // if they want monochrome, we'll post-convert - - // sanity-check size - if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0)) - return stbi__errpuc("too large", "Corrupt BMP"); - - out = (stbi_uc *)stbi__malloc_mad3(target, s->img_x, s->img_y, 0); - if (!out) - return stbi__errpuc("outofmem", "Out of memory"); - if (info.bpp < 16) { - int z = 0; - if (psize == 0 || psize > 256) { - STBI_FREE(out); - return stbi__errpuc("invalid", "Corrupt BMP"); - } - for (i = 0; i < psize; ++i) { - pal[i][2] = stbi__get8(s); - pal[i][1] = stbi__get8(s); - pal[i][0] = stbi__get8(s); - if (info.hsz != 12) - stbi__get8(s); - pal[i][3] = 255; - } - stbi__skip(s, info.offset - info.extra_read - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); - if (info.bpp == 1) - width = (s->img_x + 7) >> 3; - else if (info.bpp == 4) - width = (s->img_x + 1) >> 1; - else if (info.bpp == 8) - width = s->img_x; - else { - STBI_FREE(out); - return stbi__errpuc("bad bpp", "Corrupt BMP"); - } - pad = (-width) & 3; - if (info.bpp == 1) { - for (j = 0; j < (int)s->img_y; ++j) { - int bit_offset = 7, v = stbi__get8(s); - for (i = 0; i < (int)s->img_x; ++i) { - int color = (v >> bit_offset) & 0x1; - out[z++] = pal[color][0]; - out[z++] = pal[color][1]; - out[z++] = pal[color][2]; - if (target == 4) - out[z++] = 255; - if (i + 1 == (int)s->img_x) - break; - if ((--bit_offset) < 0) { - bit_offset = 7; - v = stbi__get8(s); - } - } - stbi__skip(s, pad); - } - } else { - for (j = 0; j < (int)s->img_y; ++j) { - for (i = 0; i < (int)s->img_x; i += 2) { - int v = stbi__get8(s), v2 = 0; - if (info.bpp == 4) { - v2 = v & 15; - v >>= 4; - } - out[z++] = pal[v][0]; - out[z++] = pal[v][1]; - out[z++] = pal[v][2]; - if (target == 4) - out[z++] = 255; - if (i + 1 == (int)s->img_x) - break; - v = (info.bpp == 8) ? stbi__get8(s) : v2; - out[z++] = pal[v][0]; - out[z++] = pal[v][1]; - out[z++] = pal[v][2]; - if (target == 4) - out[z++] = 255; - } - stbi__skip(s, pad); - } - } - } else { - int rshift = 0, gshift = 0, bshift = 0, ashift = 0, rcount = 0, gcount = 0, bcount = 0, acount = 0; - int z = 0; - int easy = 0; - stbi__skip(s, info.offset - info.extra_read - info.hsz); - if (info.bpp == 24) - width = 3 * s->img_x; - else if (info.bpp == 16) - width = 2 * s->img_x; - else /* bpp = 32 and pad = 0 */ - width = 0; - pad = (-width) & 3; - if (info.bpp == 24) { - easy = 1; - } else if (info.bpp == 32) { - if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) - easy = 2; - } - if (!easy) { - if (!mr || !mg || !mb) { - STBI_FREE(out); - return stbi__errpuc("bad masks", "Corrupt BMP"); - } - // right shift amt to put high bit in position #7 - rshift = stbi__high_bit(mr) - 7; - rcount = stbi__bitcount(mr); - gshift = stbi__high_bit(mg) - 7; - gcount = stbi__bitcount(mg); - bshift = stbi__high_bit(mb) - 7; - bcount = stbi__bitcount(mb); - ashift = stbi__high_bit(ma) - 7; - acount = stbi__bitcount(ma); - if (rcount > 8 || gcount > 8 || bcount > 8 || acount > 8) { - STBI_FREE(out); - return stbi__errpuc("bad masks", "Corrupt BMP"); +static int stbi__bmp_set_mask_defaults(stbi__bmp_data *info, int compress) +{ + // BI_BITFIELDS specifies masks explicitly, don't override + if (compress == 3) + return 1; + + if (compress == 0) { + if (info->bpp == 16) { + info->mr = 31u << 10; + info->mg = 31u << 5; + info->mb = 31u << 0; + } else if (info->bpp == 32) { + info->mr = 0xffu << 16; + info->mg = 0xffu << 8; + info->mb = 0xffu << 0; + info->ma = 0xffu << 24; + info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0 + } else { + // otherwise, use defaults, which is all-0 + info->mr = info->mg = info->mb = info->ma = 0; + } + return 1; + } + return 0; // error +} + +static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) +{ + int hsz; + if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP"); + stbi__get32le(s); // discard filesize + stbi__get16le(s); // discard reserved + stbi__get16le(s); // discard reserved + info->offset = stbi__get32le(s); + info->hsz = hsz = stbi__get32le(s); + info->mr = info->mg = info->mb = info->ma = 0; + info->extra_read = 14; + + if (info->offset < 0) return stbi__errpuc("bad BMP", "bad BMP"); + + if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); + if (hsz == 12) { + s->img_x = stbi__get16le(s); + s->img_y = stbi__get16le(s); + } else { + s->img_x = stbi__get32le(s); + s->img_y = stbi__get32le(s); + } + if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP"); + info->bpp = stbi__get16le(s); + if (hsz != 12) { + int compress = stbi__get32le(s); + if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); + if (compress >= 4) return stbi__errpuc("BMP JPEG/PNG", "BMP type not supported: unsupported compression"); // this includes PNG/JPEG modes + if (compress == 3 && info->bpp != 16 && info->bpp != 32) return stbi__errpuc("bad BMP", "bad BMP"); // bitfields requires 16 or 32 bits/pixel + stbi__get32le(s); // discard sizeof + stbi__get32le(s); // discard hres + stbi__get32le(s); // discard vres + stbi__get32le(s); // discard colorsused + stbi__get32le(s); // discard max important + if (hsz == 40 || hsz == 56) { + if (hsz == 56) { + stbi__get32le(s); + stbi__get32le(s); + stbi__get32le(s); + stbi__get32le(s); + } + if (info->bpp == 16 || info->bpp == 32) { + if (compress == 0) { + stbi__bmp_set_mask_defaults(info, compress); + } else if (compress == 3) { + info->mr = stbi__get32le(s); + info->mg = stbi__get32le(s); + info->mb = stbi__get32le(s); + info->extra_read += 12; + // not documented, but generated by photoshop and handled by mspaint + if (info->mr == info->mg && info->mg == info->mb) { + // ?!?!? + return stbi__errpuc("bad BMP", "bad BMP"); + } + } else + return stbi__errpuc("bad BMP", "bad BMP"); + } + } else { + // V4/V5 header + int i; + if (hsz != 108 && hsz != 124) + return stbi__errpuc("bad BMP", "bad BMP"); + info->mr = stbi__get32le(s); + info->mg = stbi__get32le(s); + info->mb = stbi__get32le(s); + info->ma = stbi__get32le(s); + if (compress != 3) // override mr/mg/mb unless in BI_BITFIELDS mode, as per docs + stbi__bmp_set_mask_defaults(info, compress); + stbi__get32le(s); // discard color space + for (i=0; i < 12; ++i) + stbi__get32le(s); // discard color space parameters + if (hsz == 124) { + stbi__get32le(s); // discard rendering intent + stbi__get32le(s); // discard offset of profile data + stbi__get32le(s); // discard size of profile data + stbi__get32le(s); // discard reserved + } + } + } + return (void *) 1; +} + + +static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi_uc *out; + unsigned int mr=0,mg=0,mb=0,ma=0, all_a; + stbi_uc pal[256][4]; + int psize=0,i,j,width; + int flip_vertically, pad, target; + stbi__bmp_data info; + STBI_NOTUSED(ri); + + info.all_a = 255; + if (stbi__bmp_parse_header(s, &info) == NULL) + return NULL; // error code already set + + flip_vertically = ((int) s->img_y) > 0; + s->img_y = abs((int) s->img_y); + + if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + + mr = info.mr; + mg = info.mg; + mb = info.mb; + ma = info.ma; + all_a = info.all_a; + + if (info.hsz == 12) { + if (info.bpp < 24) + psize = (info.offset - info.extra_read - 24) / 3; + } else { + if (info.bpp < 16) + psize = (info.offset - info.extra_read - info.hsz) >> 2; + } + if (psize == 0) { + // accept some number of extra bytes after the header, but if the offset points either to before + // the header ends or implies a large amount of extra data, reject the file as malformed + int bytes_read_so_far = s->callback_already_read + (int)(s->img_buffer - s->img_buffer_original); + int header_limit = 1024; // max we actually read is below 256 bytes currently. + int extra_data_limit = 256*4; // what ordinarily goes here is a palette; 256 entries*4 bytes is its max size. + if (bytes_read_so_far <= 0 || bytes_read_so_far > header_limit) { + return stbi__errpuc("bad header", "Corrupt BMP"); + } + // we established that bytes_read_so_far is positive and sensible. + // the first half of this test rejects offsets that are either too small positives, or + // negative, and guarantees that info.offset >= bytes_read_so_far > 0. this in turn + // ensures the number computed in the second half of the test can't overflow. + if (info.offset < bytes_read_so_far || info.offset - bytes_read_so_far > extra_data_limit) { + return stbi__errpuc("bad offset", "Corrupt BMP"); + } else { + stbi__skip(s, info.offset - bytes_read_so_far); + } + } + + if (info.bpp == 24 && ma == 0xff000000) + s->img_n = 3; + else + s->img_n = ma ? 4 : 3; + if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 + target = req_comp; + else + target = s->img_n; // if they want monochrome, we'll post-convert + + // sanity-check size + if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0)) + return stbi__errpuc("too large", "Corrupt BMP"); + + out = (stbi_uc *) stbi__malloc_mad3(target, s->img_x, s->img_y, 0); + if (!out) return stbi__errpuc("outofmem", "Out of memory"); + if (info.bpp < 16) { + int z=0; + if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); } + for (i=0; i < psize; ++i) { + pal[i][2] = stbi__get8(s); + pal[i][1] = stbi__get8(s); + pal[i][0] = stbi__get8(s); + if (info.hsz != 12) stbi__get8(s); + pal[i][3] = 255; + } + stbi__skip(s, info.offset - info.extra_read - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); + if (info.bpp == 1) width = (s->img_x + 7) >> 3; + else if (info.bpp == 4) width = (s->img_x + 1) >> 1; + else if (info.bpp == 8) width = s->img_x; + else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); } + pad = (-width)&3; + if (info.bpp == 1) { + for (j=0; j < (int) s->img_y; ++j) { + int bit_offset = 7, v = stbi__get8(s); + for (i=0; i < (int) s->img_x; ++i) { + int color = (v>>bit_offset)&0x1; + out[z++] = pal[color][0]; + out[z++] = pal[color][1]; + out[z++] = pal[color][2]; + if (target == 4) out[z++] = 255; + if (i+1 == (int) s->img_x) break; + if((--bit_offset) < 0) { + bit_offset = 7; + v = stbi__get8(s); + } } - } - for (j = 0; j < (int)s->img_y; ++j) { - if (easy) { - for (i = 0; i < (int)s->img_x; ++i) { - unsigned char a; - out[z + 2] = stbi__get8(s); - out[z + 1] = stbi__get8(s); - out[z + 0] = stbi__get8(s); - z += 3; - a = (easy == 2 ? stbi__get8(s) : 255); - all_a |= a; - if (target == 4) - out[z++] = a; - } - } else { - int bpp = info.bpp; - for (i = 0; i < (int)s->img_x; ++i) { - stbi__uint32 v = (bpp == 16 ? (stbi__uint32)stbi__get16le(s) : stbi__get32le(s)); - unsigned int a; - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); - out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); - a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); - all_a |= a; - if (target == 4) - out[z++] = STBI__BYTECAST(a); - } + stbi__skip(s, pad); + } + } else { + for (j=0; j < (int) s->img_y; ++j) { + for (i=0; i < (int) s->img_x; i += 2) { + int v=stbi__get8(s),v2=0; + if (info.bpp == 4) { + v2 = v & 15; + v >>= 4; + } + out[z++] = pal[v][0]; + out[z++] = pal[v][1]; + out[z++] = pal[v][2]; + if (target == 4) out[z++] = 255; + if (i+1 == (int) s->img_x) break; + v = (info.bpp == 8) ? stbi__get8(s) : v2; + out[z++] = pal[v][0]; + out[z++] = pal[v][1]; + out[z++] = pal[v][2]; + if (target == 4) out[z++] = 255; } stbi__skip(s, pad); - } - } - - // if alpha channel is all 0s, replace with all 255s - if (target == 4 && all_a == 0) - for (i = 4 * s->img_x * s->img_y - 1; i >= 0; i -= 4) - out[i] = 255; - - if (flip_vertically) { - stbi_uc t; - for (j = 0; j < (int)s->img_y >> 1; ++j) { - stbi_uc * p1 = out + j * s->img_x * target; - stbi_uc * p2 = out + (s->img_y - 1 - j) * s->img_x * target; - for (i = 0; i < (int)s->img_x * target; ++i) { - t = p1[i]; - p1[i] = p2[i]; - p2[i] = t; + } + } + } else { + int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; + int z = 0; + int easy=0; + stbi__skip(s, info.offset - info.extra_read - info.hsz); + if (info.bpp == 24) width = 3 * s->img_x; + else if (info.bpp == 16) width = 2*s->img_x; + else /* bpp = 32 and pad = 0 */ width=0; + pad = (-width) & 3; + if (info.bpp == 24) { + easy = 1; + } else if (info.bpp == 32) { + if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) + easy = 2; + } + if (!easy) { + if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); } + // right shift amt to put high bit in position #7 + rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr); + gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg); + bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb); + ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma); + if (rcount > 8 || gcount > 8 || bcount > 8 || acount > 8) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); } + } + for (j=0; j < (int) s->img_y; ++j) { + if (easy) { + for (i=0; i < (int) s->img_x; ++i) { + unsigned char a; + out[z+2] = stbi__get8(s); + out[z+1] = stbi__get8(s); + out[z+0] = stbi__get8(s); + z += 3; + a = (easy == 2 ? stbi__get8(s) : 255); + all_a |= a; + if (target == 4) out[z++] = a; } - } - } - - if (req_comp && req_comp != target) { - out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); - if (out == NULL) - return out; // stbi__convert_format frees input on failure - } - - *x = s->img_x; - *y = s->img_y; - if (comp) - *comp = s->img_n; - return out; + } else { + int bpp = info.bpp; + for (i=0; i < (int) s->img_x; ++i) { + stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s)); + unsigned int a; + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); + a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); + all_a |= a; + if (target == 4) out[z++] = STBI__BYTECAST(a); + } + } + stbi__skip(s, pad); + } + } + + // if alpha channel is all 0s, replace with all 255s + if (target == 4 && all_a == 0) + for (i=4*s->img_x*s->img_y-1; i >= 0; i -= 4) + out[i] = 255; + + if (flip_vertically) { + stbi_uc t; + for (j=0; j < (int) s->img_y>>1; ++j) { + stbi_uc *p1 = out + j *s->img_x*target; + stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; + for (i=0; i < (int) s->img_x*target; ++i) { + t = p1[i]; p1[i] = p2[i]; p2[i] = t; + } + } + } + + if (req_comp && req_comp != target) { + out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); + if (out == NULL) return out; // stbi__convert_format frees input on failure + } + + *x = s->img_x; + *y = s->img_y; + if (comp) *comp = s->img_n; + return out; } #endif @@ -6100,74 +5736,68 @@ static void * stbi__bmp_load(stbi__context * s, int * x, int * y, int * comp, in // by Jonathan Dummer #ifndef STBI_NO_TGA // returns STBI_rgb or whatever, 0 on error -static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int * is_rgb16) { - // only RGB or RGBA (incl. 16bit) or grey allowed - if (is_rgb16) - *is_rgb16 = 0; - switch (bits_per_pixel) { - case 8: - return STBI_grey; - case 16: - if (is_grey) - return STBI_grey_alpha; - // fallthrough - case 15: - if (is_rgb16) - *is_rgb16 = 1; - return STBI_rgb; - case 24: // fallthrough - case 32: - return bits_per_pixel / 8; - default: - return 0; - } -} - -static int stbi__tga_info(stbi__context * s, int * x, int * y, int * comp) { +static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16) +{ + // only RGB or RGBA (incl. 16bit) or grey allowed + if (is_rgb16) *is_rgb16 = 0; + switch(bits_per_pixel) { + case 8: return STBI_grey; + case 16: if(is_grey) return STBI_grey_alpha; + // fallthrough + case 15: if(is_rgb16) *is_rgb16 = 1; + return STBI_rgb; + case 24: // fallthrough + case 32: return bits_per_pixel/8; + default: return 0; + } +} + +static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) +{ int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp; int sz, tga_colormap_type; - stbi__get8(s); // discard Offset + stbi__get8(s); // discard Offset tga_colormap_type = stbi__get8(s); // colormap type - if (tga_colormap_type > 1) { + if( tga_colormap_type > 1 ) { stbi__rewind(s); - return 0; // only RGB or indexed allowed + return 0; // only RGB or indexed allowed } tga_image_type = stbi__get8(s); // image type - if (tga_colormap_type == 1) { // colormapped (paletted) image + if ( tga_colormap_type == 1 ) { // colormapped (paletted) image if (tga_image_type != 1 && tga_image_type != 9) { stbi__rewind(s); return 0; } - stbi__skip(s, 4); // skip index of first colormap entry and number of entries - sz = stbi__get8(s); // check bits per palette color entry - if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) { + stbi__skip(s,4); // skip index of first colormap entry and number of entries + sz = stbi__get8(s); // check bits per palette color entry + if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) { stbi__rewind(s); return 0; } - stbi__skip(s, 4); // skip image x and y origin + stbi__skip(s,4); // skip image x and y origin tga_colormap_bpp = sz; } else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE - if ((tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11)) { + if ( (tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11) ) { stbi__rewind(s); return 0; // only RGB or grey allowed, +/- RLE } - stbi__skip(s, 9); // skip colormap specification and image x/y origin + stbi__skip(s,9); // skip colormap specification and image x/y origin tga_colormap_bpp = 0; } tga_w = stbi__get16le(s); - if (tga_w < 1) { + if( tga_w < 1 ) { stbi__rewind(s); - return 0; // test width + return 0; // test width } tga_h = stbi__get16le(s); - if (tga_h < 1) { + if( tga_h < 1 ) { stbi__rewind(s); - return 0; // test height + return 0; // test height } tga_bits_per_pixel = stbi__get8(s); // bits per pixel - stbi__get8(s); // ignore alpha bits + stbi__get8(s); // ignore alpha bits if (tga_colormap_bpp != 0) { - if ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) { + if((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) { // when using a colormap, tga_bits_per_pixel is the size of the indexes // I don't think anything but 8 or 16bit indexes makes sense stbi__rewind(s); @@ -6177,522 +5807,521 @@ static int stbi__tga_info(stbi__context * s, int * x, int * y, int * comp) { } else { tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL); } - if (!tga_comp) { - stbi__rewind(s); - return 0; - } - if (x) - *x = tga_w; - if (y) - *y = tga_h; - if (comp) - *comp = tga_comp; - return 1; // seems to have passed everything -} - -static int stbi__tga_test(stbi__context * s) { - int res = 0; - int sz, tga_color_type; - stbi__get8(s); // discard Offset - tga_color_type = stbi__get8(s); // color type - if (tga_color_type > 1) - goto errorEnd; // only RGB or indexed allowed - sz = stbi__get8(s); // image type - if (tga_color_type == 1) { // colormapped (paletted) image - if (sz != 1 && sz != 9) - goto errorEnd; // colortype 1 demands image type 1 or 9 - stbi__skip(s, 4); // skip index of first colormap entry and number of entries - sz = stbi__get8(s); // check bits per palette color entry - if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) - goto errorEnd; - stbi__skip(s, 4); // skip image x and y origin - } else { // "normal" image w/o colormap - if ((sz != 2) && (sz != 3) && (sz != 10) && (sz != 11)) - goto errorEnd; // only RGB or grey allowed, +/- RLE - stbi__skip(s, 9); // skip colormap specification and image x/y origin + if(!tga_comp) { + stbi__rewind(s); + return 0; } - if (stbi__get16le(s) < 1) - goto errorEnd; // test width - if (stbi__get16le(s) < 1) - goto errorEnd; // test height - sz = stbi__get8(s); // bits per pixel - if ((tga_color_type == 1) && (sz != 8) && (sz != 16)) - goto errorEnd; // for colormapped images, bpp is size of an index - if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) - goto errorEnd; - - res = 1; // if we got this far, everything's good and we can return 1 instead of 0 + if (x) *x = tga_w; + if (y) *y = tga_h; + if (comp) *comp = tga_comp; + return 1; // seems to have passed everything +} + +static int stbi__tga_test(stbi__context *s) +{ + int res = 0; + int sz, tga_color_type; + stbi__get8(s); // discard Offset + tga_color_type = stbi__get8(s); // color type + if ( tga_color_type > 1 ) goto errorEnd; // only RGB or indexed allowed + sz = stbi__get8(s); // image type + if ( tga_color_type == 1 ) { // colormapped (paletted) image + if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9 + stbi__skip(s,4); // skip index of first colormap entry and number of entries + sz = stbi__get8(s); // check bits per palette color entry + if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; + stbi__skip(s,4); // skip image x and y origin + } else { // "normal" image w/o colormap + if ( (sz != 2) && (sz != 3) && (sz != 10) && (sz != 11) ) goto errorEnd; // only RGB or grey allowed, +/- RLE + stbi__skip(s,9); // skip colormap specification and image x/y origin + } + if ( stbi__get16le(s) < 1 ) goto errorEnd; // test width + if ( stbi__get16le(s) < 1 ) goto errorEnd; // test height + sz = stbi__get8(s); // bits per pixel + if ( (tga_color_type == 1) && (sz != 8) && (sz != 16) ) goto errorEnd; // for colormapped images, bpp is size of an index + if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; + + res = 1; // if we got this far, everything's good and we can return 1 instead of 0 errorEnd: - stbi__rewind(s); - return res; + stbi__rewind(s); + return res; } // read 16bit value and convert to 24bit RGB -static void stbi__tga_read_rgb16(stbi__context * s, stbi_uc * out) { - stbi__uint16 px = (stbi__uint16)stbi__get16le(s); - stbi__uint16 fiveBitMask = 31; - // we have 3 channels with 5bits each - int r = (px >> 10) & fiveBitMask; - int g = (px >> 5) & fiveBitMask; - int b = px & fiveBitMask; - // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later - out[0] = (stbi_uc)((r * 255) / 31); - out[1] = (stbi_uc)((g * 255) / 31); - out[2] = (stbi_uc)((b * 255) / 31); - - // some people claim that the most significant bit might be used for alpha - // (possibly if an alpha-bit is set in the "image descriptor byte") - // but that only made 16bit test images completely translucent.. - // so let's treat all 15 and 16bit TGAs as RGB with no alpha. -} - -static void * stbi__tga_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri) { - // read in the TGA header stuff - int tga_offset = stbi__get8(s); - int tga_indexed = stbi__get8(s); - int tga_image_type = stbi__get8(s); - int tga_is_RLE = 0; - int tga_palette_start = stbi__get16le(s); - int tga_palette_len = stbi__get16le(s); - int tga_palette_bits = stbi__get8(s); - int tga_x_origin = stbi__get16le(s); - int tga_y_origin = stbi__get16le(s); - int tga_width = stbi__get16le(s); - int tga_height = stbi__get16le(s); - int tga_bits_per_pixel = stbi__get8(s); - int tga_comp, tga_rgb16 = 0; - int tga_inverted = stbi__get8(s); - // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?) - // image data - unsigned char * tga_data; - unsigned char * tga_palette = NULL; - int i, j; - unsigned char raw_data[4] = {0}; - int RLE_count = 0; - int RLE_repeating = 0; - int read_next_pixel = 1; - STBI_NOTUSED(ri); - STBI_NOTUSED(tga_x_origin); // @TODO - STBI_NOTUSED(tga_y_origin); // @TODO - - if (tga_height > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - if (tga_width > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - - // do a tiny bit of precessing - if (tga_image_type >= 8) { - tga_image_type -= 8; - tga_is_RLE = 1; - } - tga_inverted = 1 - ((tga_inverted >> 5) & 1); - - // If I'm paletted, then I'll use the number of bits from the palette - if (tga_indexed) - tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); - else - tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16); - - if (!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency - return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); - - // tga info - *x = tga_width; - *y = tga_height; - if (comp) - *comp = tga_comp; - - if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0)) - return stbi__errpuc("too large", "Corrupt TGA"); - - tga_data = (unsigned char *)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0); - if (!tga_data) - return stbi__errpuc("outofmem", "Out of memory"); - - // skip to the data's starting position (offset usually = 0) - stbi__skip(s, tga_offset); - - if (!tga_indexed && !tga_is_RLE && !tga_rgb16) { - for (i = 0; i < tga_height; ++i) { - int row = tga_inverted ? tga_height - i - 1 : i; - stbi_uc * tga_row = tga_data + row * tga_width * tga_comp; - stbi__getn(s, tga_row, tga_width * tga_comp); - } - } else { - // do I need to load a palette? - if (tga_indexed) { - if (tga_palette_len == 0) { /* you have to have at least one entry! */ - STBI_FREE(tga_data); - return stbi__errpuc("bad palette", "Corrupt TGA"); - } - - // any data to skip? (offset usually = 0) - stbi__skip(s, tga_palette_start); - // load the palette - tga_palette = (unsigned char *)stbi__malloc_mad2(tga_palette_len, tga_comp, 0); - if (!tga_palette) { - STBI_FREE(tga_data); - return stbi__errpuc("outofmem", "Out of memory"); +static void stbi__tga_read_rgb16(stbi__context *s, stbi_uc* out) +{ + stbi__uint16 px = (stbi__uint16)stbi__get16le(s); + stbi__uint16 fiveBitMask = 31; + // we have 3 channels with 5bits each + int r = (px >> 10) & fiveBitMask; + int g = (px >> 5) & fiveBitMask; + int b = px & fiveBitMask; + // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later + out[0] = (stbi_uc)((r * 255)/31); + out[1] = (stbi_uc)((g * 255)/31); + out[2] = (stbi_uc)((b * 255)/31); + + // some people claim that the most significant bit might be used for alpha + // (possibly if an alpha-bit is set in the "image descriptor byte") + // but that only made 16bit test images completely translucent.. + // so let's treat all 15 and 16bit TGAs as RGB with no alpha. +} + +static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + // read in the TGA header stuff + int tga_offset = stbi__get8(s); + int tga_indexed = stbi__get8(s); + int tga_image_type = stbi__get8(s); + int tga_is_RLE = 0; + int tga_palette_start = stbi__get16le(s); + int tga_palette_len = stbi__get16le(s); + int tga_palette_bits = stbi__get8(s); + int tga_x_origin = stbi__get16le(s); + int tga_y_origin = stbi__get16le(s); + int tga_width = stbi__get16le(s); + int tga_height = stbi__get16le(s); + int tga_bits_per_pixel = stbi__get8(s); + int tga_comp, tga_rgb16=0; + int tga_inverted = stbi__get8(s); + // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?) + // image data + unsigned char *tga_data; + unsigned char *tga_palette = NULL; + int i, j; + unsigned char raw_data[4] = {0}; + int RLE_count = 0; + int RLE_repeating = 0; + int read_next_pixel = 1; + STBI_NOTUSED(ri); + STBI_NOTUSED(tga_x_origin); // @TODO + STBI_NOTUSED(tga_y_origin); // @TODO + + if (tga_height > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + if (tga_width > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + + // do a tiny bit of precessing + if ( tga_image_type >= 8 ) + { + tga_image_type -= 8; + tga_is_RLE = 1; + } + tga_inverted = 1 - ((tga_inverted >> 5) & 1); + + // If I'm paletted, then I'll use the number of bits from the palette + if ( tga_indexed ) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); + else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16); + + if(!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency + return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); + + // tga info + *x = tga_width; + *y = tga_height; + if (comp) *comp = tga_comp; + + if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0)) + return stbi__errpuc("too large", "Corrupt TGA"); + + tga_data = (unsigned char*)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0); + if (!tga_data) return stbi__errpuc("outofmem", "Out of memory"); + + // skip to the data's starting position (offset usually = 0) + stbi__skip(s, tga_offset ); + + if ( !tga_indexed && !tga_is_RLE && !tga_rgb16 ) { + for (i=0; i < tga_height; ++i) { + int row = tga_inverted ? tga_height -i - 1 : i; + stbi_uc *tga_row = tga_data + row*tga_width*tga_comp; + stbi__getn(s, tga_row, tga_width * tga_comp); + } + } else { + // do I need to load a palette? + if ( tga_indexed) + { + if (tga_palette_len == 0) { /* you have to have at least one entry! */ + STBI_FREE(tga_data); + return stbi__errpuc("bad palette", "Corrupt TGA"); + } + + // any data to skip? (offset usually = 0) + stbi__skip(s, tga_palette_start ); + // load the palette + tga_palette = (unsigned char*)stbi__malloc_mad2(tga_palette_len, tga_comp, 0); + if (!tga_palette) { + STBI_FREE(tga_data); + return stbi__errpuc("outofmem", "Out of memory"); + } + if (tga_rgb16) { + stbi_uc *pal_entry = tga_palette; + STBI_ASSERT(tga_comp == STBI_rgb); + for (i=0; i < tga_palette_len; ++i) { + stbi__tga_read_rgb16(s, pal_entry); + pal_entry += tga_comp; } - if (tga_rgb16) { - stbi_uc * pal_entry = tga_palette; - STBI_ASSERT(tga_comp == STBI_rgb); - for (i = 0; i < tga_palette_len; ++i) { - stbi__tga_read_rgb16(s, pal_entry); - pal_entry += tga_comp; - } - } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { - STBI_FREE(tga_data); - STBI_FREE(tga_palette); - return stbi__errpuc("bad palette", "Corrupt TGA"); + } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { + STBI_FREE(tga_data); + STBI_FREE(tga_palette); + return stbi__errpuc("bad palette", "Corrupt TGA"); + } + } + // load the data + for (i=0; i < tga_width * tga_height; ++i) + { + // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? + if ( tga_is_RLE ) + { + if ( RLE_count == 0 ) + { + // yep, get the next byte as a RLE command + int RLE_cmd = stbi__get8(s); + RLE_count = 1 + (RLE_cmd & 127); + RLE_repeating = RLE_cmd >> 7; + read_next_pixel = 1; + } else if ( !RLE_repeating ) + { + read_next_pixel = 1; } - } - // load the data - for (i = 0; i < tga_width * tga_height; ++i) { - // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? - if (tga_is_RLE) { - if (RLE_count == 0) { - // yep, get the next byte as a RLE command - int RLE_cmd = stbi__get8(s); - RLE_count = 1 + (RLE_cmd & 127); - RLE_repeating = RLE_cmd >> 7; - read_next_pixel = 1; - } else if (!RLE_repeating) { - read_next_pixel = 1; - } + } else + { + read_next_pixel = 1; + } + // OK, if I need to read a pixel, do it now + if ( read_next_pixel ) + { + // load however much data we did have + if ( tga_indexed ) + { + // read in index, then perform the lookup + int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); + if ( pal_idx >= tga_palette_len ) { + // invalid index + pal_idx = 0; + } + pal_idx *= tga_comp; + for (j = 0; j < tga_comp; ++j) { + raw_data[j] = tga_palette[pal_idx+j]; + } + } else if(tga_rgb16) { + STBI_ASSERT(tga_comp == STBI_rgb); + stbi__tga_read_rgb16(s, raw_data); } else { - read_next_pixel = 1; + // read in the data raw + for (j = 0; j < tga_comp; ++j) { + raw_data[j] = stbi__get8(s); + } } - // OK, if I need to read a pixel, do it now - if (read_next_pixel) { - // load however much data we did have - if (tga_indexed) { - // read in index, then perform the lookup - int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); - if (pal_idx >= tga_palette_len) { - // invalid index - pal_idx = 0; - } - pal_idx *= tga_comp; - for (j = 0; j < tga_comp; ++j) { - raw_data[j] = tga_palette[pal_idx + j]; - } - } else if (tga_rgb16) { - STBI_ASSERT(tga_comp == STBI_rgb); - stbi__tga_read_rgb16(s, raw_data); - } else { - // read in the data raw - for (j = 0; j < tga_comp; ++j) { - raw_data[j] = stbi__get8(s); - } - } - // clear the reading flag for the next pixel - read_next_pixel = 0; - } // end of reading a pixel - - // copy data - for (j = 0; j < tga_comp; ++j) - tga_data[i * tga_comp + j] = raw_data[j]; - - // in case we're in RLE mode, keep counting down - --RLE_count; - } - // do I need to invert the image? - if (tga_inverted) { - for (j = 0; j * 2 < tga_height; ++j) { - int index1 = j * tga_width * tga_comp; - int index2 = (tga_height - 1 - j) * tga_width * tga_comp; - for (i = tga_width * tga_comp; i > 0; --i) { - unsigned char temp = tga_data[index1]; - tga_data[index1] = tga_data[index2]; - tga_data[index2] = temp; - ++index1; - ++index2; - } + // clear the reading flag for the next pixel + read_next_pixel = 0; + } // end of reading a pixel + + // copy data + for (j = 0; j < tga_comp; ++j) + tga_data[i*tga_comp+j] = raw_data[j]; + + // in case we're in RLE mode, keep counting down + --RLE_count; + } + // do I need to invert the image? + if ( tga_inverted ) + { + for (j = 0; j*2 < tga_height; ++j) + { + int index1 = j * tga_width * tga_comp; + int index2 = (tga_height - 1 - j) * tga_width * tga_comp; + for (i = tga_width * tga_comp; i > 0; --i) + { + unsigned char temp = tga_data[index1]; + tga_data[index1] = tga_data[index2]; + tga_data[index2] = temp; + ++index1; + ++index2; } - } - // clear my palette, if I had one - if (tga_palette != NULL) { - STBI_FREE(tga_palette); - } - } + } + } + // clear my palette, if I had one + if ( tga_palette != NULL ) + { + STBI_FREE( tga_palette ); + } + } + + // swap RGB - if the source data was RGB16, it already is in the right order + if (tga_comp >= 3 && !tga_rgb16) + { + unsigned char* tga_pixel = tga_data; + for (i=0; i < tga_width * tga_height; ++i) + { + unsigned char temp = tga_pixel[0]; + tga_pixel[0] = tga_pixel[2]; + tga_pixel[2] = temp; + tga_pixel += tga_comp; + } + } + + // convert to target component count + if (req_comp && req_comp != tga_comp) + tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); + + // the things I do to get rid of an error message, and yet keep + // Microsoft's C compilers happy... [8^( + tga_palette_start = tga_palette_len = tga_palette_bits = + tga_x_origin = tga_y_origin = 0; + STBI_NOTUSED(tga_palette_start); + // OK, done + return tga_data; +} +#endif - // swap RGB - if the source data was RGB16, it already is in the right order - if (tga_comp >= 3 && !tga_rgb16) { - unsigned char * tga_pixel = tga_data; - for (i = 0; i < tga_width * tga_height; ++i) { - unsigned char temp = tga_pixel[0]; - tga_pixel[0] = tga_pixel[2]; - tga_pixel[2] = temp; - tga_pixel += tga_comp; - } - } +// ************************************************************************************************* +// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB + +#ifndef STBI_NO_PSD +static int stbi__psd_test(stbi__context *s) +{ + int r = (stbi__get32be(s) == 0x38425053); + stbi__rewind(s); + return r; +} - // convert to target component count - if (req_comp && req_comp != tga_comp) - tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); +static int stbi__psd_decode_rle(stbi__context *s, stbi_uc *p, int pixelCount) +{ + int count, nleft, len; + + count = 0; + while ((nleft = pixelCount - count) > 0) { + len = stbi__get8(s); + if (len == 128) { + // No-op. + } else if (len < 128) { + // Copy next len+1 bytes literally. + len++; + if (len > nleft) return 0; // corrupt data + count += len; + while (len) { + *p = stbi__get8(s); + p += 4; + len--; + } + } else if (len > 128) { + stbi_uc val; + // Next -len+1 bytes in the dest are replicated from next source byte. + // (Interpret len as a negative 8-bit int.) + len = 257 - len; + if (len > nleft) return 0; // corrupt data + val = stbi__get8(s); + count += len; + while (len) { + *p = val; + p += 4; + len--; + } + } + } - // the things I do to get rid of an error message, and yet keep - // Microsoft's C compilers happy... [8^( - tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = tga_y_origin = 0; - STBI_NOTUSED(tga_palette_start); - // OK, done - return tga_data; + return 1; } -#endif - -// ************************************************************************************************* -// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB -#ifndef STBI_NO_PSD -static int stbi__psd_test(stbi__context * s) { - int r = (stbi__get32be(s) == 0x38425053); - stbi__rewind(s); - return r; -} - -static int stbi__psd_decode_rle(stbi__context * s, stbi_uc * p, int pixelCount) { - int count, nleft, len; - - count = 0; - while ((nleft = pixelCount - count) > 0) { - len = stbi__get8(s); - if (len == 128) { - // No-op. - } else if (len < 128) { - // Copy next len+1 bytes literally. - len++; - if (len > nleft) - return 0; // corrupt data - count += len; - while (len) { - *p = stbi__get8(s); - p += 4; - len--; - } - } else if (len > 128) { - stbi_uc val; - // Next -len+1 bytes in the dest are replicated from next source byte. - // (Interpret len as a negative 8-bit int.) - len = 257 - len; - if (len > nleft) - return 0; // corrupt data - val = stbi__get8(s); - count += len; - while (len) { - *p = val; - p += 4; - len--; +static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) +{ + int pixelCount; + int channelCount, compression; + int channel, i; + int bitdepth; + int w,h; + stbi_uc *out; + STBI_NOTUSED(ri); + + // Check identifier + if (stbi__get32be(s) != 0x38425053) // "8BPS" + return stbi__errpuc("not PSD", "Corrupt PSD image"); + + // Check file type version. + if (stbi__get16be(s) != 1) + return stbi__errpuc("wrong version", "Unsupported version of PSD image"); + + // Skip 6 reserved bytes. + stbi__skip(s, 6 ); + + // Read the number of channels (R, G, B, A, etc). + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) + return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image"); + + // Read the rows and columns of the image. + h = stbi__get32be(s); + w = stbi__get32be(s); + + if (h > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + if (w > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + + // Make sure the depth is 8 bits. + bitdepth = stbi__get16be(s); + if (bitdepth != 8 && bitdepth != 16) + return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit"); + + // Make sure the color mode is RGB. + // Valid options are: + // 0: Bitmap + // 1: Grayscale + // 2: Indexed color + // 3: RGB color + // 4: CMYK color + // 7: Multichannel + // 8: Duotone + // 9: Lab color + if (stbi__get16be(s) != 3) + return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); + + // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) + stbi__skip(s,stbi__get32be(s) ); + + // Skip the image resources. (resolution, pen tool paths, etc) + stbi__skip(s, stbi__get32be(s) ); + + // Skip the reserved data. + stbi__skip(s, stbi__get32be(s) ); + + // Find out if the data is compressed. + // Known values: + // 0: no compression + // 1: RLE compressed + compression = stbi__get16be(s); + if (compression > 1) + return stbi__errpuc("bad compression", "PSD has an unknown compression format"); + + // Check size + if (!stbi__mad3sizes_valid(4, w, h, 0)) + return stbi__errpuc("too large", "Corrupt PSD"); + + // Create the destination image. + + if (!compression && bitdepth == 16 && bpc == 16) { + out = (stbi_uc *) stbi__malloc_mad3(8, w, h, 0); + ri->bits_per_channel = 16; + } else + out = (stbi_uc *) stbi__malloc(4 * w*h); + + if (!out) return stbi__errpuc("outofmem", "Out of memory"); + pixelCount = w*h; + + // Initialize the data to zero. + //memset( out, 0, pixelCount * 4 ); + + // Finally, the image data. + if (compression) { + // RLE as used by .PSD and .TIFF + // Loop until you get the number of unpacked bytes you are expecting: + // Read the next source byte into n. + // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. + // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. + // Else if n is 128, noop. + // Endloop + + // The RLE-compressed data is preceded by a 2-byte data count for each row in the data, + // which we're going to just skip. + stbi__skip(s, h * channelCount * 2 ); + + // Read the RLE data by channel. + for (channel = 0; channel < 4; channel++) { + stbi_uc *p; + + p = out+channel; + if (channel >= channelCount) { + // Fill this channel with default data. + for (i = 0; i < pixelCount; i++, p += 4) + *p = (channel == 3 ? 255 : 0); + } else { + // Read the RLE data. + if (!stbi__psd_decode_rle(s, p, pixelCount)) { + STBI_FREE(out); + return stbi__errpuc("corrupt", "bad RLE data"); } - } - } - - return 1; -} - -static void * stbi__psd_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri, int bpc) { - int pixelCount; - int channelCount, compression; - int channel, i; - int bitdepth; - int w, h; - stbi_uc * out; - STBI_NOTUSED(ri); - - // Check identifier - if (stbi__get32be(s) != 0x38425053) // "8BPS" - return stbi__errpuc("not PSD", "Corrupt PSD image"); - - // Check file type version. - if (stbi__get16be(s) != 1) - return stbi__errpuc("wrong version", "Unsupported version of PSD image"); - - // Skip 6 reserved bytes. - stbi__skip(s, 6); - - // Read the number of channels (R, G, B, A, etc). - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) - return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image"); - - // Read the rows and columns of the image. - h = stbi__get32be(s); - w = stbi__get32be(s); - - if (h > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - if (w > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - - // Make sure the depth is 8 bits. - bitdepth = stbi__get16be(s); - if (bitdepth != 8 && bitdepth != 16) - return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit"); - - // Make sure the color mode is RGB. - // Valid options are: - // 0: Bitmap - // 1: Grayscale - // 2: Indexed color - // 3: RGB color - // 4: CMYK color - // 7: Multichannel - // 8: Duotone - // 9: Lab color - if (stbi__get16be(s) != 3) - return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); - - // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) - stbi__skip(s, stbi__get32be(s)); - - // Skip the image resources. (resolution, pen tool paths, etc) - stbi__skip(s, stbi__get32be(s)); - - // Skip the reserved data. - stbi__skip(s, stbi__get32be(s)); - - // Find out if the data is compressed. - // Known values: - // 0: no compression - // 1: RLE compressed - compression = stbi__get16be(s); - if (compression > 1) - return stbi__errpuc("bad compression", "PSD has an unknown compression format"); - - // Check size - if (!stbi__mad3sizes_valid(4, w, h, 0)) - return stbi__errpuc("too large", "Corrupt PSD"); - - // Create the destination image. - - if (!compression && bitdepth == 16 && bpc == 16) { - out = (stbi_uc *)stbi__malloc_mad3(8, w, h, 0); - ri->bits_per_channel = 16; - } else - out = (stbi_uc *)stbi__malloc(4 * w * h); - - if (!out) - return stbi__errpuc("outofmem", "Out of memory"); - pixelCount = w * h; - - // Initialize the data to zero. - // memset( out, 0, pixelCount * 4 ); - - // Finally, the image data. - if (compression) { - // RLE as used by .PSD and .TIFF - // Loop until you get the number of unpacked bytes you are expecting: - // Read the next source byte into n. - // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. - // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. - // Else if n is 128, noop. - // Endloop - - // The RLE-compressed data is preceded by a 2-byte data count for each row in the data, - // which we're going to just skip. - stbi__skip(s, h * channelCount * 2); - - // Read the RLE data by channel. - for (channel = 0; channel < 4; channel++) { - stbi_uc * p; - - p = out + channel; - if (channel >= channelCount) { - // Fill this channel with default data. - for (i = 0; i < pixelCount; i++, p += 4) - *p = (channel == 3 ? 255 : 0); + } + } + + } else { + // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) + // where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image. + + // Read the data by channel. + for (channel = 0; channel < 4; channel++) { + if (channel >= channelCount) { + // Fill this channel with default data. + if (bitdepth == 16 && bpc == 16) { + stbi__uint16 *q = ((stbi__uint16 *) out) + channel; + stbi__uint16 val = channel == 3 ? 65535 : 0; + for (i = 0; i < pixelCount; i++, q += 4) + *q = val; } else { - // Read the RLE data. - if (!stbi__psd_decode_rle(s, p, pixelCount)) { - STBI_FREE(out); - return stbi__errpuc("corrupt", "bad RLE data"); - } + stbi_uc *p = out+channel; + stbi_uc val = channel == 3 ? 255 : 0; + for (i = 0; i < pixelCount; i++, p += 4) + *p = val; } - } - } else { - // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) - // where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image. - - // Read the data by channel. - for (channel = 0; channel < 4; channel++) { - if (channel >= channelCount) { - // Fill this channel with default data. - if (bitdepth == 16 && bpc == 16) { - stbi__uint16 * q = ((stbi__uint16 *)out) + channel; - stbi__uint16 val = channel == 3 ? 65535 : 0; - for (i = 0; i < pixelCount; i++, q += 4) - *q = val; - } else { - stbi_uc * p = out + channel; - stbi_uc val = channel == 3 ? 255 : 0; - for (i = 0; i < pixelCount; i++, p += 4) - *p = val; - } + } else { + if (ri->bits_per_channel == 16) { // output bpc + stbi__uint16 *q = ((stbi__uint16 *) out) + channel; + for (i = 0; i < pixelCount; i++, q += 4) + *q = (stbi__uint16) stbi__get16be(s); } else { - if (ri->bits_per_channel == 16) { // output bpc - stbi__uint16 * q = ((stbi__uint16 *)out) + channel; - for (i = 0; i < pixelCount; i++, q += 4) - *q = (stbi__uint16)stbi__get16be(s); - } else { - stbi_uc * p = out + channel; - if (bitdepth == 16) { // input bpc - for (i = 0; i < pixelCount; i++, p += 4) - *p = (stbi_uc)(stbi__get16be(s) >> 8); - } else { - for (i = 0; i < pixelCount; i++, p += 4) - *p = stbi__get8(s); - } - } + stbi_uc *p = out+channel; + if (bitdepth == 16) { // input bpc + for (i = 0; i < pixelCount; i++, p += 4) + *p = (stbi_uc) (stbi__get16be(s) >> 8); + } else { + for (i = 0; i < pixelCount; i++, p += 4) + *p = stbi__get8(s); + } } - } - } - - // remove weird white matte from PSD - if (channelCount >= 4) { - if (ri->bits_per_channel == 16) { - for (i = 0; i < w * h; ++i) { - stbi__uint16 * pixel = (stbi__uint16 *)out + 4 * i; - if (pixel[3] != 0 && pixel[3] != 65535) { - float a = pixel[3] / 65535.0f; - float ra = 1.0f / a; - float inv_a = 65535.0f * (1 - ra); - pixel[0] = (stbi__uint16)(pixel[0] * ra + inv_a); - pixel[1] = (stbi__uint16)(pixel[1] * ra + inv_a); - pixel[2] = (stbi__uint16)(pixel[2] * ra + inv_a); - } + } + } + } + + // remove weird white matte from PSD + if (channelCount >= 4) { + if (ri->bits_per_channel == 16) { + for (i=0; i < w*h; ++i) { + stbi__uint16 *pixel = (stbi__uint16 *) out + 4*i; + if (pixel[3] != 0 && pixel[3] != 65535) { + float a = pixel[3] / 65535.0f; + float ra = 1.0f / a; + float inv_a = 65535.0f * (1 - ra); + pixel[0] = (stbi__uint16) (pixel[0]*ra + inv_a); + pixel[1] = (stbi__uint16) (pixel[1]*ra + inv_a); + pixel[2] = (stbi__uint16) (pixel[2]*ra + inv_a); } - } else { - for (i = 0; i < w * h; ++i) { - unsigned char * pixel = out + 4 * i; - if (pixel[3] != 0 && pixel[3] != 255) { - float a = pixel[3] / 255.0f; - float ra = 1.0f / a; - float inv_a = 255.0f * (1 - ra); - pixel[0] = (unsigned char)(pixel[0] * ra + inv_a); - pixel[1] = (unsigned char)(pixel[1] * ra + inv_a); - pixel[2] = (unsigned char)(pixel[2] * ra + inv_a); - } + } + } else { + for (i=0; i < w*h; ++i) { + unsigned char *pixel = out + 4*i; + if (pixel[3] != 0 && pixel[3] != 255) { + float a = pixel[3] / 255.0f; + float ra = 1.0f / a; + float inv_a = 255.0f * (1 - ra); + pixel[0] = (unsigned char) (pixel[0]*ra + inv_a); + pixel[1] = (unsigned char) (pixel[1]*ra + inv_a); + pixel[2] = (unsigned char) (pixel[2]*ra + inv_a); } - } - } + } + } + } - // convert to desired output format - if (req_comp && req_comp != 4) { - if (ri->bits_per_channel == 16) - out = (stbi_uc *)stbi__convert_format16((stbi__uint16 *)out, 4, req_comp, w, h); - else - out = stbi__convert_format(out, 4, req_comp, w, h); - if (out == NULL) - return out; // stbi__convert_format frees input on failure - } + // convert to desired output format + if (req_comp && req_comp != 4) { + if (ri->bits_per_channel == 16) + out = (stbi_uc *) stbi__convert_format16((stbi__uint16 *) out, 4, req_comp, w, h); + else + out = stbi__convert_format(out, 4, req_comp, w, h); + if (out == NULL) return out; // stbi__convert_format frees input on failure + } - if (comp) - *comp = 4; - *y = h; - *x = w; + if (comp) *comp = 4; + *y = h; + *x = w; - return out; + return out; } #endif @@ -6704,221 +6333,216 @@ static void * stbi__psd_load(stbi__context * s, int * x, int * y, int * comp, in // See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/ #ifndef STBI_NO_PIC -static int stbi__pic_is4(stbi__context * s, const char * str) { - int i; - for (i = 0; i < 4; ++i) - if (stbi__get8(s) != (stbi_uc)str[i]) - return 0; +static int stbi__pic_is4(stbi__context *s,const char *str) +{ + int i; + for (i=0; i<4; ++i) + if (stbi__get8(s) != (stbi_uc)str[i]) + return 0; - return 1; + return 1; } -static int stbi__pic_test_core(stbi__context * s) { - int i; +static int stbi__pic_test_core(stbi__context *s) +{ + int i; - if (!stbi__pic_is4(s, "\x53\x80\xF6\x34")) - return 0; + if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) + return 0; - for (i = 0; i < 84; ++i) - stbi__get8(s); + for(i=0;i<84;++i) + stbi__get8(s); - if (!stbi__pic_is4(s, "PICT")) - return 0; + if (!stbi__pic_is4(s,"PICT")) + return 0; - return 1; + return 1; } -typedef struct { - stbi_uc size, type, channel; +typedef struct +{ + stbi_uc size,type,channel; } stbi__pic_packet; -static stbi_uc * stbi__readval(stbi__context * s, int channel, stbi_uc * dest) { - int mask = 0x80, i; +static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest) +{ + int mask=0x80, i; - for (i = 0; i < 4; ++i, mask >>= 1) { - if (channel & mask) { - if (stbi__at_eof(s)) - return stbi__errpuc("bad file", "PIC file too short"); - dest[i] = stbi__get8(s); - } - } + for (i=0; i<4; ++i, mask>>=1) { + if (channel & mask) { + if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short"); + dest[i]=stbi__get8(s); + } + } - return dest; + return dest; } -static void stbi__copyval(int channel, stbi_uc * dest, const stbi_uc * src) { - int mask = 0x80, i; +static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src) +{ + int mask=0x80,i; - for (i = 0; i < 4; ++i, mask >>= 1) - if (channel & mask) - dest[i] = src[i]; + for (i=0;i<4; ++i, mask>>=1) + if (channel&mask) + dest[i]=src[i]; } -static stbi_uc * stbi__pic_load_core(stbi__context * s, int width, int height, int * comp, stbi_uc * result) { - int act_comp = 0, num_packets = 0, y, chained; - stbi__pic_packet packets[10]; +static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result) +{ + int act_comp=0,num_packets=0,y,chained; + stbi__pic_packet packets[10]; - // this will (should...) cater for even some bizarre stuff like having data + // this will (should...) cater for even some bizarre stuff like having data // for the same channel in multiple packets. - do { - stbi__pic_packet * packet; + do { + stbi__pic_packet *packet; - if (num_packets == sizeof(packets) / sizeof(packets[0])) - return stbi__errpuc("bad format", "too many packets"); + if (num_packets==sizeof(packets)/sizeof(packets[0])) + return stbi__errpuc("bad format","too many packets"); - packet = &packets[num_packets++]; + packet = &packets[num_packets++]; - chained = stbi__get8(s); - packet->size = stbi__get8(s); - packet->type = stbi__get8(s); - packet->channel = stbi__get8(s); + chained = stbi__get8(s); + packet->size = stbi__get8(s); + packet->type = stbi__get8(s); + packet->channel = stbi__get8(s); - act_comp |= packet->channel; + act_comp |= packet->channel; - if (stbi__at_eof(s)) - return stbi__errpuc("bad file", "file too short (reading packets)"); - if (packet->size != 8) - return stbi__errpuc("bad format", "packet isn't 8bpp"); - } while (chained); + if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (reading packets)"); + if (packet->size != 8) return stbi__errpuc("bad format","packet isn't 8bpp"); + } while (chained); - *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? + *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? - for (y = 0; y < height; ++y) { - int packet_idx; + for(y=0; ytype) { + switch (packet->type) { default: - return stbi__errpuc("bad format", "packet has bad compression type"); + return stbi__errpuc("bad format","packet has bad compression type"); - case 0: { // uncompressed - int x; + case 0: {//uncompressed + int x; - for (x = 0; x < width; ++x, dest += 4) - if (!stbi__readval(s, packet->channel, dest)) - return 0; - break; + for(x=0;xchannel,dest)) + return 0; + break; } - case 1: // Pure RLE - { - int left = width, i; + case 1://Pure RLE + { + int left=width, i; - while (left > 0) { - stbi_uc count, value[4]; + while (left>0) { + stbi_uc count,value[4]; - count = stbi__get8(s); - if (stbi__at_eof(s)) - return stbi__errpuc("bad file", "file too short (pure read count)"); + count=stbi__get8(s); + if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pure read count)"); - if (count > left) - count = (stbi_uc)left; + if (count > left) + count = (stbi_uc) left; - if (!stbi__readval(s, packet->channel, value)) - return 0; + if (!stbi__readval(s,packet->channel,value)) return 0; - for (i = 0; i < count; ++i, dest += 4) - stbi__copyval(packet->channel, dest, value); - left -= count; - } - } break; + for(i=0; ichannel,dest,value); + left -= count; + } + } + break; - case 2: { // Mixed RLE - int left = width; - while (left > 0) { - int count = stbi__get8(s), i; - if (stbi__at_eof(s)) - return stbi__errpuc("bad file", "file too short (mixed read count)"); + case 2: {//Mixed RLE + int left=width; + while (left>0) { + int count = stbi__get8(s), i; + if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (mixed read count)"); - if (count >= 128) { // Repeated - stbi_uc value[4]; + if (count >= 128) { // Repeated + stbi_uc value[4]; - if (count == 128) - count = stbi__get16be(s); - else - count -= 127; - if (count > left) - return stbi__errpuc("bad file", "scanline overrun"); - - if (!stbi__readval(s, packet->channel, value)) - return 0; - - for (i = 0; i < count; ++i, dest += 4) - stbi__copyval(packet->channel, dest, value); - } else { // Raw - ++count; - if (count > left) - return stbi__errpuc("bad file", "scanline overrun"); - - for (i = 0; i < count; ++i, dest += 4) - if (!stbi__readval(s, packet->channel, dest)) - return 0; - } - left -= count; - } - break; - } + if (count==128) + count = stbi__get16be(s); + else + count -= 127; + if (count > left) + return stbi__errpuc("bad file","scanline overrun"); + + if (!stbi__readval(s,packet->channel,value)) + return 0; + + for(i=0;ichannel,dest,value); + } else { // Raw + ++count; + if (count>left) return stbi__errpuc("bad file","scanline overrun"); + + for(i=0;ichannel,dest)) + return 0; + } + left-=count; + } + break; } - } - } + } + } + } - return result; + return result; } -static void * stbi__pic_load(stbi__context * s, int * px, int * py, int * comp, int req_comp, stbi__result_info * ri) { - stbi_uc * result; - int i, x, y, internal_comp; - STBI_NOTUSED(ri); +static void *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp, stbi__result_info *ri) +{ + stbi_uc *result; + int i, x,y, internal_comp; + STBI_NOTUSED(ri); - if (!comp) - comp = &internal_comp; + if (!comp) comp = &internal_comp; - for (i = 0; i < 92; ++i) - stbi__get8(s); + for (i=0; i<92; ++i) + stbi__get8(s); - x = stbi__get16be(s); - y = stbi__get16be(s); + x = stbi__get16be(s); + y = stbi__get16be(s); - if (y > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - if (x > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); + if (y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + if (x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); - if (stbi__at_eof(s)) - return stbi__errpuc("bad file", "file too short (pic header)"); - if (!stbi__mad3sizes_valid(x, y, 4, 0)) - return stbi__errpuc("too large", "PIC image too large to decode"); + if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pic header)"); + if (!stbi__mad3sizes_valid(x, y, 4, 0)) return stbi__errpuc("too large", "PIC image too large to decode"); - stbi__get32be(s); // skip `ratio' - stbi__get16be(s); // skip `fields' - stbi__get16be(s); // skip `pad' + stbi__get32be(s); //skip `ratio' + stbi__get16be(s); //skip `fields' + stbi__get16be(s); //skip `pad' - // intermediate buffer is RGBA - result = (stbi_uc *)stbi__malloc_mad3(x, y, 4, 0); - if (!result) - return stbi__errpuc("outofmem", "Out of memory"); - memset(result, 0xff, x * y * 4); + // intermediate buffer is RGBA + result = (stbi_uc *) stbi__malloc_mad3(x, y, 4, 0); + if (!result) return stbi__errpuc("outofmem", "Out of memory"); + memset(result, 0xff, x*y*4); - if (!stbi__pic_load_core(s, x, y, comp, result)) { - STBI_FREE(result); - result = 0; - } - *px = x; - *py = y; - if (req_comp == 0) - req_comp = *comp; - result = stbi__convert_format(result, 4, req_comp, x, y); + if (!stbi__pic_load_core(s,x,y,comp, result)) { + STBI_FREE(result); + result=0; + } + *px = x; + *py = y; + if (req_comp == 0) req_comp = *comp; + result=stbi__convert_format(result,4,req_comp,x,y); - return result; + return result; } -static int stbi__pic_test(stbi__context * s) { - int r = stbi__pic_test_core(s); - stbi__rewind(s); - return r; +static int stbi__pic_test(stbi__context *s) +{ + int r = stbi__pic_test_core(s); + stbi__rewind(s); + return r; } #endif @@ -6926,968 +6550,931 @@ static int stbi__pic_test(stbi__context * s) { // GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb #ifndef STBI_NO_GIF -typedef struct { - stbi__int16 prefix; - stbi_uc first; - stbi_uc suffix; +typedef struct +{ + stbi__int16 prefix; + stbi_uc first; + stbi_uc suffix; } stbi__gif_lzw; -typedef struct { - int w, h; - stbi_uc * out; // output buffer (always 4 components) - stbi_uc * background; // The current "background" as far as a gif is concerned - stbi_uc * history; - int flags, bgindex, ratio, transparent, eflags; - stbi_uc pal[256][4]; - stbi_uc lpal[256][4]; - stbi__gif_lzw codes[8192]; - stbi_uc * color_table; - int parse, step; - int lflags; - int start_x, start_y; - int max_x, max_y; - int cur_x, cur_y; - int line_size; - int delay; +typedef struct +{ + int w,h; + stbi_uc *out; // output buffer (always 4 components) + stbi_uc *background; // The current "background" as far as a gif is concerned + stbi_uc *history; + int flags, bgindex, ratio, transparent, eflags; + stbi_uc pal[256][4]; + stbi_uc lpal[256][4]; + stbi__gif_lzw codes[8192]; + stbi_uc *color_table; + int parse, step; + int lflags; + int start_x, start_y; + int max_x, max_y; + int cur_x, cur_y; + int line_size; + int delay; } stbi__gif; -static int stbi__gif_test_raw(stbi__context * s) { - int sz; - if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') - return 0; - sz = stbi__get8(s); - if (sz != '9' && sz != '7') - return 0; - if (stbi__get8(s) != 'a') - return 0; - return 1; -} - -static int stbi__gif_test(stbi__context * s) { - int r = stbi__gif_test_raw(s); - stbi__rewind(s); - return r; -} - -static void stbi__gif_parse_colortable(stbi__context * s, stbi_uc pal[256][4], int num_entries, int transp) { - int i; - for (i = 0; i < num_entries; ++i) { - pal[i][2] = stbi__get8(s); - pal[i][1] = stbi__get8(s); - pal[i][0] = stbi__get8(s); - pal[i][3] = transp == i ? 0 : 255; - } +static int stbi__gif_test_raw(stbi__context *s) +{ + int sz; + if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0; + sz = stbi__get8(s); + if (sz != '9' && sz != '7') return 0; + if (stbi__get8(s) != 'a') return 0; + return 1; } -static int stbi__gif_header(stbi__context * s, stbi__gif * g, int * comp, int is_info) { - stbi_uc version; - if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') - return stbi__err("not GIF", "Corrupt GIF"); - - version = stbi__get8(s); - if (version != '7' && version != '9') - return stbi__err("not GIF", "Corrupt GIF"); - if (stbi__get8(s) != 'a') - return stbi__err("not GIF", "Corrupt GIF"); - - stbi__g_failure_reason = ""; - g->w = stbi__get16le(s); - g->h = stbi__get16le(s); - g->flags = stbi__get8(s); - g->bgindex = stbi__get8(s); - g->ratio = stbi__get8(s); - g->transparent = -1; - - if (g->w > STBI_MAX_DIMENSIONS) - return stbi__err("too large", "Very large image (corrupt?)"); - if (g->h > STBI_MAX_DIMENSIONS) - return stbi__err("too large", "Very large image (corrupt?)"); +static int stbi__gif_test(stbi__context *s) +{ + int r = stbi__gif_test_raw(s); + stbi__rewind(s); + return r; +} - if (comp != 0) - *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments +static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp) +{ + int i; + for (i=0; i < num_entries; ++i) { + pal[i][2] = stbi__get8(s); + pal[i][1] = stbi__get8(s); + pal[i][0] = stbi__get8(s); + pal[i][3] = transp == i ? 0 : 255; + } +} - if (is_info) - return 1; +static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info) +{ + stbi_uc version; + if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') + return stbi__err("not GIF", "Corrupt GIF"); - if (g->flags & 0x80) - stbi__gif_parse_colortable(s, g->pal, 2 << (g->flags & 7), -1); + version = stbi__get8(s); + if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF"); + if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF"); - return 1; -} + stbi__g_failure_reason = ""; + g->w = stbi__get16le(s); + g->h = stbi__get16le(s); + g->flags = stbi__get8(s); + g->bgindex = stbi__get8(s); + g->ratio = stbi__get8(s); + g->transparent = -1; -static int stbi__gif_info_raw(stbi__context * s, int * x, int * y, int * comp) { - stbi__gif * g = (stbi__gif *)stbi__malloc(sizeof(stbi__gif)); - if (!g) - return stbi__err("outofmem", "Out of memory"); - if (!stbi__gif_header(s, g, comp, 1)) { - STBI_FREE(g); - stbi__rewind(s); - return 0; - } - if (x) - *x = g->w; - if (y) - *y = g->h; - STBI_FREE(g); - return 1; -} + if (g->w > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); + if (g->h > STBI_MAX_DIMENSIONS) return stbi__err("too large","Very large image (corrupt?)"); -static void stbi__out_gif_code(stbi__gif * g, stbi__uint16 code) { - stbi_uc *p, *c; - int idx; + if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments - // recurse to decode the prefixes, since the linked-list is backwards, - // and working backwards through an interleaved image would be nasty - if (g->codes[code].prefix >= 0) - stbi__out_gif_code(g, g->codes[code].prefix); + if (is_info) return 1; - if (g->cur_y >= g->max_y) - return; + if (g->flags & 0x80) + stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1); - idx = g->cur_x + g->cur_y; - p = &g->out[idx]; - g->history[idx / 4] = 1; + return 1; +} - c = &g->color_table[g->codes[code].suffix * 4]; - if (c[3] > 128) { // don't render transparent pixels; - p[0] = c[2]; - p[1] = c[1]; - p[2] = c[0]; - p[3] = c[3]; - } - g->cur_x += 4; +static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) +{ + stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif)); + if (!g) return stbi__err("outofmem", "Out of memory"); + if (!stbi__gif_header(s, g, comp, 1)) { + STBI_FREE(g); + stbi__rewind( s ); + return 0; + } + if (x) *x = g->w; + if (y) *y = g->h; + STBI_FREE(g); + return 1; +} + +static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) +{ + stbi_uc *p, *c; + int idx; + + // recurse to decode the prefixes, since the linked-list is backwards, + // and working backwards through an interleaved image would be nasty + if (g->codes[code].prefix >= 0) + stbi__out_gif_code(g, g->codes[code].prefix); + + if (g->cur_y >= g->max_y) return; + + idx = g->cur_x + g->cur_y; + p = &g->out[idx]; + g->history[idx / 4] = 1; + + c = &g->color_table[g->codes[code].suffix * 4]; + if (c[3] > 128) { // don't render transparent pixels; + p[0] = c[2]; + p[1] = c[1]; + p[2] = c[0]; + p[3] = c[3]; + } + g->cur_x += 4; + + if (g->cur_x >= g->max_x) { + g->cur_x = g->start_x; + g->cur_y += g->step; + + while (g->cur_y >= g->max_y && g->parse > 0) { + g->step = (1 << g->parse) * g->line_size; + g->cur_y = g->start_y + (g->step >> 1); + --g->parse; + } + } +} + +static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) +{ + stbi_uc lzw_cs; + stbi__int32 len, init_code; + stbi__uint32 first; + stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; + stbi__gif_lzw *p; + + lzw_cs = stbi__get8(s); + if (lzw_cs > 12) return NULL; + clear = 1 << lzw_cs; + first = 1; + codesize = lzw_cs + 1; + codemask = (1 << codesize) - 1; + bits = 0; + valid_bits = 0; + for (init_code = 0; init_code < clear; init_code++) { + g->codes[init_code].prefix = -1; + g->codes[init_code].first = (stbi_uc) init_code; + g->codes[init_code].suffix = (stbi_uc) init_code; + } + + // support no starting clear code + avail = clear+2; + oldcode = -1; + + len = 0; + for(;;) { + if (valid_bits < codesize) { + if (len == 0) { + len = stbi__get8(s); // start new block + if (len == 0) + return g->out; + } + --len; + bits |= (stbi__int32) stbi__get8(s) << valid_bits; + valid_bits += 8; + } else { + stbi__int32 code = bits & codemask; + bits >>= codesize; + valid_bits -= codesize; + // @OPTIMIZE: is there some way we can accelerate the non-clear path? + if (code == clear) { // clear code + codesize = lzw_cs + 1; + codemask = (1 << codesize) - 1; + avail = clear + 2; + oldcode = -1; + first = 0; + } else if (code == clear + 1) { // end of stream code + stbi__skip(s, len); + while ((len = stbi__get8(s)) > 0) + stbi__skip(s,len); + return g->out; + } else if (code <= avail) { + if (first) { + return stbi__errpuc("no clear code", "Corrupt GIF"); + } - if (g->cur_x >= g->max_x) { - g->cur_x = g->start_x; - g->cur_y += g->step; + if (oldcode >= 0) { + p = &g->codes[avail++]; + if (avail > 8192) { + return stbi__errpuc("too many codes", "Corrupt GIF"); + } - while (g->cur_y >= g->max_y && g->parse > 0) { - g->step = (1 << g->parse) * g->line_size; - g->cur_y = g->start_y + (g->step >> 1); - --g->parse; - } - } -} + p->prefix = (stbi__int16) oldcode; + p->first = g->codes[oldcode].first; + p->suffix = (code == avail) ? p->first : g->codes[code].first; + } else if (code == avail) + return stbi__errpuc("illegal code in raster", "Corrupt GIF"); -static stbi_uc * stbi__process_gif_raster(stbi__context * s, stbi__gif * g) { - stbi_uc lzw_cs; - stbi__int32 len, init_code; - stbi__uint32 first; - stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; - stbi__gif_lzw * p; - - lzw_cs = stbi__get8(s); - if (lzw_cs > 12) - return NULL; - clear = 1 << lzw_cs; - first = 1; - codesize = lzw_cs + 1; - codemask = (1 << codesize) - 1; - bits = 0; - valid_bits = 0; - for (init_code = 0; init_code < clear; init_code++) { - g->codes[init_code].prefix = -1; - g->codes[init_code].first = (stbi_uc)init_code; - g->codes[init_code].suffix = (stbi_uc)init_code; - } + stbi__out_gif_code(g, (stbi__uint16) code); - // support no starting clear code - avail = clear + 2; - oldcode = -1; - - len = 0; - for (;;) { - if (valid_bits < codesize) { - if (len == 0) { - len = stbi__get8(s); // start new block - if (len == 0) - return g->out; - } - --len; - bits |= (stbi__int32)stbi__get8(s) << valid_bits; - valid_bits += 8; - } else { - stbi__int32 code = bits & codemask; - bits >>= codesize; - valid_bits -= codesize; - // @OPTIMIZE: is there some way we can accelerate the non-clear path? - if (code == clear) { // clear code - codesize = lzw_cs + 1; - codemask = (1 << codesize) - 1; - avail = clear + 2; - oldcode = -1; - first = 0; - } else if (code == clear + 1) { // end of stream code - stbi__skip(s, len); - while ((len = stbi__get8(s)) > 0) - stbi__skip(s, len); - return g->out; - } else if (code <= avail) { - if (first) { - return stbi__errpuc("no clear code", "Corrupt GIF"); - } - - if (oldcode >= 0) { - p = &g->codes[avail++]; - if (avail > 8192) { - return stbi__errpuc("too many codes", "Corrupt GIF"); - } - - p->prefix = (stbi__int16)oldcode; - p->first = g->codes[oldcode].first; - p->suffix = (code == avail) ? p->first : g->codes[code].first; - } else if (code == avail) - return stbi__errpuc("illegal code in raster", "Corrupt GIF"); - - stbi__out_gif_code(g, (stbi__uint16)code); - - if ((avail & codemask) == 0 && avail <= 0x0FFF) { - codesize++; - codemask = (1 << codesize) - 1; - } - - oldcode = code; - } else { - return stbi__errpuc("illegal code in raster", "Corrupt GIF"); + if ((avail & codemask) == 0 && avail <= 0x0FFF) { + codesize++; + codemask = (1 << codesize) - 1; } - } - } + + oldcode = code; + } else { + return stbi__errpuc("illegal code in raster", "Corrupt GIF"); + } + } + } } // this function is designed to support animated gifs, although stb_image doesn't support it // two back is the image from two frames ago, used for a very specific disposal format -static stbi_uc * stbi__gif_load_next(stbi__context * s, stbi__gif * g, int * comp, int req_comp, stbi_uc * two_back) { - int dispose; - int first_frame; - int pi; - int pcount; - STBI_NOTUSED(req_comp); - - // on first frame, any non-written pixels get the background colour (non-transparent) - first_frame = 0; - if (g->out == 0) { - if (!stbi__gif_header(s, g, comp, 0)) - return 0; // stbi__g_failure_reason set by stbi__gif_header - if (!stbi__mad3sizes_valid(4, g->w, g->h, 0)) - return stbi__errpuc("too large", "GIF image is too large"); - pcount = g->w * g->h; - g->out = (stbi_uc *)stbi__malloc(4 * pcount); - g->background = (stbi_uc *)stbi__malloc(4 * pcount); - g->history = (stbi_uc *)stbi__malloc(pcount); - if (!g->out || !g->background || !g->history) - return stbi__errpuc("outofmem", "Out of memory"); - - // image is treated as "transparent" at the start - ie, nothing overwrites the current background; - // background colour is only used for pixels that are not rendered first frame, after that "background" - // color refers to the color that was there the previous frame. - memset(g->out, 0x00, 4 * pcount); - memset(g->background, 0x00, 4 * pcount); // state of the background (starts transparent) - memset(g->history, 0x00, pcount); // pixels that were affected previous frame - first_frame = 1; - } else { - // second frame - how do we dispose of the previous one? - dispose = (g->eflags & 0x1C) >> 2; - pcount = g->w * g->h; - - if ((dispose == 3) && (two_back == 0)) { - dispose = 2; // if I don't have an image to revert back to, default to the old background - } - - if (dispose == 3) { // use previous graphic - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi]) { - memcpy(&g->out[pi * 4], &two_back[pi * 4], 4); - } +static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp, stbi_uc *two_back) +{ + int dispose; + int first_frame; + int pi; + int pcount; + STBI_NOTUSED(req_comp); + + // on first frame, any non-written pixels get the background colour (non-transparent) + first_frame = 0; + if (g->out == 0) { + if (!stbi__gif_header(s, g, comp,0)) return 0; // stbi__g_failure_reason set by stbi__gif_header + if (!stbi__mad3sizes_valid(4, g->w, g->h, 0)) + return stbi__errpuc("too large", "GIF image is too large"); + pcount = g->w * g->h; + g->out = (stbi_uc *) stbi__malloc(4 * pcount); + g->background = (stbi_uc *) stbi__malloc(4 * pcount); + g->history = (stbi_uc *) stbi__malloc(pcount); + if (!g->out || !g->background || !g->history) + return stbi__errpuc("outofmem", "Out of memory"); + + // image is treated as "transparent" at the start - ie, nothing overwrites the current background; + // background colour is only used for pixels that are not rendered first frame, after that "background" + // color refers to the color that was there the previous frame. + memset(g->out, 0x00, 4 * pcount); + memset(g->background, 0x00, 4 * pcount); // state of the background (starts transparent) + memset(g->history, 0x00, pcount); // pixels that were affected previous frame + first_frame = 1; + } else { + // second frame - how do we dispose of the previous one? + dispose = (g->eflags & 0x1C) >> 2; + pcount = g->w * g->h; + + if ((dispose == 3) && (two_back == 0)) { + dispose = 2; // if I don't have an image to revert back to, default to the old background + } + + if (dispose == 3) { // use previous graphic + for (pi = 0; pi < pcount; ++pi) { + if (g->history[pi]) { + memcpy( &g->out[pi * 4], &two_back[pi * 4], 4 ); } - } else if (dispose == 2) { - // restore what was changed last frame to background before that frame; - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi]) { - memcpy(&g->out[pi * 4], &g->background[pi * 4], 4); - } + } + } else if (dispose == 2) { + // restore what was changed last frame to background before that frame; + for (pi = 0; pi < pcount; ++pi) { + if (g->history[pi]) { + memcpy( &g->out[pi * 4], &g->background[pi * 4], 4 ); } - } else { - // This is a non-disposal case eithe way, so just - // leave the pixels as is, and they will become the new background - // 1: do not dispose - // 0: not specified. - } - - // background is what out is after the undoing of the previou frame; - memcpy(g->background, g->out, 4 * g->w * g->h); - } - - // clear my history; - memset(g->history, 0x00, g->w * g->h); // pixels that were affected previous frame - - for (;;) { - int tag = stbi__get8(s); - switch (tag) { - case 0x2C: /* Image Descriptor */ - { + } + } else { + // This is a non-disposal case eithe way, so just + // leave the pixels as is, and they will become the new background + // 1: do not dispose + // 0: not specified. + } + + // background is what out is after the undoing of the previou frame; + memcpy( g->background, g->out, 4 * g->w * g->h ); + } + + // clear my history; + memset( g->history, 0x00, g->w * g->h ); // pixels that were affected previous frame + + for (;;) { + int tag = stbi__get8(s); + switch (tag) { + case 0x2C: /* Image Descriptor */ + { stbi__int32 x, y, w, h; - stbi_uc * o; + stbi_uc *o; x = stbi__get16le(s); y = stbi__get16le(s); w = stbi__get16le(s); h = stbi__get16le(s); if (((x + w) > (g->w)) || ((y + h) > (g->h))) - return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); + return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); g->line_size = g->w * 4; g->start_x = x * 4; g->start_y = y * g->line_size; - g->max_x = g->start_x + w * 4; - g->max_y = g->start_y + h * g->line_size; - g->cur_x = g->start_x; - g->cur_y = g->start_y; + g->max_x = g->start_x + w * 4; + g->max_y = g->start_y + h * g->line_size; + g->cur_x = g->start_x; + g->cur_y = g->start_y; // if the width of the specified rectangle is 0, that means // we may not see *any* pixels or the image is malformed; // to make sure this is caught, move the current y down to // max_y (which is what out_gif_code checks). if (w == 0) - g->cur_y = g->max_y; + g->cur_y = g->max_y; g->lflags = stbi__get8(s); if (g->lflags & 0x40) { - g->step = 8 * g->line_size; // first interlaced spacing - g->parse = 3; + g->step = 8 * g->line_size; // first interlaced spacing + g->parse = 3; } else { - g->step = g->line_size; - g->parse = 0; + g->step = g->line_size; + g->parse = 0; } if (g->lflags & 0x80) { - stbi__gif_parse_colortable(s, g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1); - g->color_table = (stbi_uc *)g->lpal; + stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1); + g->color_table = (stbi_uc *) g->lpal; } else if (g->flags & 0x80) { - g->color_table = (stbi_uc *)g->pal; + g->color_table = (stbi_uc *) g->pal; } else - return stbi__errpuc("missing color table", "Corrupt GIF"); + return stbi__errpuc("missing color table", "Corrupt GIF"); o = stbi__process_gif_raster(s, g); - if (!o) - return NULL; + if (!o) return NULL; // if this was the first frame, pcount = g->w * g->h; if (first_frame && (g->bgindex > 0)) { - // if first frame, any pixel not drawn to gets the background color - for (pi = 0; pi < pcount; ++pi) { - if (g->history[pi] == 0) { - g->pal[g->bgindex][3] = - 255; // just in case it was made transparent, undo that; It will be reset next frame if need be; - memcpy(&g->out[pi * 4], &g->pal[g->bgindex], 4); - } - } + // if first frame, any pixel not drawn to gets the background color + for (pi = 0; pi < pcount; ++pi) { + if (g->history[pi] == 0) { + g->pal[g->bgindex][3] = 255; // just in case it was made transparent, undo that; It will be reset next frame if need be; + memcpy( &g->out[pi * 4], &g->pal[g->bgindex], 4 ); + } + } } return o; - } + } - case 0x21: // Comment Extension. - { + case 0x21: // Comment Extension. + { int len; int ext = stbi__get8(s); if (ext == 0xF9) { // Graphic Control Extension. - len = stbi__get8(s); - if (len == 4) { - g->eflags = stbi__get8(s); - g->delay = 10 * stbi__get16le(s); // delay - 1/100th of a second, saving as 1/1000ths. - - // unset old transparent - if (g->transparent >= 0) { - g->pal[g->transparent][3] = 255; - } - if (g->eflags & 0x01) { - g->transparent = stbi__get8(s); - if (g->transparent >= 0) { - g->pal[g->transparent][3] = 0; - } - } else { - // don't need transparent - stbi__skip(s, 1); - g->transparent = -1; - } - } else { - stbi__skip(s, len); - break; - } + len = stbi__get8(s); + if (len == 4) { + g->eflags = stbi__get8(s); + g->delay = 10 * stbi__get16le(s); // delay - 1/100th of a second, saving as 1/1000ths. + + // unset old transparent + if (g->transparent >= 0) { + g->pal[g->transparent][3] = 255; + } + if (g->eflags & 0x01) { + g->transparent = stbi__get8(s); + if (g->transparent >= 0) { + g->pal[g->transparent][3] = 0; + } + } else { + // don't need transparent + stbi__skip(s, 1); + g->transparent = -1; + } + } else { + stbi__skip(s, len); + break; + } } while ((len = stbi__get8(s)) != 0) { - stbi__skip(s, len); + stbi__skip(s, len); } break; - } + } - case 0x3B: // gif stream termination code - return (stbi_uc *)s; // using '1' causes warning on some compilers + case 0x3B: // gif stream termination code + return (stbi_uc *) s; // using '1' causes warning on some compilers - default: + default: return stbi__errpuc("unknown code", "Corrupt GIF"); - } - } + } + } } -static void * stbi__load_gif_main_outofmem(stbi__gif * g, stbi_uc * out, int ** delays) { - STBI_FREE(g->out); - STBI_FREE(g->history); - STBI_FREE(g->background); +static void *stbi__load_gif_main_outofmem(stbi__gif *g, stbi_uc *out, int **delays) +{ + STBI_FREE(g->out); + STBI_FREE(g->history); + STBI_FREE(g->background); - if (out) - STBI_FREE(out); - if (delays && *delays) - STBI_FREE(*delays); - return stbi__errpuc("outofmem", "Out of memory"); + if (out) STBI_FREE(out); + if (delays && *delays) STBI_FREE(*delays); + return stbi__errpuc("outofmem", "Out of memory"); } -static void * stbi__load_gif_main(stbi__context * s, int ** delays, int * x, int * y, int * z, int * comp, int req_comp) { - if (stbi__gif_test(s)) { - int layers = 0; - stbi_uc * u = 0; - stbi_uc * out = 0; - stbi_uc * two_back = 0; - stbi__gif g; - int stride; - int out_size = 0; - int delays_size = 0; - - STBI_NOTUSED(out_size); - STBI_NOTUSED(delays_size); - - memset(&g, 0, sizeof(g)); - if (delays) { - *delays = 0; - } +static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp) +{ + if (stbi__gif_test(s)) { + int layers = 0; + stbi_uc *u = 0; + stbi_uc *out = 0; + stbi_uc *two_back = 0; + stbi__gif g; + int stride; + int out_size = 0; + int delays_size = 0; + + STBI_NOTUSED(out_size); + STBI_NOTUSED(delays_size); + + memset(&g, 0, sizeof(g)); + if (delays) { + *delays = 0; + } + + do { + u = stbi__gif_load_next(s, &g, comp, req_comp, two_back); + if (u == (stbi_uc *) s) u = 0; // end of animated gif marker + + if (u) { + *x = g.w; + *y = g.h; + ++layers; + stride = g.w * g.h * 4; + + if (out) { + void *tmp = (stbi_uc*) STBI_REALLOC_SIZED( out, out_size, layers * stride ); + if (!tmp) + return stbi__load_gif_main_outofmem(&g, out, delays); + else { + out = (stbi_uc*) tmp; + out_size = layers * stride; + } + + if (delays) { + int *new_delays = (int*) STBI_REALLOC_SIZED( *delays, delays_size, sizeof(int) * layers ); + if (!new_delays) + return stbi__load_gif_main_outofmem(&g, out, delays); + *delays = new_delays; + delays_size = layers * sizeof(int); + } + } else { + out = (stbi_uc*)stbi__malloc( layers * stride ); + if (!out) + return stbi__load_gif_main_outofmem(&g, out, delays); + out_size = layers * stride; + if (delays) { + *delays = (int*) stbi__malloc( layers * sizeof(int) ); + if (!*delays) + return stbi__load_gif_main_outofmem(&g, out, delays); + delays_size = layers * sizeof(int); + } + } + memcpy( out + ((layers - 1) * stride), u, stride ); + if (layers >= 2) { + two_back = out - 2 * stride; + } - do { - u = stbi__gif_load_next(s, &g, comp, req_comp, two_back); - if (u == (stbi_uc *)s) - u = 0; // end of animated gif marker - - if (u) { - *x = g.w; - *y = g.h; - ++layers; - stride = g.w * g.h * 4; - - if (out) { - void * tmp = (stbi_uc *)STBI_REALLOC_SIZED(out, out_size, layers * stride); - if (!tmp) - return stbi__load_gif_main_outofmem(&g, out, delays); - else { - out = (stbi_uc *)tmp; - out_size = layers * stride; - } - - if (delays) { - int * new_delays = (int *)STBI_REALLOC_SIZED(*delays, delays_size, sizeof(int) * layers); - if (!new_delays) - return stbi__load_gif_main_outofmem(&g, out, delays); - *delays = new_delays; - delays_size = layers * sizeof(int); - } - } else { - out = (stbi_uc *)stbi__malloc(layers * stride); - if (!out) - return stbi__load_gif_main_outofmem(&g, out, delays); - out_size = layers * stride; - if (delays) { - *delays = (int *)stbi__malloc(layers * sizeof(int)); - if (!*delays) - return stbi__load_gif_main_outofmem(&g, out, delays); - delays_size = layers * sizeof(int); - } - } - memcpy(out + ((layers - 1) * stride), u, stride); - if (layers >= 2) { - two_back = out - 2 * stride; - } - - if (delays) { - (*delays)[layers - 1U] = g.delay; - } + if (delays) { + (*delays)[layers - 1U] = g.delay; } - } while (u != 0); + } + } while (u != 0); - // free temp buffer; - STBI_FREE(g.out); - STBI_FREE(g.history); - STBI_FREE(g.background); + // free temp buffer; + STBI_FREE(g.out); + STBI_FREE(g.history); + STBI_FREE(g.background); - // do the final conversion after loading everything; - if (req_comp && req_comp != 4) - out = stbi__convert_format(out, 4, req_comp, layers * g.w, g.h); + // do the final conversion after loading everything; + if (req_comp && req_comp != 4) + out = stbi__convert_format(out, 4, req_comp, layers * g.w, g.h); - *z = layers; - return out; - } else { - return stbi__errpuc("not GIF", "Image was not as a gif type."); - } + *z = layers; + return out; + } else { + return stbi__errpuc("not GIF", "Image was not as a gif type."); + } } -static void * stbi__gif_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri) { - stbi_uc * u = 0; - stbi__gif g; - memset(&g, 0, sizeof(g)); - STBI_NOTUSED(ri); - - u = stbi__gif_load_next(s, &g, comp, req_comp, 0); - if (u == (stbi_uc *)s) - u = 0; // end of animated gif marker - if (u) { - *x = g.w; - *y = g.h; - - // moved conversion to after successful load so that the same - // can be done for multiple frames. - if (req_comp && req_comp != 4) - u = stbi__convert_format(u, 4, req_comp, g.w, g.h); - } else if (g.out) { - // if there was an error and we allocated an image buffer, free it! - STBI_FREE(g.out); - } - - // free buffers needed for multiple frame loading; - STBI_FREE(g.history); - STBI_FREE(g.background); - - return u; +static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi_uc *u = 0; + stbi__gif g; + memset(&g, 0, sizeof(g)); + STBI_NOTUSED(ri); + + u = stbi__gif_load_next(s, &g, comp, req_comp, 0); + if (u == (stbi_uc *) s) u = 0; // end of animated gif marker + if (u) { + *x = g.w; + *y = g.h; + + // moved conversion to after successful load so that the same + // can be done for multiple frames. + if (req_comp && req_comp != 4) + u = stbi__convert_format(u, 4, req_comp, g.w, g.h); + } else if (g.out) { + // if there was an error and we allocated an image buffer, free it! + STBI_FREE(g.out); + } + + // free buffers needed for multiple frame loading; + STBI_FREE(g.history); + STBI_FREE(g.background); + + return u; +} + +static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) +{ + return stbi__gif_info_raw(s,x,y,comp); } - -static int stbi__gif_info(stbi__context * s, int * x, int * y, int * comp) { return stbi__gif_info_raw(s, x, y, comp); } #endif // ************************************************************************************************* // Radiance RGBE HDR loader // originally by Nicolas Schulz #ifndef STBI_NO_HDR -static int stbi__hdr_test_core(stbi__context * s, const char * signature) { - int i; - for (i = 0; signature[i]; ++i) - if (stbi__get8(s) != signature[i]) - return 0; - stbi__rewind(s); - return 1; +static int stbi__hdr_test_core(stbi__context *s, const char *signature) +{ + int i; + for (i=0; signature[i]; ++i) + if (stbi__get8(s) != signature[i]) + return 0; + stbi__rewind(s); + return 1; } -static int stbi__hdr_test(stbi__context * s) { - int r = stbi__hdr_test_core(s, "#?RADIANCE\n"); - stbi__rewind(s); - if (!r) { - r = stbi__hdr_test_core(s, "#?RGBE\n"); - stbi__rewind(s); - } - return r; +static int stbi__hdr_test(stbi__context* s) +{ + int r = stbi__hdr_test_core(s, "#?RADIANCE\n"); + stbi__rewind(s); + if(!r) { + r = stbi__hdr_test_core(s, "#?RGBE\n"); + stbi__rewind(s); + } + return r; } -#define STBI__HDR_BUFLEN 1024 -static char * stbi__hdr_gettoken(stbi__context * z, char * buffer) { - int len = 0; - char c = '\0'; +#define STBI__HDR_BUFLEN 1024 +static char *stbi__hdr_gettoken(stbi__context *z, char *buffer) +{ + int len=0; + char c = '\0'; - c = (char)stbi__get8(z); + c = (char) stbi__get8(z); - while (!stbi__at_eof(z) && c != '\n') { - buffer[len++] = c; - if (len == STBI__HDR_BUFLEN - 1) { - // flush to end of line - while (!stbi__at_eof(z) && stbi__get8(z) != '\n') - ; - break; - } - c = (char)stbi__get8(z); - } + while (!stbi__at_eof(z) && c != '\n') { + buffer[len++] = c; + if (len == STBI__HDR_BUFLEN-1) { + // flush to end of line + while (!stbi__at_eof(z) && stbi__get8(z) != '\n') + ; + break; + } + c = (char) stbi__get8(z); + } - buffer[len] = 0; - return buffer; -} - -static void stbi__hdr_convert(float * output, stbi_uc * input, int req_comp) { - if (input[3] != 0) { - float f1; - // Exponent - f1 = (float)ldexp(1.0f, input[3] - (int)(128 + 8)); - if (req_comp <= 2) - output[0] = (input[0] + input[1] + input[2]) * f1 / 3; - else { - output[0] = input[0] * f1; - output[1] = input[1] * f1; - output[2] = input[2] * f1; - } - if (req_comp == 2) - output[1] = 1; - if (req_comp == 4) - output[3] = 1; - } else { - switch (req_comp) { - case 4: - output[3] = 1; /* fallthrough */ - case 3: - output[0] = output[1] = output[2] = 0; - break; - case 2: - output[1] = 1; /* fallthrough */ - case 1: - output[0] = 0; - break; - } - } + buffer[len] = 0; + return buffer; } -static float * stbi__hdr_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri) { - char buffer[STBI__HDR_BUFLEN]; - char * token; - int valid = 0; - int width, height; - stbi_uc * scanline; - float * hdr_data; - int len; - unsigned char count, value; - int i, j, k, c1, c2, z; - const char * headerToken; - STBI_NOTUSED(ri); - - // Check identifier - headerToken = stbi__hdr_gettoken(s, buffer); - if (strcmp(headerToken, "#?RADIANCE") != 0 && strcmp(headerToken, "#?RGBE") != 0) - return stbi__errpf("not HDR", "Corrupt HDR image"); - - // Parse header - for (;;) { - token = stbi__hdr_gettoken(s, buffer); - if (token[0] == 0) - break; - if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) - valid = 1; - } - - if (!valid) - return stbi__errpf("unsupported format", "Unsupported HDR format"); - - // Parse width and height - // can't use sscanf() if we're not using stdio! - token = stbi__hdr_gettoken(s, buffer); - if (strncmp(token, "-Y ", 3)) - return stbi__errpf("unsupported data layout", "Unsupported HDR format"); - token += 3; - height = (int)strtol(token, &token, 10); - while (*token == ' ') - ++token; - if (strncmp(token, "+X ", 3)) - return stbi__errpf("unsupported data layout", "Unsupported HDR format"); - token += 3; - width = (int)strtol(token, NULL, 10); - - if (height > STBI_MAX_DIMENSIONS) - return stbi__errpf("too large", "Very large image (corrupt?)"); - if (width > STBI_MAX_DIMENSIONS) - return stbi__errpf("too large", "Very large image (corrupt?)"); - - *x = width; - *y = height; - - if (comp) - *comp = 3; - if (req_comp == 0) - req_comp = 3; - - if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0)) - return stbi__errpf("too large", "HDR image is too large"); - - // Read data - hdr_data = (float *)stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0); - if (!hdr_data) - return stbi__errpf("outofmem", "Out of memory"); - - // Load image data - // image data is stored as some number of sca - if (width < 8 || width >= 32768) { - // Read flat data - for (j = 0; j < height; ++j) { - for (i = 0; i < width; ++i) { - stbi_uc rgbe[4]; - main_decode_loop: - stbi__getn(s, rgbe, 4); - stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); - } - } - } else { - // Read RLE-encoded data - scanline = NULL; - - for (j = 0; j < height; ++j) { - c1 = stbi__get8(s); - c2 = stbi__get8(s); - len = stbi__get8(s); - if (c1 != 2 || c2 != 2 || (len & 0x80)) { - // not run-length encoded, so we have to actually use THIS data as a decoded - // pixel (note this can't be a valid pixel--one of RGB must be >= 128) - stbi_uc rgbe[4]; - rgbe[0] = (stbi_uc)c1; - rgbe[1] = (stbi_uc)c2; - rgbe[2] = (stbi_uc)len; - rgbe[3] = (stbi_uc)stbi__get8(s); - stbi__hdr_convert(hdr_data, rgbe, req_comp); - i = 1; - j = 0; - STBI_FREE(scanline); - goto main_decode_loop; // yes, this makes no sense - } - len <<= 8; - len |= stbi__get8(s); - if (len != width) { - STBI_FREE(hdr_data); - STBI_FREE(scanline); - return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); - } - if (scanline == NULL) { - scanline = (stbi_uc *)stbi__malloc_mad2(width, 4, 0); - if (!scanline) { - STBI_FREE(hdr_data); - return stbi__errpf("outofmem", "Out of memory"); - } +static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) +{ + if ( input[3] != 0 ) { + float f1; + // Exponent + f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); + if (req_comp <= 2) + output[0] = (input[0] + input[1] + input[2]) * f1 / 3; + else { + output[0] = input[0] * f1; + output[1] = input[1] * f1; + output[2] = input[2] * f1; + } + if (req_comp == 2) output[1] = 1; + if (req_comp == 4) output[3] = 1; + } else { + switch (req_comp) { + case 4: output[3] = 1; /* fallthrough */ + case 3: output[0] = output[1] = output[2] = 0; + break; + case 2: output[1] = 1; /* fallthrough */ + case 1: output[0] = 0; + break; + } + } +} + +static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + char buffer[STBI__HDR_BUFLEN]; + char *token; + int valid = 0; + int width, height; + stbi_uc *scanline; + float *hdr_data; + int len; + unsigned char count, value; + int i, j, k, c1,c2, z; + const char *headerToken; + STBI_NOTUSED(ri); + + // Check identifier + headerToken = stbi__hdr_gettoken(s,buffer); + if (strcmp(headerToken, "#?RADIANCE") != 0 && strcmp(headerToken, "#?RGBE") != 0) + return stbi__errpf("not HDR", "Corrupt HDR image"); + + // Parse header + for(;;) { + token = stbi__hdr_gettoken(s,buffer); + if (token[0] == 0) break; + if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; + } + + if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format"); + + // Parse width and height + // can't use sscanf() if we're not using stdio! + token = stbi__hdr_gettoken(s,buffer); + if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); + token += 3; + height = (int) strtol(token, &token, 10); + while (*token == ' ') ++token; + if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format"); + token += 3; + width = (int) strtol(token, NULL, 10); + + if (height > STBI_MAX_DIMENSIONS) return stbi__errpf("too large","Very large image (corrupt?)"); + if (width > STBI_MAX_DIMENSIONS) return stbi__errpf("too large","Very large image (corrupt?)"); + + *x = width; + *y = height; + + if (comp) *comp = 3; + if (req_comp == 0) req_comp = 3; + + if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0)) + return stbi__errpf("too large", "HDR image is too large"); + + // Read data + hdr_data = (float *) stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0); + if (!hdr_data) + return stbi__errpf("outofmem", "Out of memory"); + + // Load image data + // image data is stored as some number of sca + if ( width < 8 || width >= 32768) { + // Read flat data + for (j=0; j < height; ++j) { + for (i=0; i < width; ++i) { + stbi_uc rgbe[4]; + main_decode_loop: + stbi__getn(s, rgbe, 4); + stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); + } + } + } else { + // Read RLE-encoded data + scanline = NULL; + + for (j = 0; j < height; ++j) { + c1 = stbi__get8(s); + c2 = stbi__get8(s); + len = stbi__get8(s); + if (c1 != 2 || c2 != 2 || (len & 0x80)) { + // not run-length encoded, so we have to actually use THIS data as a decoded + // pixel (note this can't be a valid pixel--one of RGB must be >= 128) + stbi_uc rgbe[4]; + rgbe[0] = (stbi_uc) c1; + rgbe[1] = (stbi_uc) c2; + rgbe[2] = (stbi_uc) len; + rgbe[3] = (stbi_uc) stbi__get8(s); + stbi__hdr_convert(hdr_data, rgbe, req_comp); + i = 1; + j = 0; + STBI_FREE(scanline); + goto main_decode_loop; // yes, this makes no sense + } + len <<= 8; + len |= stbi__get8(s); + if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); } + if (scanline == NULL) { + scanline = (stbi_uc *) stbi__malloc_mad2(width, 4, 0); + if (!scanline) { + STBI_FREE(hdr_data); + return stbi__errpf("outofmem", "Out of memory"); } - - for (k = 0; k < 4; ++k) { - int nleft; - i = 0; - while ((nleft = width - i) > 0) { - count = stbi__get8(s); - if (count > 128) { - // Run - value = stbi__get8(s); - count -= 128; - if ((count == 0) || (count > nleft)) { - STBI_FREE(hdr_data); - STBI_FREE(scanline); - return stbi__errpf("corrupt", "bad RLE data in HDR"); - } - for (z = 0; z < count; ++z) - scanline[i++ * 4 + k] = value; - } else { - // Dump - if ((count == 0) || (count > nleft)) { - STBI_FREE(hdr_data); - STBI_FREE(scanline); - return stbi__errpf("corrupt", "bad RLE data in HDR"); - } - for (z = 0; z < count; ++z) - scanline[i++ * 4 + k] = stbi__get8(s); - } - } + } + + for (k = 0; k < 4; ++k) { + int nleft; + i = 0; + while ((nleft = width - i) > 0) { + count = stbi__get8(s); + if (count > 128) { + // Run + value = stbi__get8(s); + count -= 128; + if ((count == 0) || (count > nleft)) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); } + for (z = 0; z < count; ++z) + scanline[i++ * 4 + k] = value; + } else { + // Dump + if ((count == 0) || (count > nleft)) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); } + for (z = 0; z < count; ++z) + scanline[i++ * 4 + k] = stbi__get8(s); + } } - for (i = 0; i < width; ++i) - stbi__hdr_convert(hdr_data + (j * width + i) * req_comp, scanline + i * 4, req_comp); - } - if (scanline) - STBI_FREE(scanline); - } + } + for (i=0; i < width; ++i) + stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); + } + if (scanline) + STBI_FREE(scanline); + } - return hdr_data; + return hdr_data; } -static int stbi__hdr_info(stbi__context * s, int * x, int * y, int * comp) { - char buffer[STBI__HDR_BUFLEN]; - char * token; - int valid = 0; - int dummy; - - if (!x) - x = &dummy; - if (!y) - y = &dummy; - if (!comp) - comp = &dummy; - - if (stbi__hdr_test(s) == 0) { - stbi__rewind(s); - return 0; - } - - for (;;) { - token = stbi__hdr_gettoken(s, buffer); - if (token[0] == 0) - break; - if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) - valid = 1; - } - - if (!valid) { - stbi__rewind(s); - return 0; - } - token = stbi__hdr_gettoken(s, buffer); - if (strncmp(token, "-Y ", 3)) { - stbi__rewind(s); - return 0; - } - token += 3; - *y = (int)strtol(token, &token, 10); - while (*token == ' ') - ++token; - if (strncmp(token, "+X ", 3)) { - stbi__rewind(s); - return 0; - } - token += 3; - *x = (int)strtol(token, NULL, 10); - *comp = 3; - return 1; +static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp) +{ + char buffer[STBI__HDR_BUFLEN]; + char *token; + int valid = 0; + int dummy; + + if (!x) x = &dummy; + if (!y) y = &dummy; + if (!comp) comp = &dummy; + + if (stbi__hdr_test(s) == 0) { + stbi__rewind( s ); + return 0; + } + + for(;;) { + token = stbi__hdr_gettoken(s,buffer); + if (token[0] == 0) break; + if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; + } + + if (!valid) { + stbi__rewind( s ); + return 0; + } + token = stbi__hdr_gettoken(s,buffer); + if (strncmp(token, "-Y ", 3)) { + stbi__rewind( s ); + return 0; + } + token += 3; + *y = (int) strtol(token, &token, 10); + while (*token == ' ') ++token; + if (strncmp(token, "+X ", 3)) { + stbi__rewind( s ); + return 0; + } + token += 3; + *x = (int) strtol(token, NULL, 10); + *comp = 3; + return 1; } #endif // STBI_NO_HDR #ifndef STBI_NO_BMP -static int stbi__bmp_info(stbi__context * s, int * x, int * y, int * comp) { - void * p; - stbi__bmp_data info; - - info.all_a = 255; - p = stbi__bmp_parse_header(s, &info); - if (p == NULL) { - stbi__rewind(s); - return 0; - } - if (x) - *x = s->img_x; - if (y) - *y = s->img_y; - if (comp) { - if (info.bpp == 24 && info.ma == 0xff000000) - *comp = 3; - else - *comp = info.ma ? 4 : 3; - } - return 1; +static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp) +{ + void *p; + stbi__bmp_data info; + + info.all_a = 255; + p = stbi__bmp_parse_header(s, &info); + if (p == NULL) { + stbi__rewind( s ); + return 0; + } + if (x) *x = s->img_x; + if (y) *y = s->img_y; + if (comp) { + if (info.bpp == 24 && info.ma == 0xff000000) + *comp = 3; + else + *comp = info.ma ? 4 : 3; + } + return 1; } #endif #ifndef STBI_NO_PSD -static int stbi__psd_info(stbi__context * s, int * x, int * y, int * comp) { - int channelCount, dummy, depth; - if (!x) - x = &dummy; - if (!y) - y = &dummy; - if (!comp) - comp = &dummy; - if (stbi__get32be(s) != 0x38425053) { - stbi__rewind(s); - return 0; - } - if (stbi__get16be(s) != 1) { - stbi__rewind(s); - return 0; - } - stbi__skip(s, 6); - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) { - stbi__rewind(s); - return 0; - } - *y = stbi__get32be(s); - *x = stbi__get32be(s); - depth = stbi__get16be(s); - if (depth != 8 && depth != 16) { - stbi__rewind(s); - return 0; - } - if (stbi__get16be(s) != 3) { - stbi__rewind(s); - return 0; - } - *comp = 4; - return 1; -} - -static int stbi__psd_is16(stbi__context * s) { - int channelCount, depth; - if (stbi__get32be(s) != 0x38425053) { - stbi__rewind(s); - return 0; - } - if (stbi__get16be(s) != 1) { - stbi__rewind(s); - return 0; - } - stbi__skip(s, 6); - channelCount = stbi__get16be(s); - if (channelCount < 0 || channelCount > 16) { - stbi__rewind(s); - return 0; - } - STBI_NOTUSED(stbi__get32be(s)); - STBI_NOTUSED(stbi__get32be(s)); - depth = stbi__get16be(s); - if (depth != 16) { - stbi__rewind(s); - return 0; - } - return 1; +static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp) +{ + int channelCount, dummy, depth; + if (!x) x = &dummy; + if (!y) y = &dummy; + if (!comp) comp = &dummy; + if (stbi__get32be(s) != 0x38425053) { + stbi__rewind( s ); + return 0; + } + if (stbi__get16be(s) != 1) { + stbi__rewind( s ); + return 0; + } + stbi__skip(s, 6); + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) { + stbi__rewind( s ); + return 0; + } + *y = stbi__get32be(s); + *x = stbi__get32be(s); + depth = stbi__get16be(s); + if (depth != 8 && depth != 16) { + stbi__rewind( s ); + return 0; + } + if (stbi__get16be(s) != 3) { + stbi__rewind( s ); + return 0; + } + *comp = 4; + return 1; +} + +static int stbi__psd_is16(stbi__context *s) +{ + int channelCount, depth; + if (stbi__get32be(s) != 0x38425053) { + stbi__rewind( s ); + return 0; + } + if (stbi__get16be(s) != 1) { + stbi__rewind( s ); + return 0; + } + stbi__skip(s, 6); + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) { + stbi__rewind( s ); + return 0; + } + STBI_NOTUSED(stbi__get32be(s)); + STBI_NOTUSED(stbi__get32be(s)); + depth = stbi__get16be(s); + if (depth != 16) { + stbi__rewind( s ); + return 0; + } + return 1; } #endif #ifndef STBI_NO_PIC -static int stbi__pic_info(stbi__context * s, int * x, int * y, int * comp) { - int act_comp = 0, num_packets = 0, chained, dummy; - stbi__pic_packet packets[10]; - - if (!x) - x = &dummy; - if (!y) - y = &dummy; - if (!comp) - comp = &dummy; - - if (!stbi__pic_is4(s, "\x53\x80\xF6\x34")) { - stbi__rewind(s); - return 0; - } +static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) +{ + int act_comp=0,num_packets=0,chained,dummy; + stbi__pic_packet packets[10]; - stbi__skip(s, 88); + if (!x) x = &dummy; + if (!y) y = &dummy; + if (!comp) comp = &dummy; - *x = stbi__get16be(s); - *y = stbi__get16be(s); - if (stbi__at_eof(s)) { - stbi__rewind(s); - return 0; - } - if ((*x) != 0 && (1 << 28) / (*x) < (*y)) { - stbi__rewind(s); - return 0; - } + if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) { + stbi__rewind(s); + return 0; + } - stbi__skip(s, 8); + stbi__skip(s, 88); - do { - stbi__pic_packet * packet; + *x = stbi__get16be(s); + *y = stbi__get16be(s); + if (stbi__at_eof(s)) { + stbi__rewind( s); + return 0; + } + if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) { + stbi__rewind( s ); + return 0; + } - if (num_packets == sizeof(packets) / sizeof(packets[0])) - return 0; + stbi__skip(s, 8); - packet = &packets[num_packets++]; - chained = stbi__get8(s); - packet->size = stbi__get8(s); - packet->type = stbi__get8(s); - packet->channel = stbi__get8(s); - act_comp |= packet->channel; + do { + stbi__pic_packet *packet; - if (stbi__at_eof(s)) { - stbi__rewind(s); - return 0; - } - if (packet->size != 8) { - stbi__rewind(s); - return 0; - } - } while (chained); + if (num_packets==sizeof(packets)/sizeof(packets[0])) + return 0; + + packet = &packets[num_packets++]; + chained = stbi__get8(s); + packet->size = stbi__get8(s); + packet->type = stbi__get8(s); + packet->channel = stbi__get8(s); + act_comp |= packet->channel; - *comp = (act_comp & 0x10 ? 4 : 3); + if (stbi__at_eof(s)) { + stbi__rewind( s ); + return 0; + } + if (packet->size != 8) { + stbi__rewind( s ); + return 0; + } + } while (chained); - return 1; + *comp = (act_comp & 0x10 ? 4 : 3); + + return 1; } #endif @@ -7904,271 +7491,272 @@ static int stbi__pic_info(stbi__context * s, int * x, int * y, int * comp) { #ifndef STBI_NO_PNM -static int stbi__pnm_test(stbi__context * s) { - char p, t; - p = (char)stbi__get8(s); - t = (char)stbi__get8(s); - if (p != 'P' || (t != '5' && t != '6')) { - stbi__rewind(s); - return 0; - } - return 1; +static int stbi__pnm_test(stbi__context *s) +{ + char p, t; + p = (char) stbi__get8(s); + t = (char) stbi__get8(s); + if (p != 'P' || (t != '5' && t != '6')) { + stbi__rewind( s ); + return 0; + } + return 1; } -static void * stbi__pnm_load(stbi__context * s, int * x, int * y, int * comp, int req_comp, stbi__result_info * ri) { - stbi_uc * out; - STBI_NOTUSED(ri); - - ri->bits_per_channel = stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n); - if (ri->bits_per_channel == 0) - return 0; - - if (s->img_y > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - if (s->img_x > STBI_MAX_DIMENSIONS) - return stbi__errpuc("too large", "Very large image (corrupt?)"); - - *x = s->img_x; - *y = s->img_y; - if (comp) - *comp = s->img_n; - - if (!stbi__mad4sizes_valid(s->img_n, s->img_x, s->img_y, ri->bits_per_channel / 8, 0)) - return stbi__errpuc("too large", "PNM too large"); - - out = (stbi_uc *)stbi__malloc_mad4(s->img_n, s->img_x, s->img_y, ri->bits_per_channel / 8, 0); - if (!out) - return stbi__errpuc("outofmem", "Out of memory"); - if (!stbi__getn(s, out, s->img_n * s->img_x * s->img_y * (ri->bits_per_channel / 8))) { - STBI_FREE(out); - return stbi__errpuc("bad PNM", "PNM file truncated"); - } - - if (req_comp && req_comp != s->img_n) { - if (ri->bits_per_channel == 16) { - out = (stbi_uc *)stbi__convert_format16((stbi__uint16 *)out, s->img_n, req_comp, s->img_x, s->img_y); - } else { - out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); - } - if (out == NULL) - return out; // stbi__convert_format frees input on failure - } - return out; +static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi_uc *out; + STBI_NOTUSED(ri); + + ri->bits_per_channel = stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n); + if (ri->bits_per_channel == 0) + return 0; + + if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large","Very large image (corrupt?)"); + + *x = s->img_x; + *y = s->img_y; + if (comp) *comp = s->img_n; + + if (!stbi__mad4sizes_valid(s->img_n, s->img_x, s->img_y, ri->bits_per_channel / 8, 0)) + return stbi__errpuc("too large", "PNM too large"); + + out = (stbi_uc *) stbi__malloc_mad4(s->img_n, s->img_x, s->img_y, ri->bits_per_channel / 8, 0); + if (!out) return stbi__errpuc("outofmem", "Out of memory"); + if (!stbi__getn(s, out, s->img_n * s->img_x * s->img_y * (ri->bits_per_channel / 8))) { + STBI_FREE(out); + return stbi__errpuc("bad PNM", "PNM file truncated"); + } + + if (req_comp && req_comp != s->img_n) { + if (ri->bits_per_channel == 16) { + out = (stbi_uc *) stbi__convert_format16((stbi__uint16 *) out, s->img_n, req_comp, s->img_x, s->img_y); + } else { + out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); + } + if (out == NULL) return out; // stbi__convert_format frees input on failure + } + return out; +} + +static int stbi__pnm_isspace(char c) +{ + return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; } -static int stbi__pnm_isspace(char c) { return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; } - -static void stbi__pnm_skip_whitespace(stbi__context * s, char * c) { - for (;;) { - while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) - *c = (char)stbi__get8(s); +static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) +{ + for (;;) { + while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) + *c = (char) stbi__get8(s); - if (stbi__at_eof(s) || *c != '#') - break; + if (stbi__at_eof(s) || *c != '#') + break; - while (!stbi__at_eof(s) && *c != '\n' && *c != '\r') - *c = (char)stbi__get8(s); - } + while (!stbi__at_eof(s) && *c != '\n' && *c != '\r' ) + *c = (char) stbi__get8(s); + } } -static int stbi__pnm_isdigit(char c) { return c >= '0' && c <= '9'; } +static int stbi__pnm_isdigit(char c) +{ + return c >= '0' && c <= '9'; +} -static int stbi__pnm_getinteger(stbi__context * s, char * c) { - int value = 0; +static int stbi__pnm_getinteger(stbi__context *s, char *c) +{ + int value = 0; - while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) { - value = value * 10 + (*c - '0'); - *c = (char)stbi__get8(s); - if ((value > 214748364) || (value == 214748364 && *c > '7')) - return stbi__err("integer parse overflow", "Parsing an integer in the PPM header overflowed a 32-bit int"); - } + while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) { + value = value*10 + (*c - '0'); + *c = (char) stbi__get8(s); + if((value > 214748364) || (value == 214748364 && *c > '7')) + return stbi__err("integer parse overflow", "Parsing an integer in the PPM header overflowed a 32-bit int"); + } - return value; + return value; } -static int stbi__pnm_info(stbi__context * s, int * x, int * y, int * comp) { - int maxv, dummy; - char c, p, t; +static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp) +{ + int maxv, dummy; + char c, p, t; - if (!x) - x = &dummy; - if (!y) - y = &dummy; - if (!comp) - comp = &dummy; + if (!x) x = &dummy; + if (!y) y = &dummy; + if (!comp) comp = &dummy; - stbi__rewind(s); + stbi__rewind(s); - // Get identifier - p = (char)stbi__get8(s); - t = (char)stbi__get8(s); - if (p != 'P' || (t != '5' && t != '6')) { - stbi__rewind(s); - return 0; - } + // Get identifier + p = (char) stbi__get8(s); + t = (char) stbi__get8(s); + if (p != 'P' || (t != '5' && t != '6')) { + stbi__rewind(s); + return 0; + } - *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm + *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm - c = (char)stbi__get8(s); - stbi__pnm_skip_whitespace(s, &c); + c = (char) stbi__get8(s); + stbi__pnm_skip_whitespace(s, &c); - *x = stbi__pnm_getinteger(s, &c); // read width - if (*x == 0) - return stbi__err("invalid width", "PPM image header had zero or overflowing width"); - stbi__pnm_skip_whitespace(s, &c); + *x = stbi__pnm_getinteger(s, &c); // read width + if(*x == 0) + return stbi__err("invalid width", "PPM image header had zero or overflowing width"); + stbi__pnm_skip_whitespace(s, &c); - *y = stbi__pnm_getinteger(s, &c); // read height - if (*y == 0) - return stbi__err("invalid width", "PPM image header had zero or overflowing width"); - stbi__pnm_skip_whitespace(s, &c); + *y = stbi__pnm_getinteger(s, &c); // read height + if (*y == 0) + return stbi__err("invalid width", "PPM image header had zero or overflowing width"); + stbi__pnm_skip_whitespace(s, &c); - maxv = stbi__pnm_getinteger(s, &c); // read max value - if (maxv > 65535) - return stbi__err("max value > 65535", "PPM image supports only 8-bit and 16-bit images"); - else if (maxv > 255) - return 16; - else - return 8; + maxv = stbi__pnm_getinteger(s, &c); // read max value + if (maxv > 65535) + return stbi__err("max value > 65535", "PPM image supports only 8-bit and 16-bit images"); + else if (maxv > 255) + return 16; + else + return 8; } -static int stbi__pnm_is16(stbi__context * s) { - if (stbi__pnm_info(s, NULL, NULL, NULL) == 16) - return 1; - return 0; +static int stbi__pnm_is16(stbi__context *s) +{ + if (stbi__pnm_info(s, NULL, NULL, NULL) == 16) + return 1; + return 0; } #endif -static int stbi__info_main(stbi__context * s, int * x, int * y, int * comp) { -#ifndef STBI_NO_JPEG - if (stbi__jpeg_info(s, x, y, comp)) - return 1; -#endif +static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) +{ + #ifndef STBI_NO_JPEG + if (stbi__jpeg_info(s, x, y, comp)) return 1; + #endif -#ifndef STBI_NO_PNG - if (stbi__png_info(s, x, y, comp)) - return 1; -#endif + #ifndef STBI_NO_PNG + if (stbi__png_info(s, x, y, comp)) return 1; + #endif -#ifndef STBI_NO_GIF - if (stbi__gif_info(s, x, y, comp)) - return 1; -#endif + #ifndef STBI_NO_GIF + if (stbi__gif_info(s, x, y, comp)) return 1; + #endif -#ifndef STBI_NO_BMP - if (stbi__bmp_info(s, x, y, comp)) - return 1; -#endif + #ifndef STBI_NO_BMP + if (stbi__bmp_info(s, x, y, comp)) return 1; + #endif -#ifndef STBI_NO_PSD - if (stbi__psd_info(s, x, y, comp)) - return 1; -#endif + #ifndef STBI_NO_PSD + if (stbi__psd_info(s, x, y, comp)) return 1; + #endif -#ifndef STBI_NO_PIC - if (stbi__pic_info(s, x, y, comp)) - return 1; -#endif + #ifndef STBI_NO_PIC + if (stbi__pic_info(s, x, y, comp)) return 1; + #endif -#ifndef STBI_NO_PNM - if (stbi__pnm_info(s, x, y, comp)) - return 1; -#endif + #ifndef STBI_NO_PNM + if (stbi__pnm_info(s, x, y, comp)) return 1; + #endif -#ifndef STBI_NO_HDR - if (stbi__hdr_info(s, x, y, comp)) - return 1; -#endif + #ifndef STBI_NO_HDR + if (stbi__hdr_info(s, x, y, comp)) return 1; + #endif -// test tga last because it's a crappy test! -#ifndef STBI_NO_TGA - if (stbi__tga_info(s, x, y, comp)) - return 1; -#endif - return stbi__err("unknown image type", "Image not of any known type, or corrupt"); + // test tga last because it's a crappy test! + #ifndef STBI_NO_TGA + if (stbi__tga_info(s, x, y, comp)) + return 1; + #endif + return stbi__err("unknown image type", "Image not of any known type, or corrupt"); } -static int stbi__is_16_main(stbi__context * s) { -#ifndef STBI_NO_PNG - if (stbi__png_is16(s)) - return 1; -#endif +static int stbi__is_16_main(stbi__context *s) +{ + #ifndef STBI_NO_PNG + if (stbi__png_is16(s)) return 1; + #endif -#ifndef STBI_NO_PSD - if (stbi__psd_is16(s)) - return 1; -#endif + #ifndef STBI_NO_PSD + if (stbi__psd_is16(s)) return 1; + #endif -#ifndef STBI_NO_PNM - if (stbi__pnm_is16(s)) - return 1; -#endif - return 0; + #ifndef STBI_NO_PNM + if (stbi__pnm_is16(s)) return 1; + #endif + return 0; } #ifndef STBI_NO_STDIO -STBIDEF int stbi_info(char const * filename, int * x, int * y, int * comp) { - FILE * f = stbi__fopen(filename, "rb"); +STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp) +{ + FILE *f = stbi__fopen(filename, "rb"); int result; - if (!f) - return stbi__err("can't fopen", "Unable to open file"); + if (!f) return stbi__err("can't fopen", "Unable to open file"); result = stbi_info_from_file(f, x, y, comp); fclose(f); return result; } -STBIDEF int stbi_info_from_file(FILE * f, int * x, int * y, int * comp) { - int r; - stbi__context s; - long pos = ftell(f); - stbi__start_file(&s, f); - r = stbi__info_main(&s, x, y, comp); - fseek(f, pos, SEEK_SET); - return r; +STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) +{ + int r; + stbi__context s; + long pos = ftell(f); + stbi__start_file(&s, f); + r = stbi__info_main(&s,x,y,comp); + fseek(f,pos,SEEK_SET); + return r; } -STBIDEF int stbi_is_16_bit(char const * filename) { - FILE * f = stbi__fopen(filename, "rb"); +STBIDEF int stbi_is_16_bit(char const *filename) +{ + FILE *f = stbi__fopen(filename, "rb"); int result; - if (!f) - return stbi__err("can't fopen", "Unable to open file"); + if (!f) return stbi__err("can't fopen", "Unable to open file"); result = stbi_is_16_bit_from_file(f); fclose(f); return result; } -STBIDEF int stbi_is_16_bit_from_file(FILE * f) { - int r; - stbi__context s; - long pos = ftell(f); - stbi__start_file(&s, f); - r = stbi__is_16_main(&s); - fseek(f, pos, SEEK_SET); - return r; +STBIDEF int stbi_is_16_bit_from_file(FILE *f) +{ + int r; + stbi__context s; + long pos = ftell(f); + stbi__start_file(&s, f); + r = stbi__is_16_main(&s); + fseek(f,pos,SEEK_SET); + return r; } #endif // !STBI_NO_STDIO -STBIDEF int stbi_info_from_memory(stbi_uc const * buffer, int len, int * x, int * y, int * comp) { - stbi__context s; - stbi__start_mem(&s, buffer, len); - return stbi__info_main(&s, x, y, comp); +STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp) +{ + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__info_main(&s,x,y,comp); } -STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const * c, void * user, int * x, int * y, int * comp) { - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *)c, user); - return stbi__info_main(&s, x, y, comp); +STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); + return stbi__info_main(&s,x,y,comp); } -STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const * buffer, int len) { - stbi__context s; - stbi__start_mem(&s, buffer, len); - return stbi__is_16_main(&s); +STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len) +{ + stbi__context s; + stbi__start_mem(&s,buffer,len); + return stbi__is_16_main(&s); } -STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const * c, void * user) { - stbi__context s; - stbi__start_callbacks(&s, (stbi_io_callbacks *)c, user); - return stbi__is_16_main(&s); +STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user); + return stbi__is_16_main(&s); } #endif // STB_IMAGE_IMPLEMENTATION @@ -8279,9 +7867,12 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const * c, void * us 1.30 (2011-06-11) added ability to load files via callbacks to accomidate custom input streams (Ben Wenger) removed deprecated format-specific test/load functions - removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks - anyway error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha) fix inefficiency in - decoding 32-bit BMP (David Woo) 1.29 (2010-08-16) various warning fixes from Aurelien Pocheville 1.28 (2010-08-01) + removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway + error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha) + fix inefficiency in decoding 32-bit BMP (David Woo) + 1.29 (2010-08-16) + various warning fixes from Aurelien Pocheville + 1.28 (2010-08-01) fix bug in GIF palette transparency (SpartanJ) 1.27 (2010-08-01) cast-to-stbi_uc to fix warnings @@ -8353,6 +7944,7 @@ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const * c, void * us first released version */ + /* ------------------------------------------------------------------------------ This software is available under 2 licenses -- choose whichever you prefer. diff --git a/stb/stb_image_resize.h b/stb/stb_image_resize.h deleted file mode 100644 index bcca92c2dc..0000000000 --- a/stb/stb_image_resize.h +++ /dev/null @@ -1,2585 +0,0 @@ -/* stb_image_resize - v0.90 - public domain image resizing - by Jorge L Rodriguez (@VinoBS) - 2014 - http://github.com/nothings/stb - - Written with emphasis on usability, portability, and efficiency. (No - SIMD or threads, so it be easily outperformed by libs that use those.) - Only scaling and translation is supported, no rotations or shears. - Easy API downsamples w/Mitchell filter, upsamples w/cubic interpolation. - - COMPILING & LINKING - In one C/C++ file that #includes this file, do this: - #define STB_IMAGE_RESIZE_IMPLEMENTATION - before the #include. That will create the implementation in that file. - - QUICKSTART - stbir_resize_uint8( input_pixels , in_w , in_h , 0, - output_pixels, out_w, out_h, 0, num_channels) - stbir_resize_float(...) - stbir_resize_uint8_srgb( input_pixels , in_w , in_h , 0, - output_pixels, out_w, out_h, 0, - num_channels , alpha_chan , 0) - stbir_resize_uint8_srgb_edgemode( - input_pixels , in_w , in_h , 0, - output_pixels, out_w, out_h, 0, - num_channels , alpha_chan , 0, STBIR_EDGE_CLAMP) - // WRAP/REFLECT/ZERO - - FULL API - See the "header file" section of the source for API documentation. - - ADDITIONAL DOCUMENTATION - - SRGB & FLOATING POINT REPRESENTATION - The sRGB functions presume IEEE floating point. If you do not have - IEEE floating point, define STBIR_NON_IEEE_FLOAT. This will use - a slower implementation. - - MEMORY ALLOCATION - The resize functions here perform a single memory allocation using - malloc. To control the memory allocation, before the #include that - triggers the implementation, do: - - #define STBIR_MALLOC(size,context) ... - #define STBIR_FREE(ptr,context) ... - - Each resize function makes exactly one call to malloc/free, so to use - temp memory, store the temp memory in the context and return that. - - ASSERT - Define STBIR_ASSERT(boolval) to override assert() and not use assert.h - - OPTIMIZATION - Define STBIR_SATURATE_INT to compute clamp values in-range using - integer operations instead of float operations. This may be faster - on some platforms. - - DEFAULT FILTERS - For functions which don't provide explicit control over what filters - to use, you can change the compile-time defaults with - - #define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_something - #define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_something - - See stbir_filter in the header-file section for the list of filters. - - NEW FILTERS - A number of 1D filter kernels are used. For a list of - supported filters see the stbir_filter enum. To add a new filter, - write a filter function and add it to stbir__filter_info_table. - - PROGRESS - For interactive use with slow resize operations, you can install - a progress-report callback: - - #define STBIR_PROGRESS_REPORT(val) some_func(val) - - The parameter val is a float which goes from 0 to 1 as progress is made. - - For example: - - static void my_progress_report(float progress); - #define STBIR_PROGRESS_REPORT(val) my_progress_report(val) - - #define STB_IMAGE_RESIZE_IMPLEMENTATION - #include "stb_image_resize.h" - - static void my_progress_report(float progress) - { - printf("Progress: %f%%\n", progress*100); - } - - MAX CHANNELS - If your image has more than 64 channels, define STBIR_MAX_CHANNELS - to the max you'll have. - - ALPHA CHANNEL - Most of the resizing functions provide the ability to control how - the alpha channel of an image is processed. The important things - to know about this: - - 1. The best mathematically-behaved version of alpha to use is - called "premultiplied alpha", in which the other color channels - have had the alpha value multiplied in. If you use premultiplied - alpha, linear filtering (such as image resampling done by this - library, or performed in texture units on GPUs) does the "right - thing". While premultiplied alpha is standard in the movie CGI - industry, it is still uncommon in the videogame/real-time world. - - If you linearly filter non-premultiplied alpha, strange effects - occur. (For example, the average of 1% opaque bright green - and 99% opaque black produces 50% transparent dark green when - non-premultiplied, whereas premultiplied it produces 50% - transparent near-black. The former introduces green energy - that doesn't exist in the source image.) - - 2. Artists should not edit premultiplied-alpha images; artists - want non-premultiplied alpha images. Thus, art tools generally output - non-premultiplied alpha images. - - 3. You will get best results in most cases by converting images - to premultiplied alpha before processing them mathematically. - - 4. If you pass the flag STBIR_FLAG_ALPHA_PREMULTIPLIED, the - resizer does not do anything special for the alpha channel; - it is resampled identically to other channels. This produces - the correct results for premultiplied-alpha images, but produces - less-than-ideal results for non-premultiplied-alpha images. - - 5. If you do not pass the flag STBIR_FLAG_ALPHA_PREMULTIPLIED, - then the resizer weights the contribution of input pixels - based on their alpha values, or, equivalently, it multiplies - the alpha value into the color channels, resamples, then divides - by the resultant alpha value. Input pixels which have alpha=0 do - not contribute at all to output pixels unless _all_ of the input - pixels affecting that output pixel have alpha=0, in which case - the result for that pixel is the same as it would be without - STBIR_FLAG_ALPHA_PREMULTIPLIED. However, this is only true for - input images in integer formats. For input images in float format, - input pixels with alpha=0 have no effect, and output pixels - which have alpha=0 will be 0 in all channels. (For float images, - you can manually achieve the same result by adding a tiny epsilon - value to the alpha channel of every image, and then subtracting - or clamping it at the end.) - - 6. You can suppress the behavior described in #5 and make - all-0-alpha pixels have 0 in all channels by #defining - STBIR_NO_ALPHA_EPSILON. - - 7. You can separately control whether the alpha channel is - interpreted as linear or affected by the colorspace. By default - it is linear; you almost never want to apply the colorspace. - (For example, graphics hardware does not apply sRGB conversion - to the alpha channel.) - - ADDITIONAL CONTRIBUTORS - Sean Barrett: API design, optimizations - - REVISIONS - 0.90 (2014-09-17) first released version - - LICENSE - This software is in the public domain. Where that dedication is not - recognized, you are granted a perpetual, irrevocable license to copy - and modify this file as you see fit. - - TODO - Don't decode all of the image data when only processing a partial tile - Don't use full-width decode buffers when only processing a partial tile - When processing wide images, break processing into tiles so data fits in L1 cache - Installable filters? - Resize that respects alpha test coverage - (Reference code: FloatImage::alphaTestCoverage and FloatImage::scaleAlphaToCoverage: - https://code.google.com/p/nvidia-texture-tools/source/browse/trunk/src/nvimage/FloatImage.cpp ) -*/ - -#ifndef STBIR_INCLUDE_STB_IMAGE_RESIZE_H -#define STBIR_INCLUDE_STB_IMAGE_RESIZE_H - -#ifdef _MSC_VER -typedef unsigned char stbir_uint8; -typedef unsigned short stbir_uint16; -typedef unsigned int stbir_uint32; -#else -#include -typedef uint8_t stbir_uint8; -typedef uint16_t stbir_uint16; -typedef uint32_t stbir_uint32; -#endif - -#ifdef STB_IMAGE_RESIZE_STATIC -#define STBIRDEF static -#else -#ifdef __cplusplus -#define STBIRDEF extern "C" -#else -#define STBIRDEF extern -#endif -#endif - - -////////////////////////////////////////////////////////////////////////////// -// -// Easy-to-use API: -// -// * "input pixels" points to an array of image data with 'num_channels' channels (e.g. RGB=3, RGBA=4) -// * input_w is input image width (x-axis), input_h is input image height (y-axis) -// * stride is the offset between successive rows of image data in memory, in bytes. you can -// specify 0 to mean packed continuously in memory -// * alpha channel is treated identically to other channels. -// * colorspace is linear or sRGB as specified by function name -// * returned result is 1 for success or 0 in case of an error. -// #define STBIR_ASSERT() to trigger an assert on parameter validation errors. -// * Memory required grows approximately linearly with input and output size, but with -// discontinuities at input_w == output_w and input_h == output_h. -// * These functions use a "default" resampling filter defined at compile time. To change the filter, -// you can change the compile-time defaults by #defining STBIR_DEFAULT_FILTER_UPSAMPLE -// and STBIR_DEFAULT_FILTER_DOWNSAMPLE, or you can use the medium-complexity API. - -STBIRDEF int stbir_resize_uint8( const unsigned char *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels); - -STBIRDEF int stbir_resize_float( const float *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - float *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels); - - -// The following functions interpret image data as gamma-corrected sRGB. -// Specify STBIR_ALPHA_CHANNEL_NONE if you have no alpha channel, -// or otherwise provide the index of the alpha channel. Flags value -// of 0 will probably do the right thing if you're not sure what -// the flags mean. - -#define STBIR_ALPHA_CHANNEL_NONE -1 - -// Set this flag if your texture has premultiplied alpha. Otherwise, stbir will -// use alpha-weighted resampling (effectively premultiplying, resampling, -// then unpremultiplying). -#define STBIR_FLAG_ALPHA_PREMULTIPLIED (1 << 0) -// The specified alpha channel should be handled as gamma-corrected value even -// when doing sRGB operations. -#define STBIR_FLAG_ALPHA_USES_COLORSPACE (1 << 1) - -STBIRDEF int stbir_resize_uint8_srgb(const unsigned char *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags); - - -typedef enum -{ - STBIR_EDGE_CLAMP = 1, - STBIR_EDGE_REFLECT = 2, - STBIR_EDGE_WRAP = 3, - STBIR_EDGE_ZERO = 4, -} stbir_edge; - -// This function adds the ability to specify how requests to sample off the edge of the image are handled. -STBIRDEF int stbir_resize_uint8_srgb_edgemode(const unsigned char *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_wrap_mode); - -////////////////////////////////////////////////////////////////////////////// -// -// Medium-complexity API -// -// This extends the easy-to-use API as follows: -// -// * Alpha-channel can be processed separately -// * If alpha_channel is not STBIR_ALPHA_CHANNEL_NONE -// * Alpha channel will not be gamma corrected (unless flags&STBIR_FLAG_GAMMA_CORRECT) -// * Filters will be weighted by alpha channel (unless flags&STBIR_FLAG_ALPHA_PREMULTIPLIED) -// * Filter can be selected explicitly -// * uint16 image type -// * sRGB colorspace available for all types -// * context parameter for passing to STBIR_MALLOC - -typedef enum -{ - STBIR_FILTER_DEFAULT = 0, // use same filter type that easy-to-use API chooses - STBIR_FILTER_BOX = 1, // A trapezoid w/1-pixel wide ramps, same result as box for integer scale ratios - STBIR_FILTER_TRIANGLE = 2, // On upsampling, produces same results as bilinear texture filtering - STBIR_FILTER_CUBICBSPLINE = 3, // The cubic b-spline (aka Mitchell-Netrevalli with B=1,C=0), gaussian-esque - STBIR_FILTER_CATMULLROM = 4, // An interpolating cubic spline - STBIR_FILTER_MITCHELL = 5, // Mitchell-Netrevalli filter with B=1/3, C=1/3 -} stbir_filter; - -typedef enum -{ - STBIR_COLORSPACE_LINEAR, - STBIR_COLORSPACE_SRGB, - - STBIR_MAX_COLORSPACES, -} stbir_colorspace; - -// The following functions are all identical except for the type of the image data - -STBIRDEF int stbir_resize_uint8_generic( const unsigned char *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space, - void *alloc_context); - -STBIRDEF int stbir_resize_uint16_generic(const stbir_uint16 *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - stbir_uint16 *output_pixels , int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space, - void *alloc_context); - -STBIRDEF int stbir_resize_float_generic( const float *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - float *output_pixels , int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space, - void *alloc_context); - - - -////////////////////////////////////////////////////////////////////////////// -// -// Full-complexity API -// -// This extends the medium API as follows: -// -// * uint32 image type -// * not typesafe -// * separate filter types for each axis -// * separate edge modes for each axis -// * can specify scale explicitly for subpixel correctness -// * can specify image source tile using texture coordinates - -typedef enum -{ - STBIR_TYPE_UINT8 , - STBIR_TYPE_UINT16, - STBIR_TYPE_UINT32, - STBIR_TYPE_FLOAT , - - STBIR_MAX_TYPES -} stbir_datatype; - -STBIRDEF int stbir_resize( const void *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - stbir_datatype datatype, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical, - stbir_filter filter_horizontal, stbir_filter filter_vertical, - stbir_colorspace space, void *alloc_context); - -STBIRDEF int stbir_resize_subpixel(const void *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - stbir_datatype datatype, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical, - stbir_filter filter_horizontal, stbir_filter filter_vertical, - stbir_colorspace space, void *alloc_context, - float x_scale, float y_scale, - float x_offset, float y_offset); - -STBIRDEF int stbir_resize_region( const void *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - stbir_datatype datatype, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical, - stbir_filter filter_horizontal, stbir_filter filter_vertical, - stbir_colorspace space, void *alloc_context, - float s0, float t0, float s1, float t1); -// (s0, t0) & (s1, t1) are the top-left and bottom right corner (uv addressing style: [0, 1]x[0, 1]) of a region of the input image to use. - -// -// -//// end header file ///////////////////////////////////////////////////// -#endif // STBIR_INCLUDE_STB_IMAGE_RESIZE_H - - - - - -#ifdef STB_IMAGE_RESIZE_IMPLEMENTATION - -#ifndef STBIR_ASSERT -#include -#define STBIR_ASSERT(x) assert(x) -#endif - -#ifdef STBIR_DEBUG -#define STBIR__DEBUG_ASSERT STBIR_ASSERT -#else -#define STBIR__DEBUG_ASSERT -#endif - -// If you hit this it means I haven't done it yet. -#define STBIR__UNIMPLEMENTED(x) STBIR_ASSERT(!(x)) - -// For memset -#include - -#include - -#ifndef STBIR_MALLOC -#include -#define STBIR_MALLOC(size,c) malloc(size) -#define STBIR_FREE(ptr,c) free(ptr) -#endif - -#ifndef _MSC_VER -#ifdef __cplusplus -#define stbir__inline inline -#else -#define stbir__inline -#endif -#else -#define stbir__inline __forceinline -#endif - - -// should produce compiler error if size is wrong -typedef unsigned char stbir__validate_uint32[sizeof(stbir_uint32) == 4 ? 1 : -1]; - -#ifdef _MSC_VER -#define STBIR__NOTUSED(v) (void)(v) -#else -#define STBIR__NOTUSED(v) (void)sizeof(v) -#endif - -#define STBIR__ARRAY_SIZE(a) (sizeof((a))/sizeof((a)[0])) - -#ifndef STBIR_DEFAULT_FILTER_UPSAMPLE -#define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM -#endif - -#ifndef STBIR_DEFAULT_FILTER_DOWNSAMPLE -#define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL -#endif - -#ifndef STBIR_PROGRESS_REPORT -#define STBIR_PROGRESS_REPORT(float_0_to_1) -#endif - -#ifndef STBIR_MAX_CHANNELS -#define STBIR_MAX_CHANNELS 64 -#endif - -#if STBIR_MAX_CHANNELS > 65536 -#error "Too many channels; STBIR_MAX_CHANNELS must be no more than 65536." -// because we store the indices in 16-bit variables -#endif - -// This value is added to alpha just before premultiplication to avoid -// zeroing out color values. It is equivalent to 2^-80. If you don't want -// that behavior (it may interfere if you have floating point images with -// very small alpha values) then you can define STBIR_NO_ALPHA_EPSILON to -// disable it. -#ifndef STBIR_ALPHA_EPSILON -#define STBIR_ALPHA_EPSILON ((float)1 / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20)) -#endif - - - -#ifdef _MSC_VER -#define STBIR__UNUSED_PARAM(v) (void)(v) -#else -#define STBIR__UNUSED_PARAM(v) (void)sizeof(v) -#endif - -// must match stbir_datatype -static unsigned char stbir__type_size[] = { - 1, // STBIR_TYPE_UINT8 - 2, // STBIR_TYPE_UINT16 - 4, // STBIR_TYPE_UINT32 - 4, // STBIR_TYPE_FLOAT -}; - -// Kernel function centered at 0 -typedef float (stbir__kernel_fn)(float x, float scale); -typedef float (stbir__support_fn)(float scale); - -typedef struct -{ - stbir__kernel_fn* kernel; - stbir__support_fn* support; -} stbir__filter_info; - -// When upsampling, the contributors are which source pixels contribute. -// When downsampling, the contributors are which destination pixels are contributed to. -typedef struct -{ - int n0; // First contributing pixel - int n1; // Last contributing pixel -} stbir__contributors; - -typedef struct -{ - const void* input_data; - int input_w; - int input_h; - int input_stride_bytes; - - void* output_data; - int output_w; - int output_h; - int output_stride_bytes; - - float s0, t0, s1, t1; - - float horizontal_shift; // Units: output pixels - float vertical_shift; // Units: output pixels - float horizontal_scale; - float vertical_scale; - - int channels; - int alpha_channel; - stbir_uint32 flags; - stbir_datatype type; - stbir_filter horizontal_filter; - stbir_filter vertical_filter; - stbir_edge edge_horizontal; - stbir_edge edge_vertical; - stbir_colorspace colorspace; - - stbir__contributors* horizontal_contributors; - float* horizontal_coefficients; - - stbir__contributors* vertical_contributors; - float* vertical_coefficients; - - int decode_buffer_pixels; - float* decode_buffer; - - float* horizontal_buffer; - - // cache these because ceil/floor are inexplicably showing up in profile - int horizontal_coefficient_width; - int vertical_coefficient_width; - int horizontal_filter_pixel_width; - int vertical_filter_pixel_width; - int horizontal_filter_pixel_margin; - int vertical_filter_pixel_margin; - int horizontal_num_contributors; - int vertical_num_contributors; - - int ring_buffer_length_bytes; // The length of an individual entry in the ring buffer. The total number of ring buffers is stbir__get_filter_pixel_width(filter) - int ring_buffer_first_scanline; - int ring_buffer_last_scanline; - int ring_buffer_begin_index; - float* ring_buffer; - - float* encode_buffer; // A temporary buffer to store floats so we don't lose precision while we do multiply-adds. - - int horizontal_contributors_size; - int horizontal_coefficients_size; - int vertical_contributors_size; - int vertical_coefficients_size; - int decode_buffer_size; - int horizontal_buffer_size; - int ring_buffer_size; - int encode_buffer_size; -} stbir__info; - -static stbir__inline int stbir__min(int a, int b) -{ - return a < b ? a : b; -} - -static stbir__inline int stbir__max(int a, int b) -{ - return a > b ? a : b; -} - -static stbir__inline float stbir__saturate(float x) -{ - if (x < 0) - return 0; - - if (x > 1) - return 1; - - return x; -} - -#ifdef STBIR_SATURATE_INT -static stbir__inline stbir_uint8 stbir__saturate8(int x) -{ - if ((unsigned int) x <= 255) - return x; - - if (x < 0) - return 0; - - return 255; -} - -static stbir__inline stbir_uint16 stbir__saturate16(int x) -{ - if ((unsigned int) x <= 65535) - return x; - - if (x < 0) - return 0; - - return 65535; -} -#endif - -static float stbir__srgb_uchar_to_linear_float[256] = { - 0.000000f, 0.000304f, 0.000607f, 0.000911f, 0.001214f, 0.001518f, 0.001821f, 0.002125f, 0.002428f, 0.002732f, 0.003035f, - 0.003347f, 0.003677f, 0.004025f, 0.004391f, 0.004777f, 0.005182f, 0.005605f, 0.006049f, 0.006512f, 0.006995f, 0.007499f, - 0.008023f, 0.008568f, 0.009134f, 0.009721f, 0.010330f, 0.010960f, 0.011612f, 0.012286f, 0.012983f, 0.013702f, 0.014444f, - 0.015209f, 0.015996f, 0.016807f, 0.017642f, 0.018500f, 0.019382f, 0.020289f, 0.021219f, 0.022174f, 0.023153f, 0.024158f, - 0.025187f, 0.026241f, 0.027321f, 0.028426f, 0.029557f, 0.030713f, 0.031896f, 0.033105f, 0.034340f, 0.035601f, 0.036889f, - 0.038204f, 0.039546f, 0.040915f, 0.042311f, 0.043735f, 0.045186f, 0.046665f, 0.048172f, 0.049707f, 0.051269f, 0.052861f, - 0.054480f, 0.056128f, 0.057805f, 0.059511f, 0.061246f, 0.063010f, 0.064803f, 0.066626f, 0.068478f, 0.070360f, 0.072272f, - 0.074214f, 0.076185f, 0.078187f, 0.080220f, 0.082283f, 0.084376f, 0.086500f, 0.088656f, 0.090842f, 0.093059f, 0.095307f, - 0.097587f, 0.099899f, 0.102242f, 0.104616f, 0.107023f, 0.109462f, 0.111932f, 0.114435f, 0.116971f, 0.119538f, 0.122139f, - 0.124772f, 0.127438f, 0.130136f, 0.132868f, 0.135633f, 0.138432f, 0.141263f, 0.144128f, 0.147027f, 0.149960f, 0.152926f, - 0.155926f, 0.158961f, 0.162029f, 0.165132f, 0.168269f, 0.171441f, 0.174647f, 0.177888f, 0.181164f, 0.184475f, 0.187821f, - 0.191202f, 0.194618f, 0.198069f, 0.201556f, 0.205079f, 0.208637f, 0.212231f, 0.215861f, 0.219526f, 0.223228f, 0.226966f, - 0.230740f, 0.234551f, 0.238398f, 0.242281f, 0.246201f, 0.250158f, 0.254152f, 0.258183f, 0.262251f, 0.266356f, 0.270498f, - 0.274677f, 0.278894f, 0.283149f, 0.287441f, 0.291771f, 0.296138f, 0.300544f, 0.304987f, 0.309469f, 0.313989f, 0.318547f, - 0.323143f, 0.327778f, 0.332452f, 0.337164f, 0.341914f, 0.346704f, 0.351533f, 0.356400f, 0.361307f, 0.366253f, 0.371238f, - 0.376262f, 0.381326f, 0.386430f, 0.391573f, 0.396755f, 0.401978f, 0.407240f, 0.412543f, 0.417885f, 0.423268f, 0.428691f, - 0.434154f, 0.439657f, 0.445201f, 0.450786f, 0.456411f, 0.462077f, 0.467784f, 0.473532f, 0.479320f, 0.485150f, 0.491021f, - 0.496933f, 0.502887f, 0.508881f, 0.514918f, 0.520996f, 0.527115f, 0.533276f, 0.539480f, 0.545725f, 0.552011f, 0.558340f, - 0.564712f, 0.571125f, 0.577581f, 0.584078f, 0.590619f, 0.597202f, 0.603827f, 0.610496f, 0.617207f, 0.623960f, 0.630757f, - 0.637597f, 0.644480f, 0.651406f, 0.658375f, 0.665387f, 0.672443f, 0.679543f, 0.686685f, 0.693872f, 0.701102f, 0.708376f, - 0.715694f, 0.723055f, 0.730461f, 0.737911f, 0.745404f, 0.752942f, 0.760525f, 0.768151f, 0.775822f, 0.783538f, 0.791298f, - 0.799103f, 0.806952f, 0.814847f, 0.822786f, 0.830770f, 0.838799f, 0.846873f, 0.854993f, 0.863157f, 0.871367f, 0.879622f, - 0.887923f, 0.896269f, 0.904661f, 0.913099f, 0.921582f, 0.930111f, 0.938686f, 0.947307f, 0.955974f, 0.964686f, 0.973445f, - 0.982251f, 0.991102f, 1.0f -}; - -static float stbir__srgb_to_linear(float f) -{ - if (f <= 0.04045f) - return f / 12.92f; - else - return (float)pow((f + 0.055f) / 1.055f, 2.4f); -} - -static float stbir__linear_to_srgb(float f) -{ - if (f <= 0.0031308f) - return f * 12.92f; - else - return 1.055f * (float)pow(f, 1 / 2.4f) - 0.055f; -} - -#ifndef STBIR_NON_IEEE_FLOAT -// From https://gist.github.com/rygorous/2203834 - -typedef union -{ - stbir_uint32 u; - float f; -} stbir__FP32; - -static const stbir_uint32 fp32_to_srgb8_tab4[104] = { - 0x0073000d, 0x007a000d, 0x0080000d, 0x0087000d, 0x008d000d, 0x0094000d, 0x009a000d, 0x00a1000d, - 0x00a7001a, 0x00b4001a, 0x00c1001a, 0x00ce001a, 0x00da001a, 0x00e7001a, 0x00f4001a, 0x0101001a, - 0x010e0033, 0x01280033, 0x01410033, 0x015b0033, 0x01750033, 0x018f0033, 0x01a80033, 0x01c20033, - 0x01dc0067, 0x020f0067, 0x02430067, 0x02760067, 0x02aa0067, 0x02dd0067, 0x03110067, 0x03440067, - 0x037800ce, 0x03df00ce, 0x044600ce, 0x04ad00ce, 0x051400ce, 0x057b00c5, 0x05dd00bc, 0x063b00b5, - 0x06970158, 0x07420142, 0x07e30130, 0x087b0120, 0x090b0112, 0x09940106, 0x0a1700fc, 0x0a9500f2, - 0x0b0f01cb, 0x0bf401ae, 0x0ccb0195, 0x0d950180, 0x0e56016e, 0x0f0d015e, 0x0fbc0150, 0x10630143, - 0x11070264, 0x1238023e, 0x1357021d, 0x14660201, 0x156601e9, 0x165a01d3, 0x174401c0, 0x182401af, - 0x18fe0331, 0x1a9602fe, 0x1c1502d2, 0x1d7e02ad, 0x1ed4028d, 0x201a0270, 0x21520256, 0x227d0240, - 0x239f0443, 0x25c003fe, 0x27bf03c4, 0x29a10392, 0x2b6a0367, 0x2d1d0341, 0x2ebe031f, 0x304d0300, - 0x31d105b0, 0x34a80555, 0x37520507, 0x39d504c5, 0x3c37048b, 0x3e7c0458, 0x40a8042a, 0x42bd0401, - 0x44c20798, 0x488e071e, 0x4c1c06b6, 0x4f76065d, 0x52a50610, 0x55ac05cc, 0x5892058f, 0x5b590559, - 0x5e0c0a23, 0x631c0980, 0x67db08f6, 0x6c55087f, 0x70940818, 0x74a007bd, 0x787d076c, 0x7c330723, -}; - -static stbir_uint8 stbir__linear_to_srgb_uchar(float in) -{ - static const stbir__FP32 almostone = { 0x3f7fffff }; // 1-eps - static const stbir__FP32 minval = { (127-13) << 23 }; - stbir_uint32 tab,bias,scale,t; - stbir__FP32 f; - - // Clamp to [2^(-13), 1-eps]; these two values map to 0 and 1, respectively. - // The tests are carefully written so that NaNs map to 0, same as in the reference - // implementation. - if (!(in > minval.f)) // written this way to catch NaNs - in = minval.f; - if (in > almostone.f) - in = almostone.f; - - // Do the table lookup and unpack bias, scale - f.f = in; - tab = fp32_to_srgb8_tab4[(f.u - minval.u) >> 20]; - bias = (tab >> 16) << 9; - scale = tab & 0xffff; - - // Grab next-highest mantissa bits and perform linear interpolation - t = (f.u >> 12) & 0xff; - return (unsigned char) ((bias + scale*t) >> 16); -} - -#else -// sRGB transition values, scaled by 1<<28 -static int stbir__srgb_offset_to_linear_scaled[256] = -{ - 0, 40738, 122216, 203693, 285170, 366648, 448125, 529603, - 611080, 692557, 774035, 855852, 942009, 1033024, 1128971, 1229926, - 1335959, 1447142, 1563542, 1685229, 1812268, 1944725, 2082664, 2226148, - 2375238, 2529996, 2690481, 2856753, 3028870, 3206888, 3390865, 3580856, - 3776916, 3979100, 4187460, 4402049, 4622919, 4850123, 5083710, 5323731, - 5570236, 5823273, 6082892, 6349140, 6622065, 6901714, 7188133, 7481369, - 7781466, 8088471, 8402427, 8723380, 9051372, 9386448, 9728650, 10078021, - 10434603, 10798439, 11169569, 11548036, 11933879, 12327139, 12727857, 13136073, - 13551826, 13975156, 14406100, 14844697, 15290987, 15745007, 16206795, 16676389, - 17153826, 17639142, 18132374, 18633560, 19142734, 19659934, 20185196, 20718552, - 21260042, 21809696, 22367554, 22933648, 23508010, 24090680, 24681686, 25281066, - 25888850, 26505076, 27129772, 27762974, 28404716, 29055026, 29713942, 30381490, - 31057708, 31742624, 32436272, 33138682, 33849884, 34569912, 35298800, 36036568, - 36783260, 37538896, 38303512, 39077136, 39859796, 40651528, 41452360, 42262316, - 43081432, 43909732, 44747252, 45594016, 46450052, 47315392, 48190064, 49074096, - 49967516, 50870356, 51782636, 52704392, 53635648, 54576432, 55526772, 56486700, - 57456236, 58435408, 59424248, 60422780, 61431036, 62449032, 63476804, 64514376, - 65561776, 66619028, 67686160, 68763192, 69850160, 70947088, 72053992, 73170912, - 74297864, 75434880, 76581976, 77739184, 78906536, 80084040, 81271736, 82469648, - 83677792, 84896192, 86124888, 87363888, 88613232, 89872928, 91143016, 92423512, - 93714432, 95015816, 96327688, 97650056, 98982952, 100326408, 101680440, 103045072, - 104420320, 105806224, 107202800, 108610064, 110028048, 111456776, 112896264, 114346544, - 115807632, 117279552, 118762328, 120255976, 121760536, 123276016, 124802440, 126339832, - 127888216, 129447616, 131018048, 132599544, 134192112, 135795792, 137410592, 139036528, - 140673648, 142321952, 143981456, 145652208, 147334208, 149027488, 150732064, 152447968, - 154175200, 155913792, 157663776, 159425168, 161197984, 162982240, 164777968, 166585184, - 168403904, 170234160, 172075968, 173929344, 175794320, 177670896, 179559120, 181458992, - 183370528, 185293776, 187228736, 189175424, 191133888, 193104112, 195086128, 197079968, - 199085648, 201103184, 203132592, 205173888, 207227120, 209292272, 211369392, 213458480, - 215559568, 217672656, 219797792, 221934976, 224084240, 226245600, 228419056, 230604656, - 232802400, 235012320, 237234432, 239468736, 241715280, 243974080, 246245120, 248528464, - 250824112, 253132064, 255452368, 257785040, 260130080, 262487520, 264857376, 267239664, -}; - -static stbir_uint8 stbir__linear_to_srgb_uchar(float f) -{ - int x = (int) (f * (1 << 28)); // has headroom so you don't need to clamp - int v = 0; - int i; - - // Refine the guess with a short binary search. - i = v + 128; if (x >= stbir__srgb_offset_to_linear_scaled[i]) v = i; - i = v + 64; if (x >= stbir__srgb_offset_to_linear_scaled[i]) v = i; - i = v + 32; if (x >= stbir__srgb_offset_to_linear_scaled[i]) v = i; - i = v + 16; if (x >= stbir__srgb_offset_to_linear_scaled[i]) v = i; - i = v + 8; if (x >= stbir__srgb_offset_to_linear_scaled[i]) v = i; - i = v + 4; if (x >= stbir__srgb_offset_to_linear_scaled[i]) v = i; - i = v + 2; if (x >= stbir__srgb_offset_to_linear_scaled[i]) v = i; - i = v + 1; if (x >= stbir__srgb_offset_to_linear_scaled[i]) v = i; - - return (stbir_uint8) v; -} -#endif - -static float stbir__filter_trapezoid(float x, float scale) -{ - float halfscale = scale / 2; - float t = 0.5f + halfscale; - STBIR__DEBUG_ASSERT(scale <= 1); - - x = (float)fabs(x); - - if (x >= t) - return 0; - else - { - float r = 0.5f - halfscale; - if (x <= r) - return 1; - else - return (t - x) / scale; - } -} - -static float stbir__support_trapezoid(float scale) -{ - STBIR__DEBUG_ASSERT(scale <= 1); - return 0.5f + scale / 2; -} - -static float stbir__filter_triangle(float x, float s) -{ - STBIR__UNUSED_PARAM(s); - - x = (float)fabs(x); - - if (x <= 1.0f) - return 1 - x; - else - return 0; -} - -static float stbir__filter_cubic(float x, float s) -{ - STBIR__UNUSED_PARAM(s); - - x = (float)fabs(x); - - if (x < 1.0f) - return (4 + x*x*(3*x - 6))/6; - else if (x < 2.0f) - return (8 + x*(-12 + x*(6 - x)))/6; - - return (0.0f); -} - -static float stbir__filter_catmullrom(float x, float s) -{ - STBIR__UNUSED_PARAM(s); - - x = (float)fabs(x); - - if (x < 1.0f) - return 1 - x*x*(2.5f - 1.5f*x); - else if (x < 2.0f) - return 2 - x*(4 + x*(0.5f*x - 2.5f)); - - return (0.0f); -} - -static float stbir__filter_mitchell(float x, float s) -{ - STBIR__UNUSED_PARAM(s); - - x = (float)fabs(x); - - if (x < 1.0f) - return (16 + x*x*(21 * x - 36))/18; - else if (x < 2.0f) - return (32 + x*(-60 + x*(36 - 7*x)))/18; - - return (0.0f); -} - -static float stbir__support_zero(float s) -{ - STBIR__UNUSED_PARAM(s); - return 0; -} - -static float stbir__support_one(float s) -{ - STBIR__UNUSED_PARAM(s); - return 1; -} - -static float stbir__support_two(float s) -{ - STBIR__UNUSED_PARAM(s); - return 2; -} - -static stbir__filter_info stbir__filter_info_table[] = { - { NULL, stbir__support_zero }, - { stbir__filter_trapezoid, stbir__support_trapezoid }, - { stbir__filter_triangle, stbir__support_one }, - { stbir__filter_cubic, stbir__support_two }, - { stbir__filter_catmullrom, stbir__support_two }, - { stbir__filter_mitchell, stbir__support_two }, -}; - -stbir__inline static int stbir__use_upsampling(float ratio) -{ - return ratio > 1; -} - -stbir__inline static int stbir__use_width_upsampling(stbir__info* stbir_info) -{ - return stbir__use_upsampling(stbir_info->horizontal_scale); -} - -stbir__inline static int stbir__use_height_upsampling(stbir__info* stbir_info) -{ - return stbir__use_upsampling(stbir_info->vertical_scale); -} - -// This is the maximum number of input samples that can affect an output sample -// with the given filter -static int stbir__get_filter_pixel_width(stbir_filter filter, float scale) -{ - STBIR_ASSERT(filter != 0); - STBIR_ASSERT(filter < STBIR__ARRAY_SIZE(stbir__filter_info_table)); - - if (stbir__use_upsampling(scale)) - return (int)ceil(stbir__filter_info_table[filter].support(1/scale) * 2); - else - return (int)ceil(stbir__filter_info_table[filter].support(scale) * 2 / scale); -} - -// This is how much to expand buffers to account for filters seeking outside -// the image boundaries. -static int stbir__get_filter_pixel_margin(stbir_filter filter, float scale) -{ - return stbir__get_filter_pixel_width(filter, scale) / 2; -} - -static int stbir__get_coefficient_width(stbir_filter filter, float scale) -{ - if (stbir__use_upsampling(scale)) - return (int)ceil(stbir__filter_info_table[filter].support(1 / scale) * 2); - else - return (int)ceil(stbir__filter_info_table[filter].support(scale) * 2); -} - -static int stbir__get_contributors(float scale, stbir_filter filter, int input_size, int output_size) -{ - if (stbir__use_upsampling(scale)) - return output_size; - else - return (input_size + stbir__get_filter_pixel_margin(filter, scale) * 2); -} - -static int stbir__get_total_horizontal_coefficients(stbir__info* info) -{ - return info->horizontal_num_contributors - * stbir__get_coefficient_width (info->horizontal_filter, info->horizontal_scale); -} - -static int stbir__get_total_vertical_coefficients(stbir__info* info) -{ - return info->vertical_num_contributors - * stbir__get_coefficient_width (info->vertical_filter, info->vertical_scale); -} - -static stbir__contributors* stbir__get_contributor(stbir__contributors* contributors, int n) -{ - return &contributors[n]; -} - -// For perf reasons this code is duplicated in stbir__resample_horizontal_upsample/downsample, -// if you change it here change it there too. -static float* stbir__get_coefficient(float* coefficients, stbir_filter filter, float scale, int n, int c) -{ - int width = stbir__get_coefficient_width(filter, scale); - return &coefficients[width*n + c]; -} - -static int stbir__edge_wrap_slow(stbir_edge edge, int n, int max) -{ - switch (edge) - { - case STBIR_EDGE_ZERO: - return 0; // we'll decode the wrong pixel here, and then overwrite with 0s later - - case STBIR_EDGE_CLAMP: - if (n < 0) - return 0; - - if (n >= max) - return max - 1; - - return n; // NOTREACHED - - case STBIR_EDGE_REFLECT: - { - if (n < 0) - { - if (n < max) - return -n; - else - return max - 1; - } - - if (n >= max) - { - int max2 = max * 2; - if (n >= max2) - return 0; - else - return max2 - n - 1; - } - - return n; // NOTREACHED - } - - case STBIR_EDGE_WRAP: - if (n >= 0) - return (n % max); - else - { - int m = (-n) % max; - - if (m != 0) - m = max - m; - - return (m); - } - return n; // NOTREACHED - - default: - STBIR__UNIMPLEMENTED("Unimplemented edge type"); - return 0; - } -} - -stbir__inline static int stbir__edge_wrap(stbir_edge edge, int n, int max) -{ - // avoid per-pixel switch - if (n >= 0 && n < max) - return n; - return stbir__edge_wrap_slow(edge, n, max); -} - -// What input pixels contribute to this output pixel? -static void stbir__calculate_sample_range_upsample(int n, float out_filter_radius, float scale_ratio, float out_shift, int* in_first_pixel, int* in_last_pixel, float* in_center_of_out) -{ - float out_pixel_center = (float)n + 0.5f; - float out_pixel_influence_lowerbound = out_pixel_center - out_filter_radius; - float out_pixel_influence_upperbound = out_pixel_center + out_filter_radius; - - float in_pixel_influence_lowerbound = (out_pixel_influence_lowerbound + out_shift) / scale_ratio; - float in_pixel_influence_upperbound = (out_pixel_influence_upperbound + out_shift) / scale_ratio; - - *in_center_of_out = (out_pixel_center + out_shift) / scale_ratio; - *in_first_pixel = (int)(floor(in_pixel_influence_lowerbound + 0.5)); - *in_last_pixel = (int)(floor(in_pixel_influence_upperbound - 0.5)); -} - -// What output pixels does this input pixel contribute to? -static void stbir__calculate_sample_range_downsample(int n, float in_pixels_radius, float scale_ratio, float out_shift, int* out_first_pixel, int* out_last_pixel, float* out_center_of_in) -{ - float in_pixel_center = (float)n + 0.5f; - float in_pixel_influence_lowerbound = in_pixel_center - in_pixels_radius; - float in_pixel_influence_upperbound = in_pixel_center + in_pixels_radius; - - float out_pixel_influence_lowerbound = in_pixel_influence_lowerbound * scale_ratio - out_shift; - float out_pixel_influence_upperbound = in_pixel_influence_upperbound * scale_ratio - out_shift; - - *out_center_of_in = in_pixel_center * scale_ratio - out_shift; - *out_first_pixel = (int)(floor(out_pixel_influence_lowerbound + 0.5)); - *out_last_pixel = (int)(floor(out_pixel_influence_upperbound - 0.5)); -} - -static void stbir__calculate_coefficients_upsample(stbir__info* stbir_info, stbir_filter filter, float scale, int in_first_pixel, int in_last_pixel, float in_center_of_out, stbir__contributors* contributor, float* coefficient_group) -{ - int i; - float total_filter = 0; - float filter_scale; - - STBIR__DEBUG_ASSERT(in_last_pixel - in_first_pixel <= (int)ceil(stbir__filter_info_table[filter].support(1/scale) * 2)); // Taken directly from stbir__get_coefficient_width() which we can't call because we don't know if we're horizontal or vertical. - - contributor->n0 = in_first_pixel; - contributor->n1 = in_last_pixel; - - STBIR__DEBUG_ASSERT(contributor->n1 >= contributor->n0); - - for (i = 0; i <= in_last_pixel - in_first_pixel; i++) - { - float in_pixel_center = (float)(i + in_first_pixel) + 0.5f; - coefficient_group[i] = stbir__filter_info_table[filter].kernel(in_center_of_out - in_pixel_center, 1 / scale); - - // If the coefficient is zero, skip it. (Don't do the <0 check here, we want the influence of those outside pixels.) - if (i == 0 && !coefficient_group[i]) - { - contributor->n0 = ++in_first_pixel; - i--; - continue; - } - - total_filter += coefficient_group[i]; - } - - STBIR__DEBUG_ASSERT(stbir__filter_info_table[filter].kernel((float)(in_last_pixel + 1) + 0.5f - in_center_of_out, 1/scale) == 0); - - STBIR__DEBUG_ASSERT(total_filter > 0.9); - STBIR__DEBUG_ASSERT(total_filter < 1.1f); // Make sure it's not way off. - - // Make sure the sum of all coefficients is 1. - filter_scale = 1 / total_filter; - - for (i = 0; i <= in_last_pixel - in_first_pixel; i++) - coefficient_group[i] *= filter_scale; - - for (i = in_last_pixel - in_first_pixel; i >= 0; i--) - { - if (coefficient_group[i]) - break; - - // This line has no weight. We can skip it. - contributor->n1 = contributor->n0 + i - 1; - } -} - -static void stbir__calculate_coefficients_downsample(stbir__info* stbir_info, stbir_filter filter, float scale_ratio, int out_first_pixel, int out_last_pixel, float out_center_of_in, stbir__contributors* contributor, float* coefficient_group) -{ - int i; - - STBIR__DEBUG_ASSERT(out_last_pixel - out_first_pixel <= (int)ceil(stbir__filter_info_table[filter].support(scale_ratio) * 2)); // Taken directly from stbir__get_coefficient_width() which we can't call because we don't know if we're horizontal or vertical. - - contributor->n0 = out_first_pixel; - contributor->n1 = out_last_pixel; - - STBIR__DEBUG_ASSERT(contributor->n1 >= contributor->n0); - - for (i = 0; i <= out_last_pixel - out_first_pixel; i++) - { - float out_pixel_center = (float)(i + out_first_pixel) + 0.5f; - float x = out_pixel_center - out_center_of_in; - coefficient_group[i] = stbir__filter_info_table[filter].kernel(x, scale_ratio) * scale_ratio; - } - - STBIR__DEBUG_ASSERT(stbir__filter_info_table[filter].kernel((float)(out_last_pixel + 1) + 0.5f - out_center_of_in, scale_ratio) == 0); - - for (i = out_last_pixel - out_first_pixel; i >= 0; i--) - { - if (coefficient_group[i]) - break; - - // This line has no weight. We can skip it. - contributor->n1 = contributor->n0 + i - 1; - } -} - -static void stbir__normalize_downsample_coefficients(stbir__info* stbir_info, stbir__contributors* contributors, float* coefficients, stbir_filter filter, float scale_ratio, float shift, int input_size, int output_size) -{ - int num_contributors = stbir__get_contributors(scale_ratio, filter, input_size, output_size); - int num_coefficients = stbir__get_coefficient_width(filter, scale_ratio); - int i, j; - int skip; - - for (i = 0; i < output_size; i++) - { - float scale; - float total = 0; - - for (j = 0; j < num_contributors; j++) - { - if (i >= contributors[j].n0 && i <= contributors[j].n1) - { - float coefficient = *stbir__get_coefficient(coefficients, filter, scale_ratio, j, i - contributors[j].n0); - total += coefficient; - } - else if (i < contributors[j].n0) - break; - } - - STBIR__DEBUG_ASSERT(total > 0.9f); - STBIR__DEBUG_ASSERT(total < 1.1f); - - scale = 1 / total; - - for (j = 0; j < num_contributors; j++) - { - if (i >= contributors[j].n0 && i <= contributors[j].n1) - *stbir__get_coefficient(coefficients, filter, scale_ratio, j, i - contributors[j].n0) *= scale; - else if (i < contributors[j].n0) - break; - } - } - - // Optimize: Skip zero coefficients and contributions outside of image bounds. - // Do this after normalizing because normalization depends on the n0/n1 values. - for (j = 0; j < num_contributors; j++) - { - int range, max, width; - - skip = 0; - while (*stbir__get_coefficient(coefficients, filter, scale_ratio, j, skip) == 0) - skip++; - - contributors[j].n0 += skip; - - while (contributors[j].n0 < 0) - { - contributors[j].n0++; - skip++; - } - - range = contributors[j].n1 - contributors[j].n0 + 1; - max = stbir__min(num_coefficients, range); - - width = stbir__get_coefficient_width(filter, scale_ratio); - for (i = 0; i < max; i++) - { - if (i + skip >= width) - break; - - *stbir__get_coefficient(coefficients, filter, scale_ratio, j, i) = *stbir__get_coefficient(coefficients, filter, scale_ratio, j, i + skip); - } - - continue; - } - - // Using min to avoid writing into invalid pixels. - for (i = 0; i < num_contributors; i++) - contributors[i].n1 = stbir__min(contributors[i].n1, output_size - 1); -} - -// Each scan line uses the same kernel values so we should calculate the kernel -// values once and then we can use them for every scan line. -static void stbir__calculate_filters(stbir__info* stbir_info, stbir__contributors* contributors, float* coefficients, stbir_filter filter, float scale_ratio, float shift, int input_size, int output_size) -{ - int n; - int total_contributors = stbir__get_contributors(scale_ratio, filter, input_size, output_size); - - if (stbir__use_upsampling(scale_ratio)) - { - float out_pixels_radius = stbir__filter_info_table[filter].support(1 / scale_ratio) * scale_ratio; - - // Looping through out pixels - for (n = 0; n < total_contributors; n++) - { - float in_center_of_out; // Center of the current out pixel in the in pixel space - int in_first_pixel, in_last_pixel; - - stbir__calculate_sample_range_upsample(n, out_pixels_radius, scale_ratio, shift, &in_first_pixel, &in_last_pixel, &in_center_of_out); - - stbir__calculate_coefficients_upsample(stbir_info, filter, scale_ratio, in_first_pixel, in_last_pixel, in_center_of_out, stbir__get_contributor(contributors, n), stbir__get_coefficient(coefficients, filter, scale_ratio, n, 0)); - } - } - else - { - float in_pixels_radius = stbir__filter_info_table[filter].support(scale_ratio) / scale_ratio; - - // Looping through in pixels - for (n = 0; n < total_contributors; n++) - { - float out_center_of_in; // Center of the current out pixel in the in pixel space - int out_first_pixel, out_last_pixel; - int n_adjusted = n - stbir__get_filter_pixel_margin(filter, scale_ratio); - - stbir__calculate_sample_range_downsample(n_adjusted, in_pixels_radius, scale_ratio, shift, &out_first_pixel, &out_last_pixel, &out_center_of_in); - - stbir__calculate_coefficients_downsample(stbir_info, filter, scale_ratio, out_first_pixel, out_last_pixel, out_center_of_in, stbir__get_contributor(contributors, n), stbir__get_coefficient(coefficients, filter, scale_ratio, n, 0)); - } - - stbir__normalize_downsample_coefficients(stbir_info, contributors, coefficients, filter, scale_ratio, shift, input_size, output_size); - } -} - -static float* stbir__get_decode_buffer(stbir__info* stbir_info) -{ - // The 0 index of the decode buffer starts after the margin. This makes - // it okay to use negative indexes on the decode buffer. - return &stbir_info->decode_buffer[stbir_info->horizontal_filter_pixel_margin * stbir_info->channels]; -} - -#define STBIR__DECODE(type, colorspace) ((type) * (STBIR_MAX_COLORSPACES) + (colorspace)) - -static void stbir__decode_scanline(stbir__info* stbir_info, int n) -{ - int c; - int channels = stbir_info->channels; - int alpha_channel = stbir_info->alpha_channel; - int type = stbir_info->type; - int colorspace = stbir_info->colorspace; - int input_w = stbir_info->input_w; - int input_stride_bytes = stbir_info->input_stride_bytes; - float* decode_buffer = stbir__get_decode_buffer(stbir_info); - stbir_edge edge_horizontal = stbir_info->edge_horizontal; - stbir_edge edge_vertical = stbir_info->edge_vertical; - int in_buffer_row_offset = stbir__edge_wrap(edge_vertical, n, stbir_info->input_h) * input_stride_bytes; - const void* input_data = (char *) stbir_info->input_data + in_buffer_row_offset; - int max_x = input_w + stbir_info->horizontal_filter_pixel_margin; - int decode = STBIR__DECODE(type, colorspace); - - int x = -stbir_info->horizontal_filter_pixel_margin; - - // special handling for STBIR_EDGE_ZERO because it needs to return an item that doesn't appear in the input, - // and we want to avoid paying overhead on every pixel if not STBIR_EDGE_ZERO - if (edge_vertical == STBIR_EDGE_ZERO && (n < 0 || n >= stbir_info->input_h)) - { - for (; x < max_x; x++) - for (c = 0; c < channels; c++) - decode_buffer[x*channels + c] = 0; - return; - } - - switch (decode) - { - case STBIR__DECODE(STBIR_TYPE_UINT8, STBIR_COLORSPACE_LINEAR): - for (; x < max_x; x++) - { - int decode_pixel_index = x * channels; - int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels; - for (c = 0; c < channels; c++) - decode_buffer[decode_pixel_index + c] = ((float)((const unsigned char*)input_data)[input_pixel_index + c]) / 255; - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT8, STBIR_COLORSPACE_SRGB): - for (; x < max_x; x++) - { - int decode_pixel_index = x * channels; - int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels; - for (c = 0; c < channels; c++) - decode_buffer[decode_pixel_index + c] = stbir__srgb_uchar_to_linear_float[((const unsigned char*)input_data)[input_pixel_index + c]]; - - if (!(stbir_info->flags&STBIR_FLAG_ALPHA_USES_COLORSPACE)) - decode_buffer[decode_pixel_index + alpha_channel] = ((float)((const unsigned char*)input_data)[input_pixel_index + alpha_channel]) / 255; - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT16, STBIR_COLORSPACE_LINEAR): - for (; x < max_x; x++) - { - int decode_pixel_index = x * channels; - int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels; - for (c = 0; c < channels; c++) - decode_buffer[decode_pixel_index + c] = ((float)((const unsigned short*)input_data)[input_pixel_index + c]) / 65535; - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT16, STBIR_COLORSPACE_SRGB): - for (; x < max_x; x++) - { - int decode_pixel_index = x * channels; - int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels; - for (c = 0; c < channels; c++) - decode_buffer[decode_pixel_index + c] = stbir__srgb_to_linear(((float)((const unsigned short*)input_data)[input_pixel_index + c]) / 65535); - - if (!(stbir_info->flags&STBIR_FLAG_ALPHA_USES_COLORSPACE)) - decode_buffer[decode_pixel_index + alpha_channel] = ((float)((const unsigned short*)input_data)[input_pixel_index + alpha_channel]) / 65535; - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT32, STBIR_COLORSPACE_LINEAR): - for (; x < max_x; x++) - { - int decode_pixel_index = x * channels; - int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels; - for (c = 0; c < channels; c++) - decode_buffer[decode_pixel_index + c] = (float)(((double)((const unsigned int*)input_data)[input_pixel_index + c]) / 4294967295); - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT32, STBIR_COLORSPACE_SRGB): - for (; x < max_x; x++) - { - int decode_pixel_index = x * channels; - int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels; - for (c = 0; c < channels; c++) - decode_buffer[decode_pixel_index + c] = stbir__srgb_to_linear((float)(((double)((const unsigned int*)input_data)[input_pixel_index + c]) / 4294967295)); - - if (!(stbir_info->flags&STBIR_FLAG_ALPHA_USES_COLORSPACE)) - decode_buffer[decode_pixel_index + alpha_channel] = (float)(((double)((const unsigned int*)input_data)[input_pixel_index + alpha_channel]) / 4294967295); - } - break; - - case STBIR__DECODE(STBIR_TYPE_FLOAT, STBIR_COLORSPACE_LINEAR): - for (; x < max_x; x++) - { - int decode_pixel_index = x * channels; - int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels; - for (c = 0; c < channels; c++) - decode_buffer[decode_pixel_index + c] = ((const float*)input_data)[input_pixel_index + c]; - } - break; - - case STBIR__DECODE(STBIR_TYPE_FLOAT, STBIR_COLORSPACE_SRGB): - for (; x < max_x; x++) - { - int decode_pixel_index = x * channels; - int input_pixel_index = stbir__edge_wrap(edge_horizontal, x, input_w) * channels; - for (c = 0; c < channels; c++) - decode_buffer[decode_pixel_index + c] = stbir__srgb_to_linear(((const float*)input_data)[input_pixel_index + c]); - - if (!(stbir_info->flags&STBIR_FLAG_ALPHA_USES_COLORSPACE)) - decode_buffer[decode_pixel_index + alpha_channel] = ((const float*)input_data)[input_pixel_index + alpha_channel]; - } - - break; - - default: - STBIR__UNIMPLEMENTED("Unknown type/colorspace/channels combination."); - break; - } - - if (!(stbir_info->flags & STBIR_FLAG_ALPHA_PREMULTIPLIED)) - { - for (x = -stbir_info->horizontal_filter_pixel_margin; x < max_x; x++) - { - int decode_pixel_index = x * channels; - - // If the alpha value is 0 it will clobber the color values. Make sure it's not. - float alpha = decode_buffer[decode_pixel_index + alpha_channel]; -#ifndef STBIR_NO_ALPHA_EPSILON - if (stbir_info->type != STBIR_TYPE_FLOAT) { - alpha += STBIR_ALPHA_EPSILON; - decode_buffer[decode_pixel_index + alpha_channel] = alpha; - } -#endif - for (c = 0; c < channels; c++) - { - if (c == alpha_channel) - continue; - - decode_buffer[decode_pixel_index + c] *= alpha; - } - } - } - - if (edge_horizontal == STBIR_EDGE_ZERO) - { - for (x = -stbir_info->horizontal_filter_pixel_margin; x < 0; x++) - { - for (c = 0; c < channels; c++) - decode_buffer[x*channels + c] = 0; - } - for (x = input_w; x < max_x; x++) - { - for (c = 0; c < channels; c++) - decode_buffer[x*channels + c] = 0; - } - } -} - -static float* stbir__get_ring_buffer_entry(float* ring_buffer, int index, int ring_buffer_length) -{ - return &ring_buffer[index * ring_buffer_length]; -} - -static float* stbir__add_empty_ring_buffer_entry(stbir__info* stbir_info, int n) -{ - int ring_buffer_index; - float* ring_buffer; - - if (stbir_info->ring_buffer_begin_index < 0) - { - ring_buffer_index = stbir_info->ring_buffer_begin_index = 0; - stbir_info->ring_buffer_first_scanline = n; - } - else - { - ring_buffer_index = (stbir_info->ring_buffer_begin_index + (stbir_info->ring_buffer_last_scanline - stbir_info->ring_buffer_first_scanline) + 1) % stbir_info->vertical_filter_pixel_width; - STBIR__DEBUG_ASSERT(ring_buffer_index != stbir_info->ring_buffer_begin_index); - } - - ring_buffer = stbir__get_ring_buffer_entry(stbir_info->ring_buffer, ring_buffer_index, stbir_info->ring_buffer_length_bytes / sizeof(float)); - memset(ring_buffer, 0, stbir_info->ring_buffer_length_bytes); - - stbir_info->ring_buffer_last_scanline = n; - - return ring_buffer; -} - - -static void stbir__resample_horizontal_upsample(stbir__info* stbir_info, int n, float* output_buffer) -{ - int x, k; - int output_w = stbir_info->output_w; - int kernel_pixel_width = stbir_info->horizontal_filter_pixel_width; - int channels = stbir_info->channels; - float* decode_buffer = stbir__get_decode_buffer(stbir_info); - stbir__contributors* horizontal_contributors = stbir_info->horizontal_contributors; - float* horizontal_coefficients = stbir_info->horizontal_coefficients; - int coefficient_width = stbir_info->horizontal_coefficient_width; - - for (x = 0; x < output_w; x++) - { - int n0 = horizontal_contributors[x].n0; - int n1 = horizontal_contributors[x].n1; - - int out_pixel_index = x * channels; - int coefficient_group = coefficient_width * x; - int coefficient_counter = 0; - - STBIR__DEBUG_ASSERT(n1 >= n0); - STBIR__DEBUG_ASSERT(n0 >= -stbir_info->horizontal_filter_pixel_margin); - STBIR__DEBUG_ASSERT(n1 >= -stbir_info->horizontal_filter_pixel_margin); - STBIR__DEBUG_ASSERT(n0 < stbir_info->input_w + stbir_info->horizontal_filter_pixel_margin); - STBIR__DEBUG_ASSERT(n1 < stbir_info->input_w + stbir_info->horizontal_filter_pixel_margin); - - switch (channels) { - case 1: - for (k = n0; k <= n1; k++) - { - int in_pixel_index = k * 1; - float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++]; - STBIR__DEBUG_ASSERT(coefficient != 0); - output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient; - } - break; - case 2: - for (k = n0; k <= n1; k++) - { - int in_pixel_index = k * 2; - float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++]; - STBIR__DEBUG_ASSERT(coefficient != 0); - output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient; - output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient; - } - break; - case 3: - for (k = n0; k <= n1; k++) - { - int in_pixel_index = k * 3; - float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++]; - STBIR__DEBUG_ASSERT(coefficient != 0); - output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient; - output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient; - output_buffer[out_pixel_index + 2] += decode_buffer[in_pixel_index + 2] * coefficient; - } - break; - case 4: - for (k = n0; k <= n1; k++) - { - int in_pixel_index = k * 4; - float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++]; - STBIR__DEBUG_ASSERT(coefficient != 0); - output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient; - output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient; - output_buffer[out_pixel_index + 2] += decode_buffer[in_pixel_index + 2] * coefficient; - output_buffer[out_pixel_index + 3] += decode_buffer[in_pixel_index + 3] * coefficient; - } - break; - default: - for (k = n0; k <= n1; k++) - { - int in_pixel_index = k * channels; - float coefficient = horizontal_coefficients[coefficient_group + coefficient_counter++]; - int c; - STBIR__DEBUG_ASSERT(coefficient != 0); - for (c = 0; c < channels; c++) - output_buffer[out_pixel_index + c] += decode_buffer[in_pixel_index + c] * coefficient; - } - break; - } - } -} - -static void stbir__resample_horizontal_downsample(stbir__info* stbir_info, int n, float* output_buffer) -{ - int x, k; - int input_w = stbir_info->input_w; - int output_w = stbir_info->output_w; - int kernel_pixel_width = stbir_info->horizontal_filter_pixel_width; - int channels = stbir_info->channels; - float* decode_buffer = stbir__get_decode_buffer(stbir_info); - stbir__contributors* horizontal_contributors = stbir_info->horizontal_contributors; - float* horizontal_coefficients = stbir_info->horizontal_coefficients; - int coefficient_width = stbir_info->horizontal_coefficient_width; - int filter_pixel_margin = stbir_info->horizontal_filter_pixel_margin; - int max_x = input_w + filter_pixel_margin * 2; - - STBIR__DEBUG_ASSERT(!stbir__use_width_upsampling(stbir_info)); - - switch (channels) { - case 1: - for (x = 0; x < max_x; x++) - { - int n0 = horizontal_contributors[x].n0; - int n1 = horizontal_contributors[x].n1; - - int in_x = x - filter_pixel_margin; - int in_pixel_index = in_x * 1; - int max_n = n1; - int coefficient_group = coefficient_width * x; - - for (k = n0; k <= max_n; k++) - { - int out_pixel_index = k * 1; - float coefficient = horizontal_coefficients[coefficient_group + k - n0]; - STBIR__DEBUG_ASSERT(coefficient != 0); - output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient; - } - } - break; - - case 2: - for (x = 0; x < max_x; x++) - { - int n0 = horizontal_contributors[x].n0; - int n1 = horizontal_contributors[x].n1; - - int in_x = x - filter_pixel_margin; - int in_pixel_index = in_x * 2; - int max_n = n1; - int coefficient_group = coefficient_width * x; - - for (k = n0; k <= max_n; k++) - { - int out_pixel_index = k * 2; - float coefficient = horizontal_coefficients[coefficient_group + k - n0]; - STBIR__DEBUG_ASSERT(coefficient != 0); - output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient; - output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient; - } - } - break; - - case 3: - for (x = 0; x < max_x; x++) - { - int n0 = horizontal_contributors[x].n0; - int n1 = horizontal_contributors[x].n1; - - int in_x = x - filter_pixel_margin; - int in_pixel_index = in_x * 3; - int max_n = n1; - int coefficient_group = coefficient_width * x; - - for (k = n0; k <= max_n; k++) - { - int out_pixel_index = k * 3; - float coefficient = horizontal_coefficients[coefficient_group + k - n0]; - STBIR__DEBUG_ASSERT(coefficient != 0); - output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient; - output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient; - output_buffer[out_pixel_index + 2] += decode_buffer[in_pixel_index + 2] * coefficient; - } - } - break; - - case 4: - for (x = 0; x < max_x; x++) - { - int n0 = horizontal_contributors[x].n0; - int n1 = horizontal_contributors[x].n1; - - int in_x = x - filter_pixel_margin; - int in_pixel_index = in_x * 4; - int max_n = n1; - int coefficient_group = coefficient_width * x; - - for (k = n0; k <= max_n; k++) - { - int out_pixel_index = k * 4; - float coefficient = horizontal_coefficients[coefficient_group + k - n0]; - STBIR__DEBUG_ASSERT(coefficient != 0); - output_buffer[out_pixel_index + 0] += decode_buffer[in_pixel_index + 0] * coefficient; - output_buffer[out_pixel_index + 1] += decode_buffer[in_pixel_index + 1] * coefficient; - output_buffer[out_pixel_index + 2] += decode_buffer[in_pixel_index + 2] * coefficient; - output_buffer[out_pixel_index + 3] += decode_buffer[in_pixel_index + 3] * coefficient; - } - } - break; - - default: - for (x = 0; x < max_x; x++) - { - int n0 = horizontal_contributors[x].n0; - int n1 = horizontal_contributors[x].n1; - - int in_x = x - filter_pixel_margin; - int in_pixel_index = in_x * channels; - int max_n = n1; - int coefficient_group = coefficient_width * x; - - for (k = n0; k <= max_n; k++) - { - int c; - int out_pixel_index = k * channels; - float coefficient = horizontal_coefficients[coefficient_group + k - n0]; - STBIR__DEBUG_ASSERT(coefficient != 0); - for (c = 0; c < channels; c++) - output_buffer[out_pixel_index + c] += decode_buffer[in_pixel_index + c] * coefficient; - } - } - break; - } -} - -static void stbir__decode_and_resample_upsample(stbir__info* stbir_info, int n) -{ - // Decode the nth scanline from the source image into the decode buffer. - stbir__decode_scanline(stbir_info, n); - - // Now resample it into the ring buffer. - if (stbir__use_width_upsampling(stbir_info)) - stbir__resample_horizontal_upsample(stbir_info, n, stbir__add_empty_ring_buffer_entry(stbir_info, n)); - else - stbir__resample_horizontal_downsample(stbir_info, n, stbir__add_empty_ring_buffer_entry(stbir_info, n)); - - // Now it's sitting in the ring buffer ready to be used as source for the vertical sampling. -} - -static void stbir__decode_and_resample_downsample(stbir__info* stbir_info, int n) -{ - // Decode the nth scanline from the source image into the decode buffer. - stbir__decode_scanline(stbir_info, n); - - memset(stbir_info->horizontal_buffer, 0, stbir_info->output_w * stbir_info->channels * sizeof(float)); - - // Now resample it into the horizontal buffer. - if (stbir__use_width_upsampling(stbir_info)) - stbir__resample_horizontal_upsample(stbir_info, n, stbir_info->horizontal_buffer); - else - stbir__resample_horizontal_downsample(stbir_info, n, stbir_info->horizontal_buffer); - - // Now it's sitting in the horizontal buffer ready to be distributed into the ring buffers. -} - -// Get the specified scan line from the ring buffer. -static float* stbir__get_ring_buffer_scanline(int get_scanline, float* ring_buffer, int begin_index, int first_scanline, int ring_buffer_size, int ring_buffer_length) -{ - int ring_buffer_index = (begin_index + (get_scanline - first_scanline)) % ring_buffer_size; - return stbir__get_ring_buffer_entry(ring_buffer, ring_buffer_index, ring_buffer_length); -} - - -static void stbir__encode_scanline(stbir__info* stbir_info, int num_pixels, void *output_buffer, float *encode_buffer, int channels, int alpha_channel, int decode) -{ - int x; - int n; - int num_nonalpha; - stbir_uint16 nonalpha[STBIR_MAX_CHANNELS]; - - if (!(stbir_info->flags&STBIR_FLAG_ALPHA_PREMULTIPLIED)) - { - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - float alpha = encode_buffer[pixel_index + alpha_channel]; - float reciprocal_alpha = alpha ? 1.0f / alpha : 0; - - // unrolling this produced a 1% slowdown upscaling a large RGBA linear-space image on my machine - stb - for (n = 0; n < channels; n++) - if (n != alpha_channel) - encode_buffer[pixel_index + n] *= reciprocal_alpha; - - // We added in a small epsilon to prevent the color channel from being deleted with zero alpha. - // Because we only add it for integer types, it will automatically be discarded on integer - // conversion, so we don't need to subtract it back out (which would be problematic for - // numeric precision reasons). - } - } - - // build a table of all channels that need colorspace correction, so - // we don't perform colorspace correction on channels that don't need it. - for (x=0, num_nonalpha=0; x < channels; ++x) - if (x != alpha_channel || (stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE)) - nonalpha[num_nonalpha++] = x; - - #define STBIR__ROUND_INT(f) ((int) ((f)+0.5)) - #define STBIR__ROUND_UINT(f) ((stbir_uint32) ((f)+0.5)) - - #ifdef STBIR__SATURATE_INT - #define STBIR__ENCODE_LINEAR8(f) stbir__saturate8 (STBIR__ROUND_INT((f) * 255 )) - #define STBIR__ENCODE_LINEAR16(f) stbir__saturate16(STBIR__ROUND_INT((f) * 65535)) - #else - #define STBIR__ENCODE_LINEAR8(f) (unsigned char ) STBIR__ROUND_INT(stbir__saturate(f) * 255 ) - #define STBIR__ENCODE_LINEAR16(f) (unsigned short) STBIR__ROUND_INT(stbir__saturate(f) * 65535) - #endif - - switch (decode) - { - case STBIR__DECODE(STBIR_TYPE_UINT8, STBIR_COLORSPACE_LINEAR): - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - for (n = 0; n < channels; n++) - { - int index = pixel_index + n; - ((unsigned char*)output_buffer)[index] = STBIR__ENCODE_LINEAR8(encode_buffer[index]); - } - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT8, STBIR_COLORSPACE_SRGB): - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - for (n = 0; n < num_nonalpha; n++) - { - int index = pixel_index + nonalpha[n]; - ((unsigned char*)output_buffer)[index] = stbir__linear_to_srgb_uchar(encode_buffer[index]); - } - - if (!(stbir_info->flags & STBIR_FLAG_ALPHA_USES_COLORSPACE)) - ((unsigned char *)output_buffer)[pixel_index + alpha_channel] = STBIR__ENCODE_LINEAR8(encode_buffer[pixel_index+alpha_channel]); - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT16, STBIR_COLORSPACE_LINEAR): - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - for (n = 0; n < channels; n++) - { - int index = pixel_index + n; - ((unsigned short*)output_buffer)[index] = STBIR__ENCODE_LINEAR16(encode_buffer[index]); - } - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT16, STBIR_COLORSPACE_SRGB): - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - for (n = 0; n < num_nonalpha; n++) - { - int index = pixel_index + nonalpha[n]; - ((unsigned short*)output_buffer)[index] = (unsigned short)STBIR__ROUND_INT(stbir__linear_to_srgb(stbir__saturate(encode_buffer[index])) * 65535); - } - - if (!(stbir_info->flags&STBIR_FLAG_ALPHA_USES_COLORSPACE)) - ((unsigned short*)output_buffer)[pixel_index + alpha_channel] = STBIR__ENCODE_LINEAR16(encode_buffer[pixel_index + alpha_channel]); - } - - break; - - case STBIR__DECODE(STBIR_TYPE_UINT32, STBIR_COLORSPACE_LINEAR): - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - for (n = 0; n < channels; n++) - { - int index = pixel_index + n; - ((unsigned int*)output_buffer)[index] = (unsigned int)STBIR__ROUND_UINT(((double)stbir__saturate(encode_buffer[index])) * 4294967295); - } - } - break; - - case STBIR__DECODE(STBIR_TYPE_UINT32, STBIR_COLORSPACE_SRGB): - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - for (n = 0; n < num_nonalpha; n++) - { - int index = pixel_index + nonalpha[n]; - ((unsigned int*)output_buffer)[index] = (unsigned int)STBIR__ROUND_UINT(((double)stbir__linear_to_srgb(stbir__saturate(encode_buffer[index]))) * 4294967295); - } - - if (!(stbir_info->flags&STBIR_FLAG_ALPHA_USES_COLORSPACE)) - ((unsigned int*)output_buffer)[pixel_index + alpha_channel] = (unsigned int)STBIR__ROUND_INT(((double)stbir__saturate(encode_buffer[pixel_index + alpha_channel])) * 4294967295); - } - break; - - case STBIR__DECODE(STBIR_TYPE_FLOAT, STBIR_COLORSPACE_LINEAR): - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - for (n = 0; n < channels; n++) - { - int index = pixel_index + n; - ((float*)output_buffer)[index] = encode_buffer[index]; - } - } - break; - - case STBIR__DECODE(STBIR_TYPE_FLOAT, STBIR_COLORSPACE_SRGB): - for (x=0; x < num_pixels; ++x) - { - int pixel_index = x*channels; - - for (n = 0; n < num_nonalpha; n++) - { - int index = pixel_index + nonalpha[n]; - ((float*)output_buffer)[index] = stbir__linear_to_srgb(encode_buffer[index]); - } - - if (!(stbir_info->flags&STBIR_FLAG_ALPHA_USES_COLORSPACE)) - ((float*)output_buffer)[pixel_index + alpha_channel] = encode_buffer[pixel_index + alpha_channel]; - } - break; - - default: - STBIR__UNIMPLEMENTED("Unknown type/colorspace/channels combination."); - break; - } -} - -static void stbir__resample_vertical_upsample(stbir__info* stbir_info, int n, int in_first_scanline, int in_last_scanline, float in_center_of_out) -{ - int x, k; - int output_w = stbir_info->output_w; - stbir__contributors* vertical_contributors = stbir_info->vertical_contributors; - float* vertical_coefficients = stbir_info->vertical_coefficients; - int channels = stbir_info->channels; - int alpha_channel = stbir_info->alpha_channel; - int type = stbir_info->type; - int colorspace = stbir_info->colorspace; - int kernel_pixel_width = stbir_info->vertical_filter_pixel_width; - void* output_data = stbir_info->output_data; - float* encode_buffer = stbir_info->encode_buffer; - int decode = STBIR__DECODE(type, colorspace); - int coefficient_width = stbir_info->vertical_coefficient_width; - int coefficient_counter; - int contributor = n; - - float* ring_buffer = stbir_info->ring_buffer; - int ring_buffer_begin_index = stbir_info->ring_buffer_begin_index; - int ring_buffer_first_scanline = stbir_info->ring_buffer_first_scanline; - int ring_buffer_last_scanline = stbir_info->ring_buffer_last_scanline; - int ring_buffer_length = stbir_info->ring_buffer_length_bytes/sizeof(float); - - int n0,n1, output_row_start; - int coefficient_group = coefficient_width * contributor; - - n0 = vertical_contributors[contributor].n0; - n1 = vertical_contributors[contributor].n1; - - output_row_start = n * stbir_info->output_stride_bytes; - - STBIR__DEBUG_ASSERT(stbir__use_height_upsampling(stbir_info)); - - memset(encode_buffer, 0, output_w * sizeof(float) * channels); - - // I tried reblocking this for better cache usage of encode_buffer - // (using x_outer, k, x_inner), but it lost speed. -- stb - - coefficient_counter = 0; - switch (channels) { - case 1: - for (k = n0; k <= n1; k++) - { - int coefficient_index = coefficient_counter++; - float* ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, kernel_pixel_width, ring_buffer_length); - float coefficient = vertical_coefficients[coefficient_group + coefficient_index]; - for (x = 0; x < output_w; ++x) - { - int in_pixel_index = x * 1; - encode_buffer[in_pixel_index + 0] += ring_buffer_entry[in_pixel_index + 0] * coefficient; - } - } - break; - case 2: - for (k = n0; k <= n1; k++) - { - int coefficient_index = coefficient_counter++; - float* ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, kernel_pixel_width, ring_buffer_length); - float coefficient = vertical_coefficients[coefficient_group + coefficient_index]; - for (x = 0; x < output_w; ++x) - { - int in_pixel_index = x * 2; - encode_buffer[in_pixel_index + 0] += ring_buffer_entry[in_pixel_index + 0] * coefficient; - encode_buffer[in_pixel_index + 1] += ring_buffer_entry[in_pixel_index + 1] * coefficient; - } - } - break; - case 3: - for (k = n0; k <= n1; k++) - { - int coefficient_index = coefficient_counter++; - float* ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, kernel_pixel_width, ring_buffer_length); - float coefficient = vertical_coefficients[coefficient_group + coefficient_index]; - for (x = 0; x < output_w; ++x) - { - int in_pixel_index = x * 3; - encode_buffer[in_pixel_index + 0] += ring_buffer_entry[in_pixel_index + 0] * coefficient; - encode_buffer[in_pixel_index + 1] += ring_buffer_entry[in_pixel_index + 1] * coefficient; - encode_buffer[in_pixel_index + 2] += ring_buffer_entry[in_pixel_index + 2] * coefficient; - } - } - break; - case 4: - for (k = n0; k <= n1; k++) - { - int coefficient_index = coefficient_counter++; - float* ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, kernel_pixel_width, ring_buffer_length); - float coefficient = vertical_coefficients[coefficient_group + coefficient_index]; - for (x = 0; x < output_w; ++x) - { - int in_pixel_index = x * 4; - encode_buffer[in_pixel_index + 0] += ring_buffer_entry[in_pixel_index + 0] * coefficient; - encode_buffer[in_pixel_index + 1] += ring_buffer_entry[in_pixel_index + 1] * coefficient; - encode_buffer[in_pixel_index + 2] += ring_buffer_entry[in_pixel_index + 2] * coefficient; - encode_buffer[in_pixel_index + 3] += ring_buffer_entry[in_pixel_index + 3] * coefficient; - } - } - break; - default: - for (k = n0; k <= n1; k++) - { - int coefficient_index = coefficient_counter++; - float* ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, kernel_pixel_width, ring_buffer_length); - float coefficient = vertical_coefficients[coefficient_group + coefficient_index]; - for (x = 0; x < output_w; ++x) - { - int in_pixel_index = x * channels; - int c; - for (c = 0; c < channels; c++) - encode_buffer[in_pixel_index + c] += ring_buffer_entry[in_pixel_index + c] * coefficient; - } - } - break; - } - stbir__encode_scanline(stbir_info, output_w, (char *) output_data + output_row_start, encode_buffer, channels, alpha_channel, decode); -} - -static void stbir__resample_vertical_downsample(stbir__info* stbir_info, int n, int in_first_scanline, int in_last_scanline, float in_center_of_out) -{ - int x, k; - int output_w = stbir_info->output_w; - int output_h = stbir_info->output_h; - stbir__contributors* vertical_contributors = stbir_info->vertical_contributors; - float* vertical_coefficients = stbir_info->vertical_coefficients; - int channels = stbir_info->channels; - int kernel_pixel_width = stbir_info->vertical_filter_pixel_width; - void* output_data = stbir_info->output_data; - float* horizontal_buffer = stbir_info->horizontal_buffer; - int coefficient_width = stbir_info->vertical_coefficient_width; - int contributor = n + stbir_info->vertical_filter_pixel_margin; - - float* ring_buffer = stbir_info->ring_buffer; - int ring_buffer_begin_index = stbir_info->ring_buffer_begin_index; - int ring_buffer_first_scanline = stbir_info->ring_buffer_first_scanline; - int ring_buffer_last_scanline = stbir_info->ring_buffer_last_scanline; - int ring_buffer_length = stbir_info->ring_buffer_length_bytes/sizeof(float); - int n0,n1; - - n0 = vertical_contributors[contributor].n0; - n1 = vertical_contributors[contributor].n1; - - STBIR__DEBUG_ASSERT(!stbir__use_height_upsampling(stbir_info)); - - for (k = n0; k <= n1; k++) - { - int coefficient_index = k - n0; - int coefficient_group = coefficient_width * contributor; - float coefficient = vertical_coefficients[coefficient_group + coefficient_index]; - - float* ring_buffer_entry = stbir__get_ring_buffer_scanline(k, ring_buffer, ring_buffer_begin_index, ring_buffer_first_scanline, kernel_pixel_width, ring_buffer_length); - - switch (channels) { - case 1: - for (x = 0; x < output_w; x++) - { - int in_pixel_index = x * 1; - ring_buffer_entry[in_pixel_index + 0] += horizontal_buffer[in_pixel_index + 0] * coefficient; - } - break; - case 2: - for (x = 0; x < output_w; x++) - { - int in_pixel_index = x * 2; - ring_buffer_entry[in_pixel_index + 0] += horizontal_buffer[in_pixel_index + 0] * coefficient; - ring_buffer_entry[in_pixel_index + 1] += horizontal_buffer[in_pixel_index + 1] * coefficient; - } - break; - case 3: - for (x = 0; x < output_w; x++) - { - int in_pixel_index = x * 3; - ring_buffer_entry[in_pixel_index + 0] += horizontal_buffer[in_pixel_index + 0] * coefficient; - ring_buffer_entry[in_pixel_index + 1] += horizontal_buffer[in_pixel_index + 1] * coefficient; - ring_buffer_entry[in_pixel_index + 2] += horizontal_buffer[in_pixel_index + 2] * coefficient; - } - break; - case 4: - for (x = 0; x < output_w; x++) - { - int in_pixel_index = x * 4; - ring_buffer_entry[in_pixel_index + 0] += horizontal_buffer[in_pixel_index + 0] * coefficient; - ring_buffer_entry[in_pixel_index + 1] += horizontal_buffer[in_pixel_index + 1] * coefficient; - ring_buffer_entry[in_pixel_index + 2] += horizontal_buffer[in_pixel_index + 2] * coefficient; - ring_buffer_entry[in_pixel_index + 3] += horizontal_buffer[in_pixel_index + 3] * coefficient; - } - break; - default: - for (x = 0; x < output_w; x++) - { - int in_pixel_index = x * channels; - - int c; - for (c = 0; c < channels; c++) - ring_buffer_entry[in_pixel_index + c] += horizontal_buffer[in_pixel_index + c] * coefficient; - } - break; - } - } -} - -static void stbir__buffer_loop_upsample(stbir__info* stbir_info) -{ - int y; - float scale_ratio = stbir_info->vertical_scale; - float out_scanlines_radius = stbir__filter_info_table[stbir_info->vertical_filter].support(1/scale_ratio) * scale_ratio; - - STBIR__DEBUG_ASSERT(stbir__use_height_upsampling(stbir_info)); - - for (y = 0; y < stbir_info->output_h; y++) - { - float in_center_of_out = 0; // Center of the current out scanline in the in scanline space - int in_first_scanline = 0, in_last_scanline = 0; - - stbir__calculate_sample_range_upsample(y, out_scanlines_radius, scale_ratio, stbir_info->vertical_shift, &in_first_scanline, &in_last_scanline, &in_center_of_out); - - STBIR__DEBUG_ASSERT(in_last_scanline - in_first_scanline <= stbir_info->vertical_filter_pixel_width); - - if (stbir_info->ring_buffer_begin_index >= 0) - { - // Get rid of whatever we don't need anymore. - while (in_first_scanline > stbir_info->ring_buffer_first_scanline) - { - if (stbir_info->ring_buffer_first_scanline == stbir_info->ring_buffer_last_scanline) - { - // We just popped the last scanline off the ring buffer. - // Reset it to the empty state. - stbir_info->ring_buffer_begin_index = -1; - stbir_info->ring_buffer_first_scanline = 0; - stbir_info->ring_buffer_last_scanline = 0; - break; - } - else - { - stbir_info->ring_buffer_first_scanline++; - stbir_info->ring_buffer_begin_index = (stbir_info->ring_buffer_begin_index + 1) % stbir_info->vertical_filter_pixel_width; - } - } - } - - // Load in new ones. - if (stbir_info->ring_buffer_begin_index < 0) - stbir__decode_and_resample_upsample(stbir_info, in_first_scanline); - - while (in_last_scanline > stbir_info->ring_buffer_last_scanline) - stbir__decode_and_resample_upsample(stbir_info, stbir_info->ring_buffer_last_scanline + 1); - - // Now all buffers should be ready to write a row of vertical sampling. - stbir__resample_vertical_upsample(stbir_info, y, in_first_scanline, in_last_scanline, in_center_of_out); - - STBIR_PROGRESS_REPORT((float)y / stbir_info->output_h); - } -} - -static void stbir__empty_ring_buffer(stbir__info* stbir_info, int first_necessary_scanline) -{ - int output_stride_bytes = stbir_info->output_stride_bytes; - int channels = stbir_info->channels; - int alpha_channel = stbir_info->alpha_channel; - int type = stbir_info->type; - int colorspace = stbir_info->colorspace; - int output_w = stbir_info->output_w; - void* output_data = stbir_info->output_data; - int decode = STBIR__DECODE(type, colorspace); - - float* ring_buffer = stbir_info->ring_buffer; - int ring_buffer_length = stbir_info->ring_buffer_length_bytes/sizeof(float); - - if (stbir_info->ring_buffer_begin_index >= 0) - { - // Get rid of whatever we don't need anymore. - while (first_necessary_scanline > stbir_info->ring_buffer_first_scanline) - { - if (stbir_info->ring_buffer_first_scanline >= 0 && stbir_info->ring_buffer_first_scanline < stbir_info->output_h) - { - int output_row_start = stbir_info->ring_buffer_first_scanline * output_stride_bytes; - float* ring_buffer_entry = stbir__get_ring_buffer_entry(ring_buffer, stbir_info->ring_buffer_begin_index, ring_buffer_length); - stbir__encode_scanline(stbir_info, output_w, (char *) output_data + output_row_start, ring_buffer_entry, channels, alpha_channel, decode); - STBIR_PROGRESS_REPORT((float)stbir_info->ring_buffer_first_scanline / stbir_info->output_h); - } - - if (stbir_info->ring_buffer_first_scanline == stbir_info->ring_buffer_last_scanline) - { - // We just popped the last scanline off the ring buffer. - // Reset it to the empty state. - stbir_info->ring_buffer_begin_index = -1; - stbir_info->ring_buffer_first_scanline = 0; - stbir_info->ring_buffer_last_scanline = 0; - break; - } - else - { - stbir_info->ring_buffer_first_scanline++; - stbir_info->ring_buffer_begin_index = (stbir_info->ring_buffer_begin_index + 1) % stbir_info->vertical_filter_pixel_width; - } - } - } -} - -static void stbir__buffer_loop_downsample(stbir__info* stbir_info) -{ - int y; - float scale_ratio = stbir_info->vertical_scale; - int output_h = stbir_info->output_h; - float in_pixels_radius = stbir__filter_info_table[stbir_info->vertical_filter].support(scale_ratio) / scale_ratio; - int pixel_margin = stbir_info->vertical_filter_pixel_margin; - int max_y = stbir_info->input_h + pixel_margin; - - STBIR__DEBUG_ASSERT(!stbir__use_height_upsampling(stbir_info)); - - for (y = -pixel_margin; y < max_y; y++) - { - float out_center_of_in; // Center of the current out scanline in the in scanline space - int out_first_scanline, out_last_scanline; - - stbir__calculate_sample_range_downsample(y, in_pixels_radius, scale_ratio, stbir_info->vertical_shift, &out_first_scanline, &out_last_scanline, &out_center_of_in); - - STBIR__DEBUG_ASSERT(out_last_scanline - out_first_scanline <= stbir_info->vertical_filter_pixel_width); - - if (out_last_scanline < 0 || out_first_scanline >= output_h) - continue; - - stbir__empty_ring_buffer(stbir_info, out_first_scanline); - - stbir__decode_and_resample_downsample(stbir_info, y); - - // Load in new ones. - if (stbir_info->ring_buffer_begin_index < 0) - stbir__add_empty_ring_buffer_entry(stbir_info, out_first_scanline); - - while (out_last_scanline > stbir_info->ring_buffer_last_scanline) - stbir__add_empty_ring_buffer_entry(stbir_info, stbir_info->ring_buffer_last_scanline + 1); - - // Now the horizontal buffer is ready to write to all ring buffer rows. - stbir__resample_vertical_downsample(stbir_info, y, out_first_scanline, out_last_scanline, out_center_of_in); - } - - stbir__empty_ring_buffer(stbir_info, stbir_info->output_h); -} - -static void stbir__setup(stbir__info *info, int input_w, int input_h, int output_w, int output_h, int channels) -{ - info->input_w = input_w; - info->input_h = input_h; - info->output_w = output_w; - info->output_h = output_h; - info->channels = channels; -} - -static void stbir__calculate_transform(stbir__info *info, float s0, float t0, float s1, float t1, float *transform) -{ - info->s0 = s0; - info->t0 = t0; - info->s1 = s1; - info->t1 = t1; - - if (transform) - { - info->horizontal_scale = transform[0]; - info->vertical_scale = transform[1]; - info->horizontal_shift = transform[2]; - info->vertical_shift = transform[3]; - } - else - { - info->horizontal_scale = ((float)info->output_w / info->input_w) / (s1 - s0); - info->vertical_scale = ((float)info->output_h / info->input_h) / (t1 - t0); - - info->horizontal_shift = s0 * info->input_w / (s1 - s0); - info->vertical_shift = t0 * info->input_h / (t1 - t0); - } -} - -static void stbir__choose_filter(stbir__info *info, stbir_filter h_filter, stbir_filter v_filter) -{ - if (h_filter == 0) - h_filter = stbir__use_upsampling(info->horizontal_scale) ? STBIR_DEFAULT_FILTER_UPSAMPLE : STBIR_DEFAULT_FILTER_DOWNSAMPLE; - if (v_filter == 0) - v_filter = stbir__use_upsampling(info->vertical_scale) ? STBIR_DEFAULT_FILTER_UPSAMPLE : STBIR_DEFAULT_FILTER_DOWNSAMPLE; - info->horizontal_filter = h_filter; - info->vertical_filter = v_filter; -} - -static stbir_uint32 stbir__calculate_memory(stbir__info *info) -{ - int pixel_margin = stbir__get_filter_pixel_margin(info->horizontal_filter, info->horizontal_scale); - int filter_height = stbir__get_filter_pixel_width(info->vertical_filter, info->vertical_scale); - - info->horizontal_num_contributors = stbir__get_contributors(info->horizontal_scale, info->horizontal_filter, info->input_w, info->output_w); - info->vertical_num_contributors = stbir__get_contributors(info->vertical_scale , info->vertical_filter , info->input_h, info->output_h); - - info->horizontal_contributors_size = info->horizontal_num_contributors * sizeof(stbir__contributors); - info->horizontal_coefficients_size = stbir__get_total_horizontal_coefficients(info) * sizeof(float); - info->vertical_contributors_size = info->vertical_num_contributors * sizeof(stbir__contributors); - info->vertical_coefficients_size = stbir__get_total_vertical_coefficients(info) * sizeof(float); - info->decode_buffer_size = (info->input_w + pixel_margin * 2) * info->channels * sizeof(float); - info->horizontal_buffer_size = info->output_w * info->channels * sizeof(float); - info->ring_buffer_size = info->output_w * info->channels * filter_height * sizeof(float); - info->encode_buffer_size = info->output_w * info->channels * sizeof(float); - - STBIR_ASSERT(info->horizontal_filter != 0); - STBIR_ASSERT(info->horizontal_filter < STBIR__ARRAY_SIZE(stbir__filter_info_table)); // this now happens too late - STBIR_ASSERT(info->vertical_filter != 0); - STBIR_ASSERT(info->vertical_filter < STBIR__ARRAY_SIZE(stbir__filter_info_table)); // this now happens too late - - if (stbir__use_height_upsampling(info)) - // The horizontal buffer is for when we're downsampling the height and we - // can't output the result of sampling the decode buffer directly into the - // ring buffers. - info->horizontal_buffer_size = 0; - else - // The encode buffer is to retain precision in the height upsampling method - // and isn't used when height downsampling. - info->encode_buffer_size = 0; - - return info->horizontal_contributors_size + info->horizontal_coefficients_size - + info->vertical_contributors_size + info->vertical_coefficients_size - + info->decode_buffer_size + info->horizontal_buffer_size - + info->ring_buffer_size + info->encode_buffer_size; -} - -static int stbir__resize_allocated(stbir__info *info, - const void* input_data, int input_stride_in_bytes, - void* output_data, int output_stride_in_bytes, - int alpha_channel, stbir_uint32 flags, stbir_datatype type, - stbir_edge edge_horizontal, stbir_edge edge_vertical, stbir_colorspace colorspace, - void* tempmem, size_t tempmem_size_in_bytes) -{ - size_t memory_required = stbir__calculate_memory(info); - - int width_stride_input = input_stride_in_bytes ? input_stride_in_bytes : info->channels * info->input_w * stbir__type_size[type]; - int width_stride_output = output_stride_in_bytes ? output_stride_in_bytes : info->channels * info->output_w * stbir__type_size[type]; - -#ifdef STBIR_DEBUG_OVERWRITE_TEST -#define OVERWRITE_ARRAY_SIZE 8 - unsigned char overwrite_output_before_pre[OVERWRITE_ARRAY_SIZE]; - unsigned char overwrite_tempmem_before_pre[OVERWRITE_ARRAY_SIZE]; - unsigned char overwrite_output_after_pre[OVERWRITE_ARRAY_SIZE]; - unsigned char overwrite_tempmem_after_pre[OVERWRITE_ARRAY_SIZE]; - - size_t begin_forbidden = width_stride_output * (info->output_h - 1) + info->output_w * info->channels * stbir__type_size[type]; - memcpy(overwrite_output_before_pre, &((unsigned char*)output_data)[-OVERWRITE_ARRAY_SIZE], OVERWRITE_ARRAY_SIZE); - memcpy(overwrite_output_after_pre, &((unsigned char*)output_data)[begin_forbidden], OVERWRITE_ARRAY_SIZE); - memcpy(overwrite_tempmem_before_pre, &((unsigned char*)tempmem)[-OVERWRITE_ARRAY_SIZE], OVERWRITE_ARRAY_SIZE); - memcpy(overwrite_tempmem_after_pre, &((unsigned char*)tempmem)[tempmem_size_in_bytes], OVERWRITE_ARRAY_SIZE); -#endif - - STBIR_ASSERT(info->channels >= 0); - STBIR_ASSERT(info->channels <= STBIR_MAX_CHANNELS); - - if (info->channels < 0 || info->channels > STBIR_MAX_CHANNELS) - return 0; - - STBIR_ASSERT(info->horizontal_filter < STBIR__ARRAY_SIZE(stbir__filter_info_table)); - STBIR_ASSERT(info->vertical_filter < STBIR__ARRAY_SIZE(stbir__filter_info_table)); - - if (info->horizontal_filter >= STBIR__ARRAY_SIZE(stbir__filter_info_table)) - return 0; - if (info->vertical_filter >= STBIR__ARRAY_SIZE(stbir__filter_info_table)) - return 0; - - if (alpha_channel < 0) - flags |= STBIR_FLAG_ALPHA_USES_COLORSPACE | STBIR_FLAG_ALPHA_PREMULTIPLIED; - - if (!(flags&STBIR_FLAG_ALPHA_USES_COLORSPACE) || !(flags&STBIR_FLAG_ALPHA_PREMULTIPLIED)) - STBIR_ASSERT(alpha_channel >= 0 && alpha_channel < info->channels); - - if (alpha_channel >= info->channels) - return 0; - - STBIR_ASSERT(tempmem); - - if (!tempmem) - return 0; - - STBIR_ASSERT(tempmem_size_in_bytes >= memory_required); - - if (tempmem_size_in_bytes < memory_required) - return 0; - - memset(tempmem, 0, tempmem_size_in_bytes); - - info->input_data = input_data; - info->input_stride_bytes = width_stride_input; - - info->output_data = output_data; - info->output_stride_bytes = width_stride_output; - - info->alpha_channel = alpha_channel; - info->flags = flags; - info->type = type; - info->edge_horizontal = edge_horizontal; - info->edge_vertical = edge_vertical; - info->colorspace = colorspace; - - info->horizontal_coefficient_width = stbir__get_coefficient_width (info->horizontal_filter, info->horizontal_scale); - info->vertical_coefficient_width = stbir__get_coefficient_width (info->vertical_filter , info->vertical_scale ); - info->horizontal_filter_pixel_width = stbir__get_filter_pixel_width (info->horizontal_filter, info->horizontal_scale); - info->vertical_filter_pixel_width = stbir__get_filter_pixel_width (info->vertical_filter , info->vertical_scale ); - info->horizontal_filter_pixel_margin = stbir__get_filter_pixel_margin(info->horizontal_filter, info->horizontal_scale); - info->vertical_filter_pixel_margin = stbir__get_filter_pixel_margin(info->vertical_filter , info->vertical_scale ); - - info->ring_buffer_length_bytes = info->output_w * info->channels * sizeof(float); - info->decode_buffer_pixels = info->input_w + info->horizontal_filter_pixel_margin * 2; - -#define STBIR__NEXT_MEMPTR(current, newtype) (newtype*)(((unsigned char*)current) + current##_size) - - info->horizontal_contributors = (stbir__contributors *) tempmem; - info->horizontal_coefficients = STBIR__NEXT_MEMPTR(info->horizontal_contributors, float); - info->vertical_contributors = STBIR__NEXT_MEMPTR(info->horizontal_coefficients, stbir__contributors); - info->vertical_coefficients = STBIR__NEXT_MEMPTR(info->vertical_contributors, float); - info->decode_buffer = STBIR__NEXT_MEMPTR(info->vertical_coefficients, float); - - if (stbir__use_height_upsampling(info)) - { - info->horizontal_buffer = NULL; - info->ring_buffer = STBIR__NEXT_MEMPTR(info->decode_buffer, float); - info->encode_buffer = STBIR__NEXT_MEMPTR(info->ring_buffer, float); - - STBIR__DEBUG_ASSERT((size_t)STBIR__NEXT_MEMPTR(info->encode_buffer, unsigned char) == (size_t)tempmem + tempmem_size_in_bytes); - } - else - { - info->horizontal_buffer = STBIR__NEXT_MEMPTR(info->decode_buffer, float); - info->ring_buffer = STBIR__NEXT_MEMPTR(info->horizontal_buffer, float); - info->encode_buffer = NULL; - - STBIR__DEBUG_ASSERT((size_t)STBIR__NEXT_MEMPTR(info->ring_buffer, unsigned char) == (size_t)tempmem + tempmem_size_in_bytes); - } - -#undef STBIR__NEXT_MEMPTR - - // This signals that the ring buffer is empty - info->ring_buffer_begin_index = -1; - - stbir__calculate_filters(info, info->horizontal_contributors, info->horizontal_coefficients, info->horizontal_filter, info->horizontal_scale, info->horizontal_shift, info->input_w, info->output_w); - stbir__calculate_filters(info, info->vertical_contributors, info->vertical_coefficients, info->vertical_filter, info->vertical_scale, info->vertical_shift, info->input_h, info->output_h); - - STBIR_PROGRESS_REPORT(0); - - if (stbir__use_height_upsampling(info)) - stbir__buffer_loop_upsample(info); - else - stbir__buffer_loop_downsample(info); - - STBIR_PROGRESS_REPORT(1); - -#ifdef STBIR_DEBUG_OVERWRITE_TEST - STBIR__DEBUG_ASSERT(memcmp(overwrite_output_before_pre, &((unsigned char*)output_data)[-OVERWRITE_ARRAY_SIZE], OVERWRITE_ARRAY_SIZE) == 0); - STBIR__DEBUG_ASSERT(memcmp(overwrite_output_after_pre, &((unsigned char*)output_data)[begin_forbidden], OVERWRITE_ARRAY_SIZE) == 0); - STBIR__DEBUG_ASSERT(memcmp(overwrite_tempmem_before_pre, &((unsigned char*)tempmem)[-OVERWRITE_ARRAY_SIZE], OVERWRITE_ARRAY_SIZE) == 0); - STBIR__DEBUG_ASSERT(memcmp(overwrite_tempmem_after_pre, &((unsigned char*)tempmem)[tempmem_size_in_bytes], OVERWRITE_ARRAY_SIZE) == 0); -#endif - - return 1; -} - - -static int stbir__resize_arbitrary( - void *alloc_context, - const void* input_data, int input_w, int input_h, int input_stride_in_bytes, - void* output_data, int output_w, int output_h, int output_stride_in_bytes, - float s0, float t0, float s1, float t1, float *transform, - int channels, int alpha_channel, stbir_uint32 flags, stbir_datatype type, - stbir_filter h_filter, stbir_filter v_filter, - stbir_edge edge_horizontal, stbir_edge edge_vertical, stbir_colorspace colorspace) -{ - stbir__info info; - int result; - size_t memory_required; - void* extra_memory; - - stbir__setup(&info, input_w, input_h, output_w, output_h, channels); - stbir__calculate_transform(&info, s0,t0,s1,t1,transform); - stbir__choose_filter(&info, h_filter, v_filter); - memory_required = stbir__calculate_memory(&info); - extra_memory = STBIR_MALLOC(memory_required, alloc_context); - - if (!extra_memory) - return 0; - - result = stbir__resize_allocated(&info, input_data, input_stride_in_bytes, - output_data, output_stride_in_bytes, - alpha_channel, flags, type, - edge_horizontal, edge_vertical, - colorspace, extra_memory, memory_required); - - STBIR_FREE(extra_memory, alloc_context); - - return result; -} - -STBIRDEF int stbir_resize_uint8( const unsigned char *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels) -{ - return stbir__resize_arbitrary(NULL, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,NULL,num_channels,-1,0, STBIR_TYPE_UINT8, STBIR_FILTER_DEFAULT, STBIR_FILTER_DEFAULT, - STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP, STBIR_COLORSPACE_LINEAR); -} - -STBIRDEF int stbir_resize_float( const float *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - float *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels) -{ - return stbir__resize_arbitrary(NULL, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,NULL,num_channels,-1,0, STBIR_TYPE_FLOAT, STBIR_FILTER_DEFAULT, STBIR_FILTER_DEFAULT, - STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP, STBIR_COLORSPACE_LINEAR); -} - -STBIRDEF int stbir_resize_uint8_srgb(const unsigned char *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags) -{ - return stbir__resize_arbitrary(NULL, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,NULL,num_channels,alpha_channel,flags, STBIR_TYPE_UINT8, STBIR_FILTER_DEFAULT, STBIR_FILTER_DEFAULT, - STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP, STBIR_COLORSPACE_SRGB); -} - -STBIRDEF int stbir_resize_uint8_srgb_edgemode(const unsigned char *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_wrap_mode) -{ - return stbir__resize_arbitrary(NULL, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,NULL,num_channels,alpha_channel,flags, STBIR_TYPE_UINT8, STBIR_FILTER_DEFAULT, STBIR_FILTER_DEFAULT, - edge_wrap_mode, edge_wrap_mode, STBIR_COLORSPACE_SRGB); -} - -STBIRDEF int stbir_resize_uint8_generic( const unsigned char *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space, - void *alloc_context) -{ - return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,NULL,num_channels,alpha_channel,flags, STBIR_TYPE_UINT8, filter, filter, - edge_wrap_mode, edge_wrap_mode, space); -} - -STBIRDEF int stbir_resize_uint16_generic(const stbir_uint16 *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - stbir_uint16 *output_pixels , int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space, - void *alloc_context) -{ - return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,NULL,num_channels,alpha_channel,flags, STBIR_TYPE_UINT16, filter, filter, - edge_wrap_mode, edge_wrap_mode, space); -} - - -STBIRDEF int stbir_resize_float_generic( const float *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - float *output_pixels , int output_w, int output_h, int output_stride_in_bytes, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_wrap_mode, stbir_filter filter, stbir_colorspace space, - void *alloc_context) -{ - return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,NULL,num_channels,alpha_channel,flags, STBIR_TYPE_FLOAT, filter, filter, - edge_wrap_mode, edge_wrap_mode, space); -} - - -STBIRDEF int stbir_resize( const void *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - stbir_datatype datatype, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical, - stbir_filter filter_horizontal, stbir_filter filter_vertical, - stbir_colorspace space, void *alloc_context) -{ - return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,NULL,num_channels,alpha_channel,flags, datatype, filter_horizontal, filter_vertical, - edge_mode_horizontal, edge_mode_vertical, space); -} - - -STBIRDEF int stbir_resize_subpixel(const void *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - stbir_datatype datatype, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical, - stbir_filter filter_horizontal, stbir_filter filter_vertical, - stbir_colorspace space, void *alloc_context, - float x_scale, float y_scale, - float x_offset, float y_offset) -{ - float transform[4]; - transform[0] = x_scale; - transform[1] = y_scale; - transform[2] = x_offset; - transform[3] = y_offset; - return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - 0,0,1,1,transform,num_channels,alpha_channel,flags, datatype, filter_horizontal, filter_vertical, - edge_mode_horizontal, edge_mode_vertical, space); -} - -STBIRDEF int stbir_resize_region( const void *input_pixels , int input_w , int input_h , int input_stride_in_bytes, - void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, - stbir_datatype datatype, - int num_channels, int alpha_channel, int flags, - stbir_edge edge_mode_horizontal, stbir_edge edge_mode_vertical, - stbir_filter filter_horizontal, stbir_filter filter_vertical, - stbir_colorspace space, void *alloc_context, - float s0, float t0, float s1, float t1) -{ - return stbir__resize_arbitrary(alloc_context, input_pixels, input_w, input_h, input_stride_in_bytes, - output_pixels, output_w, output_h, output_stride_in_bytes, - s0,t0,s1,t1,NULL,num_channels,alpha_channel,flags, datatype, filter_horizontal, filter_vertical, - edge_mode_horizontal, edge_mode_vertical, space); -} - -#endif // STB_IMAGE_RESIZE_IMPLEMENTATION diff --git a/stb/stb_image_resize.c b/stb/stb_image_resize2.c similarity index 56% rename from stb/stb_image_resize.c rename to stb/stb_image_resize2.c index b2d4775501..f89c7eab27 100644 --- a/stb/stb_image_resize.c +++ b/stb/stb_image_resize2.c @@ -1,2 +1,2 @@ #define STB_IMAGE_RESIZE_IMPLEMENTATION -#include "stb_image_resize.h" +#include "stb_image_resize2.h" diff --git a/stb/stb_image_resize2.h b/stb/stb_image_resize2.h new file mode 100644 index 0000000000..2f26274636 --- /dev/null +++ b/stb/stb_image_resize2.h @@ -0,0 +1,10601 @@ +/* stb_image_resize2 - v2.12 - public domain image resizing + + by Jeff Roberts (v2) and Jorge L Rodriguez + http://github.com/nothings/stb + + Can be threaded with the extended API. SSE2, AVX, Neon and WASM SIMD support. Only + scaling and translation is supported, no rotations or shears. + + COMPILING & LINKING + In one C/C++ file that #includes this file, do this: + #define STB_IMAGE_RESIZE_IMPLEMENTATION + before the #include. That will create the implementation in that file. + + EASY API CALLS: + Easy API downsamples w/Mitchell filter, upsamples w/cubic interpolation, clamps to edge. + + stbir_resize_uint8_srgb( input_pixels, input_w, input_h, input_stride_in_bytes, + output_pixels, output_w, output_h, output_stride_in_bytes, + pixel_layout_enum ) + + stbir_resize_uint8_linear( input_pixels, input_w, input_h, input_stride_in_bytes, + output_pixels, output_w, output_h, output_stride_in_bytes, + pixel_layout_enum ) + + stbir_resize_float_linear( input_pixels, input_w, input_h, input_stride_in_bytes, + output_pixels, output_w, output_h, output_stride_in_bytes, + pixel_layout_enum ) + + If you pass NULL or zero for the output_pixels, we will allocate the output buffer + for you and return it from the function (free with free() or STBIR_FREE). + As a special case, XX_stride_in_bytes of 0 means packed continuously in memory. + + API LEVELS + There are three levels of API - easy-to-use, medium-complexity and extended-complexity. + + See the "header file" section of the source for API documentation. + + ADDITIONAL DOCUMENTATION + + MEMORY ALLOCATION + By default, we use malloc and free for memory allocation. To override the + memory allocation, before the implementation #include, add a: + + #define STBIR_MALLOC(size,user_data) ... + #define STBIR_FREE(ptr,user_data) ... + + Each resize makes exactly one call to malloc/free (unless you use the + extended API where you can do one allocation for many resizes). Under + address sanitizer, we do separate allocations to find overread/writes. + + PERFORMANCE + This library was written with an emphasis on performance. When testing + stb_image_resize with RGBA, the fastest mode is STBIR_4CHANNEL with + STBIR_TYPE_UINT8 pixels and CLAMPed edges (which is what many other resize + libs do by default). Also, make sure SIMD is turned on of course (default + for 64-bit targets). Avoid WRAP edge mode if you want the fastest speed. + + This library also comes with profiling built-in. If you define STBIR_PROFILE, + you can use the advanced API and get low-level profiling information by + calling stbir_resize_extended_profile_info() or stbir_resize_split_profile_info() + after a resize. + + SIMD + Most of the routines have optimized SSE2, AVX, NEON and WASM versions. + + On Microsoft compilers, we automatically turn on SIMD for 64-bit x64 and + ARM; for 32-bit x86 and ARM, you select SIMD mode by defining STBIR_SSE2 or + STBIR_NEON. For AVX and AVX2, we auto-select it by detecting the /arch:AVX + or /arch:AVX2 switches. You can also always manually turn SSE2, AVX or AVX2 + support on by defining STBIR_SSE2, STBIR_AVX or STBIR_AVX2. + + On Linux, SSE2 and Neon is on by default for 64-bit x64 or ARM64. For 32-bit, + we select x86 SIMD mode by whether you have -msse2, -mavx or -mavx2 enabled + on the command line. For 32-bit ARM, you must pass -mfpu=neon-vfpv4 for both + clang and GCC, but GCC also requires an additional -mfp16-format=ieee to + automatically enable NEON. + + On x86 platforms, you can also define STBIR_FP16C to turn on FP16C instructions + for converting back and forth to half-floats. This is autoselected when we + are using AVX2. Clang and GCC also require the -mf16c switch. ARM always uses + the built-in half float hardware NEON instructions. + + You can also tell us to use multiply-add instructions with STBIR_USE_FMA. + Because x86 doesn't always have fma, we turn it off by default to maintain + determinism across all platforms. If you don't care about non-FMA determinism + and are willing to restrict yourself to more recent x86 CPUs (around the AVX + timeframe), then fma will give you around a 15% speedup. + + You can force off SIMD in all cases by defining STBIR_NO_SIMD. You can turn + off AVX or AVX2 specifically with STBIR_NO_AVX or STBIR_NO_AVX2. AVX is 10% + to 40% faster, and AVX2 is generally another 12%. + + ALPHA CHANNEL + Most of the resizing functions provide the ability to control how the alpha + channel of an image is processed. + + When alpha represents transparency, it is important that when combining + colors with filtering, the pixels should not be treated equally; they + should use a weighted average based on their alpha values. For example, + if a pixel is 1% opaque bright green and another pixel is 99% opaque + black and you average them, the average will be 50% opaque, but the + unweighted average and will be a middling green color, while the weighted + average will be nearly black. This means the unweighted version introduced + green energy that didn't exist in the source image. + + (If you want to know why this makes sense, you can work out the math for + the following: consider what happens if you alpha composite a source image + over a fixed color and then average the output, vs. if you average the + source image pixels and then composite that over the same fixed color. + Only the weighted average produces the same result as the ground truth + composite-then-average result.) + + Therefore, it is in general best to "alpha weight" the pixels when applying + filters to them. This essentially means multiplying the colors by the alpha + values before combining them, and then dividing by the alpha value at the + end. + + The computer graphics industry introduced a technique called "premultiplied + alpha" or "associated alpha" in which image colors are stored in image files + already multiplied by their alpha. This saves some math when compositing, + and also avoids the need to divide by the alpha at the end (which is quite + inefficient). However, while premultiplied alpha is common in the movie CGI + industry, it is not commonplace in other industries like videogames, and most + consumer file formats are generally expected to contain not-premultiplied + colors. For example, Photoshop saves PNG files "unpremultiplied", and web + browsers like Chrome and Firefox expect PNG images to be unpremultiplied. + + Note that there are three possibilities that might describe your image + and resize expectation: + + 1. images are not premultiplied, alpha weighting is desired + 2. images are not premultiplied, alpha weighting is not desired + 3. images are premultiplied + + Both case #2 and case #3 require the exact same math: no alpha weighting + should be applied or removed. Only case 1 requires extra math operations; + the other two cases can be handled identically. + + stb_image_resize expects case #1 by default, applying alpha weighting to + images, expecting the input images to be unpremultiplied. This is what the + COLOR+ALPHA buffer types tell the resizer to do. + + When you use the pixel layouts STBIR_RGBA, STBIR_BGRA, STBIR_ARGB, + STBIR_ABGR, STBIR_RX, or STBIR_XR you are telling us that the pixels are + non-premultiplied. In these cases, the resizer will alpha weight the colors + (effectively creating the premultiplied image), do the filtering, and then + convert back to non-premult on exit. + + When you use the pixel layouts STBIR_RGBA_PM, STBIR_RGBA_PM, STBIR_RGBA_PM, + STBIR_RGBA_PM, STBIR_RX_PM or STBIR_XR_PM, you are telling that the pixels + ARE premultiplied. In this case, the resizer doesn't have to do the + premultipling - it can filter directly on the input. This about twice as + fast as the non-premultiplied case, so it's the right option if your data is + already setup correctly. + + When you use the pixel layout STBIR_4CHANNEL or STBIR_2CHANNEL, you are + telling us that there is no channel that represents transparency; it may be + RGB and some unrelated fourth channel that has been stored in the alpha + channel, but it is actually not alpha. No special processing will be + performed. + + The difference between the generic 4 or 2 channel layouts, and the + specialized _PM versions is with the _PM versions you are telling us that + the data *is* alpha, just don't premultiply it. That's important when + using SRGB pixel formats, we need to know where the alpha is, because + it is converted linearly (rather than with the SRGB converters). + + Because alpha weighting produces the same effect as premultiplying, you + even have the option with non-premultiplied inputs to let the resizer + produce a premultiplied output. Because the intially computed alpha-weighted + output image is effectively premultiplied, this is actually more performant + than the normal path which un-premultiplies the output image as a final step. + + Finally, when converting both in and out of non-premulitplied space (for + example, when using STBIR_RGBA), we go to somewhat heroic measures to + ensure that areas with zero alpha value pixels get something reasonable + in the RGB values. If you don't care about the RGB values of zero alpha + pixels, you can call the stbir_set_non_pm_alpha_speed_over_quality() + function - this runs a premultiplied resize about 25% faster. That said, + when you really care about speed, using premultiplied pixels for both in + and out (STBIR_RGBA_PM, etc) much faster than both of these premultiplied + options. + + PIXEL LAYOUT CONVERSION + The resizer can convert from some pixel layouts to others. When using the + stbir_set_pixel_layouts(), you can, for example, specify STBIR_RGBA + on input, and STBIR_ARGB on output, and it will re-organize the channels + during the resize. Currently, you can only convert between two pixel + layouts with the same number of channels. + + DETERMINISM + We commit to being deterministic (from x64 to ARM to scalar to SIMD, etc). + This requires compiling with fast-math off (using at least /fp:precise). + Also, you must turn off fp-contracting (which turns mult+adds into fmas)! + We attempt to do this with pragmas, but with Clang, you usually want to add + -ffp-contract=off to the command line as well. + + For 32-bit x86, you must use SSE and SSE2 codegen for determinism. That is, + if the scalar x87 unit gets used at all, we immediately lose determinism. + On Microsoft Visual Studio 2008 and earlier, from what we can tell there is + no way to be deterministic in 32-bit x86 (some x87 always leaks in, even + with fp:strict). On 32-bit x86 GCC, determinism requires both -msse2 and + -fpmath=sse. + + Note that we will not be deterministic with float data containing NaNs - + the NaNs will propagate differently on different SIMD and platforms. + + If you turn on STBIR_USE_FMA, then we will be deterministic with other + fma targets, but we will differ from non-fma targets (this is unavoidable, + because a fma isn't simply an add with a mult - it also introduces a + rounding difference compared to non-fma instruction sequences. + + FLOAT PIXEL FORMAT RANGE + Any range of values can be used for the non-alpha float data that you pass + in (0 to 1, -1 to 1, whatever). However, if you are inputting float values + but *outputting* bytes or shorts, you must use a range of 0 to 1 so that we + scale back properly. The alpha channel must also be 0 to 1 for any format + that does premultiplication prior to resizing. + + Note also that with float output, using filters with negative lobes, the + output filtered values might go slightly out of range. You can define + STBIR_FLOAT_LOW_CLAMP and/or STBIR_FLOAT_HIGH_CLAMP to specify the range + to clamp to on output, if that's important. + + MAX/MIN SCALE FACTORS + The input pixel resolutions are in integers, and we do the internal pointer + resolution in size_t sized integers. However, the scale ratio from input + resolution to output resolution is calculated in float form. This means + the effective possible scale ratio is limited to 24 bits (or 16 million + to 1). As you get close to the size of the float resolution (again, 16 + million pixels wide or high), you might start seeing float inaccuracy + issues in general in the pipeline. If you have to do extreme resizes, + you can usually do this is multiple stages (using float intermediate + buffers). + + FLIPPED IMAGES + Stride is just the delta from one scanline to the next. This means you can + use a negative stride to handle inverted images (point to the final + scanline and use a negative stride). You can invert the input or output, + using negative strides. + + DEFAULT FILTERS + For functions which don't provide explicit control over what filters to + use, you can change the compile-time defaults with: + + #define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_something + #define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_something + + See stbir_filter in the header-file section for the list of filters. + + NEW FILTERS + A number of 1D filter kernels are supplied. For a list of supported + filters, see the stbir_filter enum. You can install your own filters by + using the stbir_set_filter_callbacks function. + + PROGRESS + For interactive use with slow resize operations, you can use the the + scanline callbacks in the extended API. It would have to be a *very* large + image resample to need progress though - we're very fast. + + CEIL and FLOOR + In scalar mode, the only functions we use from math.h are ceilf and floorf, + but if you have your own versions, you can define the STBIR_CEILF(v) and + STBIR_FLOORF(v) macros and we'll use them instead. In SIMD, we just use + our own versions. + + ASSERT + Define STBIR_ASSERT(boolval) to override assert() and not use assert.h + + PORTING FROM VERSION 1 + The API has changed. You can continue to use the old version of stb_image_resize.h, + which is available in the "deprecated/" directory. + + If you're using the old simple-to-use API, porting is straightforward. + (For more advanced APIs, read the documentation.) + + stbir_resize_uint8(): + - call `stbir_resize_uint8_linear`, cast channel count to `stbir_pixel_layout` + + stbir_resize_float(): + - call `stbir_resize_float_linear`, cast channel count to `stbir_pixel_layout` + + stbir_resize_uint8_srgb(): + - function name is unchanged + - cast channel count to `stbir_pixel_layout` + - above is sufficient unless your image has alpha and it's not RGBA/BGRA + - in that case, follow the below instructions for stbir_resize_uint8_srgb_edgemode + + stbir_resize_uint8_srgb_edgemode() + - switch to the "medium complexity" API + - stbir_resize(), very similar API but a few more parameters: + - pixel_layout: cast channel count to `stbir_pixel_layout` + - data_type: STBIR_TYPE_UINT8_SRGB + - edge: unchanged (STBIR_EDGE_WRAP, etc.) + - filter: STBIR_FILTER_DEFAULT + - which channel is alpha is specified in stbir_pixel_layout, see enum for details + + FUTURE TODOS + * For polyphase integral filters, we just memcpy the coeffs to dupe + them, but we should indirect and use the same coeff memory. + * Add pixel layout conversions for sensible different channel counts + (maybe, 1->3/4, 3->4, 4->1, 3->1). + * For SIMD encode and decode scanline routines, do any pre-aligning + for bad input/output buffer alignments and pitch? + * For very wide scanlines, we should we do vertical strips to stay within + L2 cache. Maybe do chunks of 1K pixels at a time. There would be + some pixel reconversion, but probably dwarfed by things falling out + of cache. Probably also something possible with alternating between + scattering and gathering at high resize scales? + * Rewrite the coefficient generator to do many at once. + * AVX-512 vertical kernels - worried about downclocking here. + * Convert the reincludes to macros when we know they aren't changing. + * Experiment with pivoting the horizontal and always using the + vertical filters (which are faster, but perhaps not enough to overcome + the pivot cost and the extra memory touches). Need to buffer the whole + image so have to balance memory use. + * Most of our code is internally function pointers, should we compile + all the SIMD stuff always and dynamically dispatch? + + CONTRIBUTORS + Jeff Roberts: 2.0 implementation, optimizations, SIMD + Martins Mozeiko: NEON simd, WASM simd, clang and GCC whisperer + Fabian Giesen: half float and srgb converters + Sean Barrett: API design, optimizations + Jorge L Rodriguez: Original 1.0 implementation + Aras Pranckevicius: bugfixes + Nathan Reed: warning fixes for 1.0 + + REVISIONS + 2.12 (2024-10-18) fix incorrect use of user_data with STBIR_FREE + 2.11 (2024-09-08) fix harmless asan warnings in 2-channel and 3-channel mode + with AVX-2, fix some weird scaling edge conditions with + point sample mode. + 2.10 (2024-07-27) fix the defines GCC and mingw for loop unroll control, + fix MSVC 32-bit arm half float routines. + 2.09 (2024-06-19) fix the defines for 32-bit ARM GCC builds (was selecting + hardware half floats). + 2.08 (2024-06-10) fix for RGB->BGR three channel flips and add SIMD (thanks + to Ryan Salsbury), fix for sub-rect resizes, use the + pragmas to control unrolling when they are available. + 2.07 (2024-05-24) fix for slow final split during threaded conversions of very + wide scanlines when downsampling (caused by extra input + converting), fix for wide scanline resamples with many + splits (int overflow), fix GCC warning. + 2.06 (2024-02-10) fix for identical width/height 3x or more down-scaling + undersampling a single row on rare resize ratios (about 1%). + 2.05 (2024-02-07) fix for 2 pixel to 1 pixel resizes with wrap (thanks Aras), + fix for output callback (thanks Julien Koenen). + 2.04 (2023-11-17) fix for rare AVX bug, shadowed symbol (thanks Nikola Smiljanic). + 2.03 (2023-11-01) ASAN and TSAN warnings fixed, minor tweaks. + 2.00 (2023-10-10) mostly new source: new api, optimizations, simd, vertical-first, etc + 2x-5x faster without simd, 4x-12x faster with simd, + in some cases, 20x to 40x faster esp resizing large to very small. + 0.96 (2019-03-04) fixed warnings + 0.95 (2017-07-23) fixed warnings + 0.94 (2017-03-18) fixed warnings + 0.93 (2017-03-03) fixed bug with certain combinations of heights + 0.92 (2017-01-02) fix integer overflow on large (>2GB) images + 0.91 (2016-04-02) fix warnings; fix handling of subpixel regions + 0.90 (2014-09-17) first released version + + LICENSE + See end of file for license information. +*/ + +#if !defined(STB_IMAGE_RESIZE_DO_HORIZONTALS) && !defined(STB_IMAGE_RESIZE_DO_VERTICALS) && !defined(STB_IMAGE_RESIZE_DO_CODERS) // for internal re-includes + +#ifndef STBIR_INCLUDE_STB_IMAGE_RESIZE2_H +#define STBIR_INCLUDE_STB_IMAGE_RESIZE2_H + +#include +#ifdef _MSC_VER +typedef unsigned char stbir_uint8; +typedef unsigned short stbir_uint16; +typedef unsigned int stbir_uint32; +typedef unsigned __int64 stbir_uint64; +#else +#include +typedef uint8_t stbir_uint8; +typedef uint16_t stbir_uint16; +typedef uint32_t stbir_uint32; +typedef uint64_t stbir_uint64; +#endif + +#ifdef _M_IX86_FP +#if ( _M_IX86_FP >= 1 ) +#ifndef STBIR_SSE +#define STBIR_SSE +#endif +#endif +#endif + +#if defined(_x86_64) || defined( __x86_64__ ) || defined( _M_X64 ) || defined(__x86_64) || defined(_M_AMD64) || defined(__SSE2__) || defined(STBIR_SSE) || defined(STBIR_SSE2) + #ifndef STBIR_SSE2 + #define STBIR_SSE2 + #endif + #if defined(__AVX__) || defined(STBIR_AVX2) + #ifndef STBIR_AVX + #ifndef STBIR_NO_AVX + #define STBIR_AVX + #endif + #endif + #endif + #if defined(__AVX2__) || defined(STBIR_AVX2) + #ifndef STBIR_NO_AVX2 + #ifndef STBIR_AVX2 + #define STBIR_AVX2 + #endif + #if defined( _MSC_VER ) && !defined(__clang__) + #ifndef STBIR_FP16C // FP16C instructions are on all AVX2 cpus, so we can autoselect it here on microsoft - clang needs -m16c + #define STBIR_FP16C + #endif + #endif + #endif + #endif + #ifdef __F16C__ + #ifndef STBIR_FP16C // turn on FP16C instructions if the define is set (for clang and gcc) + #define STBIR_FP16C + #endif + #endif +#endif + +#if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) || ((__ARM_NEON_FP & 4) != 0) || defined(__ARM_NEON__) +#ifndef STBIR_NEON +#define STBIR_NEON +#endif +#endif + +#if defined(_M_ARM) || defined(__arm__) +#ifdef STBIR_USE_FMA +#undef STBIR_USE_FMA // no FMA for 32-bit arm on MSVC +#endif +#endif + +#if defined(__wasm__) && defined(__wasm_simd128__) +#ifndef STBIR_WASM +#define STBIR_WASM +#endif +#endif + +#ifndef STBIRDEF +#ifdef STB_IMAGE_RESIZE_STATIC +#define STBIRDEF static +#else +#ifdef __cplusplus +#define STBIRDEF extern "C" +#else +#define STBIRDEF extern +#endif +#endif +#endif + +////////////////////////////////////////////////////////////////////////////// +//// start "header file" /////////////////////////////////////////////////// +// +// Easy-to-use API: +// +// * stride is the offset between successive rows of image data +// in memory, in bytes. specify 0 for packed continuously in memory +// * colorspace is linear or sRGB as specified by function name +// * Uses the default filters +// * Uses edge mode clamped +// * returned result is 1 for success or 0 in case of an error. + + +// stbir_pixel_layout specifies: +// number of channels +// order of channels +// whether color is premultiplied by alpha +// for back compatibility, you can cast the old channel count to an stbir_pixel_layout +typedef enum +{ + STBIR_1CHANNEL = 1, + STBIR_2CHANNEL = 2, + STBIR_RGB = 3, // 3-chan, with order specified (for channel flipping) + STBIR_BGR = 0, // 3-chan, with order specified (for channel flipping) + STBIR_4CHANNEL = 5, + + STBIR_RGBA = 4, // alpha formats, where alpha is NOT premultiplied into color channels + STBIR_BGRA = 6, + STBIR_ARGB = 7, + STBIR_ABGR = 8, + STBIR_RA = 9, + STBIR_AR = 10, + + STBIR_RGBA_PM = 11, // alpha formats, where alpha is premultiplied into color channels + STBIR_BGRA_PM = 12, + STBIR_ARGB_PM = 13, + STBIR_ABGR_PM = 14, + STBIR_RA_PM = 15, + STBIR_AR_PM = 16, + + STBIR_RGBA_NO_AW = 11, // alpha formats, where NO alpha weighting is applied at all! + STBIR_BGRA_NO_AW = 12, // these are just synonyms for the _PM flags (which also do + STBIR_ARGB_NO_AW = 13, // no alpha weighting). These names just make it more clear + STBIR_ABGR_NO_AW = 14, // for some folks). + STBIR_RA_NO_AW = 15, + STBIR_AR_NO_AW = 16, + +} stbir_pixel_layout; + +//=============================================================== +// Simple-complexity API +// +// If output_pixels is NULL (0), then we will allocate the buffer and return it to you. +//-------------------------------- + +STBIRDEF unsigned char * stbir_resize_uint8_srgb( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes, + unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, + stbir_pixel_layout pixel_type ); + +STBIRDEF unsigned char * stbir_resize_uint8_linear( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes, + unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, + stbir_pixel_layout pixel_type ); + +STBIRDEF float * stbir_resize_float_linear( const float *input_pixels , int input_w , int input_h, int input_stride_in_bytes, + float *output_pixels, int output_w, int output_h, int output_stride_in_bytes, + stbir_pixel_layout pixel_type ); +//=============================================================== + +//=============================================================== +// Medium-complexity API +// +// This extends the easy-to-use API as follows: +// +// * Can specify the datatype - U8, U8_SRGB, U16, FLOAT, HALF_FLOAT +// * Edge wrap can selected explicitly +// * Filter can be selected explicitly +//-------------------------------- + +typedef enum +{ + STBIR_EDGE_CLAMP = 0, + STBIR_EDGE_REFLECT = 1, + STBIR_EDGE_WRAP = 2, // this edge mode is slower and uses more memory + STBIR_EDGE_ZERO = 3, +} stbir_edge; + +typedef enum +{ + STBIR_FILTER_DEFAULT = 0, // use same filter type that easy-to-use API chooses + STBIR_FILTER_BOX = 1, // A trapezoid w/1-pixel wide ramps, same result as box for integer scale ratios + STBIR_FILTER_TRIANGLE = 2, // On upsampling, produces same results as bilinear texture filtering + STBIR_FILTER_CUBICBSPLINE = 3, // The cubic b-spline (aka Mitchell-Netrevalli with B=1,C=0), gaussian-esque + STBIR_FILTER_CATMULLROM = 4, // An interpolating cubic spline + STBIR_FILTER_MITCHELL = 5, // Mitchell-Netrevalli filter with B=1/3, C=1/3 + STBIR_FILTER_POINT_SAMPLE = 6, // Simple point sampling + STBIR_FILTER_OTHER = 7, // User callback specified +} stbir_filter; + +typedef enum +{ + STBIR_TYPE_UINT8 = 0, + STBIR_TYPE_UINT8_SRGB = 1, + STBIR_TYPE_UINT8_SRGB_ALPHA = 2, // alpha channel, when present, should also be SRGB (this is very unusual) + STBIR_TYPE_UINT16 = 3, + STBIR_TYPE_FLOAT = 4, + STBIR_TYPE_HALF_FLOAT = 5 +} stbir_datatype; + +// medium api +STBIRDEF void * stbir_resize( const void *input_pixels , int input_w , int input_h, int input_stride_in_bytes, + void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, + stbir_pixel_layout pixel_layout, stbir_datatype data_type, + stbir_edge edge, stbir_filter filter ); +//=============================================================== + + + +//=============================================================== +// Extended-complexity API +// +// This API exposes all resize functionality. +// +// * Separate filter types for each axis +// * Separate edge modes for each axis +// * Separate input and output data types +// * Can specify regions with subpixel correctness +// * Can specify alpha flags +// * Can specify a memory callback +// * Can specify a callback data type for pixel input and output +// * Can be threaded for a single resize +// * Can be used to resize many frames without recalculating the sampler info +// +// Use this API as follows: +// 1) Call the stbir_resize_init function on a local STBIR_RESIZE structure +// 2) Call any of the stbir_set functions +// 3) Optionally call stbir_build_samplers() if you are going to resample multiple times +// with the same input and output dimensions (like resizing video frames) +// 4) Resample by calling stbir_resize_extended(). +// 5) Call stbir_free_samplers() if you called stbir_build_samplers() +//-------------------------------- + + +// Types: + +// INPUT CALLBACK: this callback is used for input scanlines +typedef void const * stbir_input_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context ); + +// OUTPUT CALLBACK: this callback is used for output scanlines +typedef void stbir_output_callback( void const * output_ptr, int num_pixels, int y, void * context ); + +// callbacks for user installed filters +typedef float stbir__kernel_callback( float x, float scale, void * user_data ); // centered at zero +typedef float stbir__support_callback( float scale, void * user_data ); + +// internal structure with precomputed scaling +typedef struct stbir__info stbir__info; + +typedef struct STBIR_RESIZE // use the stbir_resize_init and stbir_override functions to set these values for future compatibility +{ + void * user_data; + void const * input_pixels; + int input_w, input_h; + double input_s0, input_t0, input_s1, input_t1; + stbir_input_callback * input_cb; + void * output_pixels; + int output_w, output_h; + int output_subx, output_suby, output_subw, output_subh; + stbir_output_callback * output_cb; + int input_stride_in_bytes; + int output_stride_in_bytes; + int splits; + int fast_alpha; + int needs_rebuild; + int called_alloc; + stbir_pixel_layout input_pixel_layout_public; + stbir_pixel_layout output_pixel_layout_public; + stbir_datatype input_data_type; + stbir_datatype output_data_type; + stbir_filter horizontal_filter, vertical_filter; + stbir_edge horizontal_edge, vertical_edge; + stbir__kernel_callback * horizontal_filter_kernel; stbir__support_callback * horizontal_filter_support; + stbir__kernel_callback * vertical_filter_kernel; stbir__support_callback * vertical_filter_support; + stbir__info * samplers; +} STBIR_RESIZE; + +// extended complexity api + + +// First off, you must ALWAYS call stbir_resize_init on your resize structure before any of the other calls! +STBIRDEF void stbir_resize_init( STBIR_RESIZE * resize, + const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes, // stride can be zero + void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, // stride can be zero + stbir_pixel_layout pixel_layout, stbir_datatype data_type ); + +//=============================================================== +// You can update these parameters any time after resize_init and there is no cost +//-------------------------------- + +STBIRDEF void stbir_set_datatypes( STBIR_RESIZE * resize, stbir_datatype input_type, stbir_datatype output_type ); +STBIRDEF void stbir_set_pixel_callbacks( STBIR_RESIZE * resize, stbir_input_callback * input_cb, stbir_output_callback * output_cb ); // no callbacks by default +STBIRDEF void stbir_set_user_data( STBIR_RESIZE * resize, void * user_data ); // pass back STBIR_RESIZE* by default +STBIRDEF void stbir_set_buffer_ptrs( STBIR_RESIZE * resize, const void * input_pixels, int input_stride_in_bytes, void * output_pixels, int output_stride_in_bytes ); + +//=============================================================== + + +//=============================================================== +// If you call any of these functions, you will trigger a sampler rebuild! +//-------------------------------- + +STBIRDEF int stbir_set_pixel_layouts( STBIR_RESIZE * resize, stbir_pixel_layout input_pixel_layout, stbir_pixel_layout output_pixel_layout ); // sets new buffer layouts +STBIRDEF int stbir_set_edgemodes( STBIR_RESIZE * resize, stbir_edge horizontal_edge, stbir_edge vertical_edge ); // CLAMP by default + +STBIRDEF int stbir_set_filters( STBIR_RESIZE * resize, stbir_filter horizontal_filter, stbir_filter vertical_filter ); // STBIR_DEFAULT_FILTER_UPSAMPLE/DOWNSAMPLE by default +STBIRDEF int stbir_set_filter_callbacks( STBIR_RESIZE * resize, stbir__kernel_callback * horizontal_filter, stbir__support_callback * horizontal_support, stbir__kernel_callback * vertical_filter, stbir__support_callback * vertical_support ); + +STBIRDEF int stbir_set_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ); // sets both sub-regions (full regions by default) +STBIRDEF int stbir_set_input_subrect( STBIR_RESIZE * resize, double s0, double t0, double s1, double t1 ); // sets input sub-region (full region by default) +STBIRDEF int stbir_set_output_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ); // sets output sub-region (full region by default) + +// when inputting AND outputting non-premultiplied alpha pixels, we use a slower but higher quality technique +// that fills the zero alpha pixel's RGB values with something plausible. If you don't care about areas of +// zero alpha, you can call this function to get about a 25% speed improvement for STBIR_RGBA to STBIR_RGBA +// types of resizes. +STBIRDEF int stbir_set_non_pm_alpha_speed_over_quality( STBIR_RESIZE * resize, int non_pma_alpha_speed_over_quality ); +//=============================================================== + + +//=============================================================== +// You can call build_samplers to prebuild all the internal data we need to resample. +// Then, if you call resize_extended many times with the same resize, you only pay the +// cost once. +// If you do call build_samplers, you MUST call free_samplers eventually. +//-------------------------------- + +// This builds the samplers and does one allocation +STBIRDEF int stbir_build_samplers( STBIR_RESIZE * resize ); + +// You MUST call this, if you call stbir_build_samplers or stbir_build_samplers_with_splits +STBIRDEF void stbir_free_samplers( STBIR_RESIZE * resize ); +//=============================================================== + + +// And this is the main function to perform the resize synchronously on one thread. +STBIRDEF int stbir_resize_extended( STBIR_RESIZE * resize ); + + +//=============================================================== +// Use these functions for multithreading. +// 1) You call stbir_build_samplers_with_splits first on the main thread +// 2) Then stbir_resize_with_split on each thread +// 3) stbir_free_samplers when done on the main thread +//-------------------------------- + +// This will build samplers for threading. +// You can pass in the number of threads you'd like to use (try_splits). +// It returns the number of splits (threads) that you can call it with. +/// It might be less if the image resize can't be split up that many ways. + +STBIRDEF int stbir_build_samplers_with_splits( STBIR_RESIZE * resize, int try_splits ); + +// This function does a split of the resizing (you call this fuction for each +// split, on multiple threads). A split is a piece of the output resize pixel space. + +// Note that you MUST call stbir_build_samplers_with_splits before stbir_resize_extended_split! + +// Usually, you will always call stbir_resize_split with split_start as the thread_index +// and "1" for the split_count. +// But, if you have a weird situation where you MIGHT want 8 threads, but sometimes +// only 4 threads, you can use 0,2,4,6 for the split_start's and use "2" for the +// split_count each time to turn in into a 4 thread resize. (This is unusual). + +STBIRDEF int stbir_resize_extended_split( STBIR_RESIZE * resize, int split_start, int split_count ); +//=============================================================== + + +//=============================================================== +// Pixel Callbacks info: +//-------------------------------- + +// The input callback is super flexible - it calls you with the input address +// (based on the stride and base pointer), it gives you an optional_output +// pointer that you can fill, or you can just return your own pointer into +// your own data. +// +// You can also do conversion from non-supported data types if necessary - in +// this case, you ignore the input_ptr and just use the x and y parameters to +// calculate your own input_ptr based on the size of each non-supported pixel. +// (Something like the third example below.) +// +// You can also install just an input or just an output callback by setting the +// callback that you don't want to zero. +// +// First example, progress: (getting a callback that you can monitor the progress): +// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context ) +// { +// percentage_done = y / input_height; +// return input_ptr; // use buffer from call +// } +// +// Next example, copying: (copy from some other buffer or stream): +// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context ) +// { +// CopyOrStreamData( optional_output, other_data_src, num_pixels * pixel_width_in_bytes ); +// return optional_output; // return the optional buffer that we filled +// } +// +// Third example, input another buffer without copying: (zero-copy from other buffer): +// void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context ) +// { +// void * pixels = ( (char*) other_image_base ) + ( y * other_image_stride ) + ( x * other_pixel_width_in_bytes ); +// return pixels; // return pointer to your data without copying +// } +// +// +// The output callback is considerably simpler - it just calls you so that you can dump +// out each scanline. You could even directly copy out to disk if you have a simple format +// like TGA or BMP. You can also convert to other output types here if you want. +// +// Simple example: +// void const * my_output( void * output_ptr, int num_pixels, int y, void * context ) +// { +// percentage_done = y / output_height; +// fwrite( output_ptr, pixel_width_in_bytes, num_pixels, output_file ); +// } +//=============================================================== + + + + +//=============================================================== +// optional built-in profiling API +//-------------------------------- + +#ifdef STBIR_PROFILE + +typedef struct STBIR_PROFILE_INFO +{ + stbir_uint64 total_clocks; + + // how many clocks spent (of total_clocks) in the various resize routines, along with a string description + // there are "resize_count" number of zones + stbir_uint64 clocks[ 8 ]; + char const ** descriptions; + + // count of clocks and descriptions + stbir_uint32 count; +} STBIR_PROFILE_INFO; + +// use after calling stbir_resize_extended (or stbir_build_samplers or stbir_build_samplers_with_splits) +STBIRDEF void stbir_resize_build_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize ); + +// use after calling stbir_resize_extended +STBIRDEF void stbir_resize_extended_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize ); + +// use after calling stbir_resize_extended_split +STBIRDEF void stbir_resize_split_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize, int split_start, int split_num ); + +//=============================================================== + +#endif + + +//// end header file ///////////////////////////////////////////////////// +#endif // STBIR_INCLUDE_STB_IMAGE_RESIZE2_H + +#if defined(STB_IMAGE_RESIZE_IMPLEMENTATION) || defined(STB_IMAGE_RESIZE2_IMPLEMENTATION) + +#ifndef STBIR_ASSERT +#include +#define STBIR_ASSERT(x) assert(x) +#endif + +#ifndef STBIR_MALLOC +#include +#define STBIR_MALLOC(size,user_data) ((void)(user_data), malloc(size)) +#define STBIR_FREE(ptr,user_data) ((void)(user_data), free(ptr)) +// (we used the comma operator to evaluate user_data, to avoid "unused parameter" warnings) +#endif + +#ifdef _MSC_VER + +#define stbir__inline __forceinline + +#else + +#define stbir__inline __inline__ + +// Clang address sanitizer +#if defined(__has_feature) + #if __has_feature(address_sanitizer) || __has_feature(memory_sanitizer) + #ifndef STBIR__SEPARATE_ALLOCATIONS + #define STBIR__SEPARATE_ALLOCATIONS + #endif + #endif +#endif + +#endif + +// GCC and MSVC +#if defined(__SANITIZE_ADDRESS__) + #ifndef STBIR__SEPARATE_ALLOCATIONS + #define STBIR__SEPARATE_ALLOCATIONS + #endif +#endif + +// Always turn off automatic FMA use - use STBIR_USE_FMA if you want. +// Otherwise, this is a determinism disaster. +#ifndef STBIR_DONT_CHANGE_FP_CONTRACT // override in case you don't want this behavior +#if defined(_MSC_VER) && !defined(__clang__) +#if _MSC_VER > 1200 +#pragma fp_contract(off) +#endif +#elif defined(__GNUC__) && !defined(__clang__) +#pragma GCC optimize("fp-contract=off") +#else +#pragma STDC FP_CONTRACT OFF +#endif +#endif + +#ifdef _MSC_VER +#define STBIR__UNUSED(v) (void)(v) +#else +#define STBIR__UNUSED(v) (void)sizeof(v) +#endif + +#define STBIR__ARRAY_SIZE(a) (sizeof((a))/sizeof((a)[0])) + + +#ifndef STBIR_DEFAULT_FILTER_UPSAMPLE +#define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM +#endif + +#ifndef STBIR_DEFAULT_FILTER_DOWNSAMPLE +#define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL +#endif + + +#ifndef STBIR__HEADER_FILENAME +#define STBIR__HEADER_FILENAME "stb_image_resize2.h" +#endif + +// the internal pixel layout enums are in a different order, so we can easily do range comparisons of types +// the public pixel layout is ordered in a way that if you cast num_channels (1-4) to the enum, you get something sensible +typedef enum +{ + STBIRI_1CHANNEL = 0, + STBIRI_2CHANNEL = 1, + STBIRI_RGB = 2, + STBIRI_BGR = 3, + STBIRI_4CHANNEL = 4, + + STBIRI_RGBA = 5, + STBIRI_BGRA = 6, + STBIRI_ARGB = 7, + STBIRI_ABGR = 8, + STBIRI_RA = 9, + STBIRI_AR = 10, + + STBIRI_RGBA_PM = 11, + STBIRI_BGRA_PM = 12, + STBIRI_ARGB_PM = 13, + STBIRI_ABGR_PM = 14, + STBIRI_RA_PM = 15, + STBIRI_AR_PM = 16, +} stbir_internal_pixel_layout; + +// define the public pixel layouts to not compile inside the implementation (to avoid accidental use) +#define STBIR_BGR bad_dont_use_in_implementation +#define STBIR_1CHANNEL STBIR_BGR +#define STBIR_2CHANNEL STBIR_BGR +#define STBIR_RGB STBIR_BGR +#define STBIR_RGBA STBIR_BGR +#define STBIR_4CHANNEL STBIR_BGR +#define STBIR_BGRA STBIR_BGR +#define STBIR_ARGB STBIR_BGR +#define STBIR_ABGR STBIR_BGR +#define STBIR_RA STBIR_BGR +#define STBIR_AR STBIR_BGR +#define STBIR_RGBA_PM STBIR_BGR +#define STBIR_BGRA_PM STBIR_BGR +#define STBIR_ARGB_PM STBIR_BGR +#define STBIR_ABGR_PM STBIR_BGR +#define STBIR_RA_PM STBIR_BGR +#define STBIR_AR_PM STBIR_BGR + +// must match stbir_datatype +static unsigned char stbir__type_size[] = { + 1,1,1,2,4,2 // STBIR_TYPE_UINT8,STBIR_TYPE_UINT8_SRGB,STBIR_TYPE_UINT8_SRGB_ALPHA,STBIR_TYPE_UINT16,STBIR_TYPE_FLOAT,STBIR_TYPE_HALF_FLOAT +}; + +// When gathering, the contributors are which source pixels contribute. +// When scattering, the contributors are which destination pixels are contributed to. +typedef struct +{ + int n0; // First contributing pixel + int n1; // Last contributing pixel +} stbir__contributors; + +typedef struct +{ + int lowest; // First sample index for whole filter + int highest; // Last sample index for whole filter + int widest; // widest single set of samples for an output +} stbir__filter_extent_info; + +typedef struct +{ + int n0; // First pixel of decode buffer to write to + int n1; // Last pixel of decode that will be written to + int pixel_offset_for_input; // Pixel offset into input_scanline +} stbir__span; + +typedef struct stbir__scale_info +{ + int input_full_size; + int output_sub_size; + float scale; + float inv_scale; + float pixel_shift; // starting shift in output pixel space (in pixels) + int scale_is_rational; + stbir_uint32 scale_numerator, scale_denominator; +} stbir__scale_info; + +typedef struct +{ + stbir__contributors * contributors; + float* coefficients; + stbir__contributors * gather_prescatter_contributors; + float * gather_prescatter_coefficients; + stbir__scale_info scale_info; + float support; + stbir_filter filter_enum; + stbir__kernel_callback * filter_kernel; + stbir__support_callback * filter_support; + stbir_edge edge; + int coefficient_width; + int filter_pixel_width; + int filter_pixel_margin; + int num_contributors; + int contributors_size; + int coefficients_size; + stbir__filter_extent_info extent_info; + int is_gather; // 0 = scatter, 1 = gather with scale >= 1, 2 = gather with scale < 1 + int gather_prescatter_num_contributors; + int gather_prescatter_coefficient_width; + int gather_prescatter_contributors_size; + int gather_prescatter_coefficients_size; +} stbir__sampler; + +typedef struct +{ + stbir__contributors conservative; + int edge_sizes[2]; // this can be less than filter_pixel_margin, if the filter and scaling falls off + stbir__span spans[2]; // can be two spans, if doing input subrect with clamp mode WRAP +} stbir__extents; + +typedef struct +{ +#ifdef STBIR_PROFILE + union + { + struct { stbir_uint64 total, looping, vertical, horizontal, decode, encode, alpha, unalpha; } named; + stbir_uint64 array[8]; + } profile; + stbir_uint64 * current_zone_excluded_ptr; +#endif + float* decode_buffer; + + int ring_buffer_first_scanline; + int ring_buffer_last_scanline; + int ring_buffer_begin_index; // first_scanline is at this index in the ring buffer + int start_output_y, end_output_y; + int start_input_y, end_input_y; // used in scatter only + + #ifdef STBIR__SEPARATE_ALLOCATIONS + float** ring_buffers; // one pointer for each ring buffer + #else + float* ring_buffer; // one big buffer that we index into + #endif + + float* vertical_buffer; + + char no_cache_straddle[64]; +} stbir__per_split_info; + +typedef void stbir__decode_pixels_func( float * decode, int width_times_channels, void const * input ); +typedef void stbir__alpha_weight_func( float * decode_buffer, int width_times_channels ); +typedef void stbir__horizontal_gather_channels_func( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, + stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ); +typedef void stbir__alpha_unweight_func(float * encode_buffer, int width_times_channels ); +typedef void stbir__encode_pixels_func( void * output, int width_times_channels, float const * encode ); + +struct stbir__info +{ +#ifdef STBIR_PROFILE + union + { + struct { stbir_uint64 total, build, alloc, horizontal, vertical, cleanup, pivot; } named; + stbir_uint64 array[7]; + } profile; + stbir_uint64 * current_zone_excluded_ptr; +#endif + stbir__sampler horizontal; + stbir__sampler vertical; + + void const * input_data; + void * output_data; + + int input_stride_bytes; + int output_stride_bytes; + int ring_buffer_length_bytes; // The length of an individual entry in the ring buffer. The total number of ring buffers is stbir__get_filter_pixel_width(filter) + int ring_buffer_num_entries; // Total number of entries in the ring buffer. + + stbir_datatype input_type; + stbir_datatype output_type; + + stbir_input_callback * in_pixels_cb; + void * user_data; + stbir_output_callback * out_pixels_cb; + + stbir__extents scanline_extents; + + void * alloced_mem; + stbir__per_split_info * split_info; // by default 1, but there will be N of these allocated based on the thread init you did + + stbir__decode_pixels_func * decode_pixels; + stbir__alpha_weight_func * alpha_weight; + stbir__horizontal_gather_channels_func * horizontal_gather_channels; + stbir__alpha_unweight_func * alpha_unweight; + stbir__encode_pixels_func * encode_pixels; + + int alloc_ring_buffer_num_entries; // Number of entries in the ring buffer that will be allocated + int splits; // count of splits + + stbir_internal_pixel_layout input_pixel_layout_internal; + stbir_internal_pixel_layout output_pixel_layout_internal; + + int input_color_and_type; + int offset_x, offset_y; // offset within output_data + int vertical_first; + int channels; + int effective_channels; // same as channels, except on RGBA/ARGB (7), or XA/AX (3) + size_t alloced_total; +}; + + +#define stbir__max_uint8_as_float 255.0f +#define stbir__max_uint16_as_float 65535.0f +#define stbir__max_uint8_as_float_inverted (1.0f/255.0f) +#define stbir__max_uint16_as_float_inverted (1.0f/65535.0f) +#define stbir__small_float ((float)1 / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20)) + +// min/max friendly +#define STBIR_CLAMP(x, xmin, xmax) for(;;) { \ + if ( (x) < (xmin) ) (x) = (xmin); \ + if ( (x) > (xmax) ) (x) = (xmax); \ + break; \ +} + +static stbir__inline int stbir__min(int a, int b) +{ + return a < b ? a : b; +} + +static stbir__inline int stbir__max(int a, int b) +{ + return a > b ? a : b; +} + +static float stbir__srgb_uchar_to_linear_float[256] = { + 0.000000f, 0.000304f, 0.000607f, 0.000911f, 0.001214f, 0.001518f, 0.001821f, 0.002125f, 0.002428f, 0.002732f, 0.003035f, + 0.003347f, 0.003677f, 0.004025f, 0.004391f, 0.004777f, 0.005182f, 0.005605f, 0.006049f, 0.006512f, 0.006995f, 0.007499f, + 0.008023f, 0.008568f, 0.009134f, 0.009721f, 0.010330f, 0.010960f, 0.011612f, 0.012286f, 0.012983f, 0.013702f, 0.014444f, + 0.015209f, 0.015996f, 0.016807f, 0.017642f, 0.018500f, 0.019382f, 0.020289f, 0.021219f, 0.022174f, 0.023153f, 0.024158f, + 0.025187f, 0.026241f, 0.027321f, 0.028426f, 0.029557f, 0.030713f, 0.031896f, 0.033105f, 0.034340f, 0.035601f, 0.036889f, + 0.038204f, 0.039546f, 0.040915f, 0.042311f, 0.043735f, 0.045186f, 0.046665f, 0.048172f, 0.049707f, 0.051269f, 0.052861f, + 0.054480f, 0.056128f, 0.057805f, 0.059511f, 0.061246f, 0.063010f, 0.064803f, 0.066626f, 0.068478f, 0.070360f, 0.072272f, + 0.074214f, 0.076185f, 0.078187f, 0.080220f, 0.082283f, 0.084376f, 0.086500f, 0.088656f, 0.090842f, 0.093059f, 0.095307f, + 0.097587f, 0.099899f, 0.102242f, 0.104616f, 0.107023f, 0.109462f, 0.111932f, 0.114435f, 0.116971f, 0.119538f, 0.122139f, + 0.124772f, 0.127438f, 0.130136f, 0.132868f, 0.135633f, 0.138432f, 0.141263f, 0.144128f, 0.147027f, 0.149960f, 0.152926f, + 0.155926f, 0.158961f, 0.162029f, 0.165132f, 0.168269f, 0.171441f, 0.174647f, 0.177888f, 0.181164f, 0.184475f, 0.187821f, + 0.191202f, 0.194618f, 0.198069f, 0.201556f, 0.205079f, 0.208637f, 0.212231f, 0.215861f, 0.219526f, 0.223228f, 0.226966f, + 0.230740f, 0.234551f, 0.238398f, 0.242281f, 0.246201f, 0.250158f, 0.254152f, 0.258183f, 0.262251f, 0.266356f, 0.270498f, + 0.274677f, 0.278894f, 0.283149f, 0.287441f, 0.291771f, 0.296138f, 0.300544f, 0.304987f, 0.309469f, 0.313989f, 0.318547f, + 0.323143f, 0.327778f, 0.332452f, 0.337164f, 0.341914f, 0.346704f, 0.351533f, 0.356400f, 0.361307f, 0.366253f, 0.371238f, + 0.376262f, 0.381326f, 0.386430f, 0.391573f, 0.396755f, 0.401978f, 0.407240f, 0.412543f, 0.417885f, 0.423268f, 0.428691f, + 0.434154f, 0.439657f, 0.445201f, 0.450786f, 0.456411f, 0.462077f, 0.467784f, 0.473532f, 0.479320f, 0.485150f, 0.491021f, + 0.496933f, 0.502887f, 0.508881f, 0.514918f, 0.520996f, 0.527115f, 0.533276f, 0.539480f, 0.545725f, 0.552011f, 0.558340f, + 0.564712f, 0.571125f, 0.577581f, 0.584078f, 0.590619f, 0.597202f, 0.603827f, 0.610496f, 0.617207f, 0.623960f, 0.630757f, + 0.637597f, 0.644480f, 0.651406f, 0.658375f, 0.665387f, 0.672443f, 0.679543f, 0.686685f, 0.693872f, 0.701102f, 0.708376f, + 0.715694f, 0.723055f, 0.730461f, 0.737911f, 0.745404f, 0.752942f, 0.760525f, 0.768151f, 0.775822f, 0.783538f, 0.791298f, + 0.799103f, 0.806952f, 0.814847f, 0.822786f, 0.830770f, 0.838799f, 0.846873f, 0.854993f, 0.863157f, 0.871367f, 0.879622f, + 0.887923f, 0.896269f, 0.904661f, 0.913099f, 0.921582f, 0.930111f, 0.938686f, 0.947307f, 0.955974f, 0.964686f, 0.973445f, + 0.982251f, 0.991102f, 1.0f +}; + +typedef union +{ + unsigned int u; + float f; +} stbir__FP32; + +// From https://gist.github.com/rygorous/2203834 + +static const stbir_uint32 fp32_to_srgb8_tab4[104] = { + 0x0073000d, 0x007a000d, 0x0080000d, 0x0087000d, 0x008d000d, 0x0094000d, 0x009a000d, 0x00a1000d, + 0x00a7001a, 0x00b4001a, 0x00c1001a, 0x00ce001a, 0x00da001a, 0x00e7001a, 0x00f4001a, 0x0101001a, + 0x010e0033, 0x01280033, 0x01410033, 0x015b0033, 0x01750033, 0x018f0033, 0x01a80033, 0x01c20033, + 0x01dc0067, 0x020f0067, 0x02430067, 0x02760067, 0x02aa0067, 0x02dd0067, 0x03110067, 0x03440067, + 0x037800ce, 0x03df00ce, 0x044600ce, 0x04ad00ce, 0x051400ce, 0x057b00c5, 0x05dd00bc, 0x063b00b5, + 0x06970158, 0x07420142, 0x07e30130, 0x087b0120, 0x090b0112, 0x09940106, 0x0a1700fc, 0x0a9500f2, + 0x0b0f01cb, 0x0bf401ae, 0x0ccb0195, 0x0d950180, 0x0e56016e, 0x0f0d015e, 0x0fbc0150, 0x10630143, + 0x11070264, 0x1238023e, 0x1357021d, 0x14660201, 0x156601e9, 0x165a01d3, 0x174401c0, 0x182401af, + 0x18fe0331, 0x1a9602fe, 0x1c1502d2, 0x1d7e02ad, 0x1ed4028d, 0x201a0270, 0x21520256, 0x227d0240, + 0x239f0443, 0x25c003fe, 0x27bf03c4, 0x29a10392, 0x2b6a0367, 0x2d1d0341, 0x2ebe031f, 0x304d0300, + 0x31d105b0, 0x34a80555, 0x37520507, 0x39d504c5, 0x3c37048b, 0x3e7c0458, 0x40a8042a, 0x42bd0401, + 0x44c20798, 0x488e071e, 0x4c1c06b6, 0x4f76065d, 0x52a50610, 0x55ac05cc, 0x5892058f, 0x5b590559, + 0x5e0c0a23, 0x631c0980, 0x67db08f6, 0x6c55087f, 0x70940818, 0x74a007bd, 0x787d076c, 0x7c330723, +}; + +static stbir__inline stbir_uint8 stbir__linear_to_srgb_uchar(float in) +{ + static const stbir__FP32 almostone = { 0x3f7fffff }; // 1-eps + static const stbir__FP32 minval = { (127-13) << 23 }; + stbir_uint32 tab,bias,scale,t; + stbir__FP32 f; + + // Clamp to [2^(-13), 1-eps]; these two values map to 0 and 1, respectively. + // The tests are carefully written so that NaNs map to 0, same as in the reference + // implementation. + if (!(in > minval.f)) // written this way to catch NaNs + return 0; + if (in > almostone.f) + return 255; + + // Do the table lookup and unpack bias, scale + f.f = in; + tab = fp32_to_srgb8_tab4[(f.u - minval.u) >> 20]; + bias = (tab >> 16) << 9; + scale = tab & 0xffff; + + // Grab next-highest mantissa bits and perform linear interpolation + t = (f.u >> 12) & 0xff; + return (unsigned char) ((bias + scale*t) >> 16); +} + +#ifndef STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT +#define STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT 32 // when downsampling and <= 32 scanlines of buffering, use gather. gather used down to 1/8th scaling for 25% win. +#endif + +#ifndef STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS +#define STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS 4 // when threading, what is the minimum number of scanlines for a split? +#endif + +// restrict pointers for the output pointers, other loop and unroll control +#if defined( _MSC_VER ) && !defined(__clang__) + #define STBIR_STREAMOUT_PTR( star ) star __restrict + #define STBIR_NO_UNROLL( ptr ) __assume(ptr) // this oddly keeps msvc from unrolling a loop + #if _MSC_VER >= 1900 + #define STBIR_NO_UNROLL_LOOP_START __pragma(loop( no_vector )) + #else + #define STBIR_NO_UNROLL_LOOP_START + #endif +#elif defined( __clang__ ) + #define STBIR_STREAMOUT_PTR( star ) star __restrict__ + #define STBIR_NO_UNROLL( ptr ) __asm__ (""::"r"(ptr)) + #if ( __clang_major__ >= 4 ) || ( ( __clang_major__ >= 3 ) && ( __clang_minor__ >= 5 ) ) + #define STBIR_NO_UNROLL_LOOP_START _Pragma("clang loop unroll(disable)") _Pragma("clang loop vectorize(disable)") + #else + #define STBIR_NO_UNROLL_LOOP_START + #endif +#elif defined( __GNUC__ ) + #define STBIR_STREAMOUT_PTR( star ) star __restrict__ + #define STBIR_NO_UNROLL( ptr ) __asm__ (""::"r"(ptr)) + #if __GNUC__ >= 14 + #define STBIR_NO_UNROLL_LOOP_START _Pragma("GCC unroll 0") _Pragma("GCC novector") + #else + #define STBIR_NO_UNROLL_LOOP_START + #endif + #define STBIR_NO_UNROLL_LOOP_START_INF_FOR +#else + #define STBIR_STREAMOUT_PTR( star ) star + #define STBIR_NO_UNROLL( ptr ) + #define STBIR_NO_UNROLL_LOOP_START +#endif + +#ifndef STBIR_NO_UNROLL_LOOP_START_INF_FOR +#define STBIR_NO_UNROLL_LOOP_START_INF_FOR STBIR_NO_UNROLL_LOOP_START +#endif + +#ifdef STBIR_NO_SIMD // force simd off for whatever reason + +// force simd off overrides everything else, so clear it all + +#ifdef STBIR_SSE2 +#undef STBIR_SSE2 +#endif + +#ifdef STBIR_AVX +#undef STBIR_AVX +#endif + +#ifdef STBIR_NEON +#undef STBIR_NEON +#endif + +#ifdef STBIR_AVX2 +#undef STBIR_AVX2 +#endif + +#ifdef STBIR_FP16C +#undef STBIR_FP16C +#endif + +#ifdef STBIR_WASM +#undef STBIR_WASM +#endif + +#ifdef STBIR_SIMD +#undef STBIR_SIMD +#endif + +#else // STBIR_SIMD + +#ifdef STBIR_SSE2 + #include + + #define stbir__simdf __m128 + #define stbir__simdi __m128i + + #define stbir_simdi_castf( reg ) _mm_castps_si128(reg) + #define stbir_simdf_casti( reg ) _mm_castsi128_ps(reg) + + #define stbir__simdf_load( reg, ptr ) (reg) = _mm_loadu_ps( (float const*)(ptr) ) + #define stbir__simdi_load( reg, ptr ) (reg) = _mm_loadu_si128 ( (stbir__simdi const*)(ptr) ) + #define stbir__simdf_load1( out, ptr ) (out) = _mm_load_ss( (float const*)(ptr) ) // top values can be random (not denormal or nan for perf) + #define stbir__simdi_load1( out, ptr ) (out) = _mm_castps_si128( _mm_load_ss( (float const*)(ptr) )) + #define stbir__simdf_load1z( out, ptr ) (out) = _mm_load_ss( (float const*)(ptr) ) // top values must be zero + #define stbir__simdf_frep4( fvar ) _mm_set_ps1( fvar ) + #define stbir__simdf_load1frep4( out, fvar ) (out) = _mm_set_ps1( fvar ) + #define stbir__simdf_load2( out, ptr ) (out) = _mm_castsi128_ps( _mm_loadl_epi64( (__m128i*)(ptr)) ) // top values can be random (not denormal or nan for perf) + #define stbir__simdf_load2z( out, ptr ) (out) = _mm_castsi128_ps( _mm_loadl_epi64( (__m128i*)(ptr)) ) // top values must be zero + #define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = _mm_castpd_ps(_mm_loadh_pd( _mm_castps_pd(reg), (double*)(ptr) )) + + #define stbir__simdf_zeroP() _mm_setzero_ps() + #define stbir__simdf_zero( reg ) (reg) = _mm_setzero_ps() + + #define stbir__simdf_store( ptr, reg ) _mm_storeu_ps( (float*)(ptr), reg ) + #define stbir__simdf_store1( ptr, reg ) _mm_store_ss( (float*)(ptr), reg ) + #define stbir__simdf_store2( ptr, reg ) _mm_storel_epi64( (__m128i*)(ptr), _mm_castps_si128(reg) ) + #define stbir__simdf_store2h( ptr, reg ) _mm_storeh_pd( (double*)(ptr), _mm_castps_pd(reg) ) + + #define stbir__simdi_store( ptr, reg ) _mm_storeu_si128( (__m128i*)(ptr), reg ) + #define stbir__simdi_store1( ptr, reg ) _mm_store_ss( (float*)(ptr), _mm_castsi128_ps(reg) ) + #define stbir__simdi_store2( ptr, reg ) _mm_storel_epi64( (__m128i*)(ptr), (reg) ) + + #define stbir__prefetch( ptr ) _mm_prefetch((char*)(ptr), _MM_HINT_T0 ) + + #define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \ + { \ + stbir__simdi zero = _mm_setzero_si128(); \ + out2 = _mm_unpacklo_epi8( ireg, zero ); \ + out3 = _mm_unpackhi_epi8( ireg, zero ); \ + out0 = _mm_unpacklo_epi16( out2, zero ); \ + out1 = _mm_unpackhi_epi16( out2, zero ); \ + out2 = _mm_unpacklo_epi16( out3, zero ); \ + out3 = _mm_unpackhi_epi16( out3, zero ); \ + } + +#define stbir__simdi_expand_u8_to_1u32(out,ireg) \ + { \ + stbir__simdi zero = _mm_setzero_si128(); \ + out = _mm_unpacklo_epi8( ireg, zero ); \ + out = _mm_unpacklo_epi16( out, zero ); \ + } + + #define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \ + { \ + stbir__simdi zero = _mm_setzero_si128(); \ + out0 = _mm_unpacklo_epi16( ireg, zero ); \ + out1 = _mm_unpackhi_epi16( ireg, zero ); \ + } + + #define stbir__simdf_convert_float_to_i32( i, f ) (i) = _mm_cvttps_epi32(f) + #define stbir__simdf_convert_float_to_int( f ) _mm_cvtt_ss2si(f) + #define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)_mm_cvtsi128_si32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(f,STBIR__CONSTF(STBIR_max_uint8_as_float)),_mm_setzero_ps())))) + #define stbir__simdf_convert_float_to_short( f ) ((unsigned short)_mm_cvtsi128_si32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(f,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())))) + + #define stbir__simdi_to_int( i ) _mm_cvtsi128_si32(i) + #define stbir__simdi_convert_i32_to_float(out, ireg) (out) = _mm_cvtepi32_ps( ireg ) + #define stbir__simdf_add( out, reg0, reg1 ) (out) = _mm_add_ps( reg0, reg1 ) + #define stbir__simdf_mult( out, reg0, reg1 ) (out) = _mm_mul_ps( reg0, reg1 ) + #define stbir__simdf_mult_mem( out, reg, ptr ) (out) = _mm_mul_ps( reg, _mm_loadu_ps( (float const*)(ptr) ) ) + #define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = _mm_mul_ss( reg, _mm_load_ss( (float const*)(ptr) ) ) + #define stbir__simdf_add_mem( out, reg, ptr ) (out) = _mm_add_ps( reg, _mm_loadu_ps( (float const*)(ptr) ) ) + #define stbir__simdf_add1_mem( out, reg, ptr ) (out) = _mm_add_ss( reg, _mm_load_ss( (float const*)(ptr) ) ) + + #ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd + #include + #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = _mm_fmadd_ps( mul1, mul2, add ) + #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = _mm_fmadd_ss( mul1, mul2, add ) + #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = _mm_fmadd_ps( mul, _mm_loadu_ps( (float const*)(ptr) ), add ) + #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = _mm_fmadd_ss( mul, _mm_load_ss( (float const*)(ptr) ), add ) + #else + #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = _mm_add_ps( add, _mm_mul_ps( mul1, mul2 ) ) + #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = _mm_add_ss( add, _mm_mul_ss( mul1, mul2 ) ) + #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = _mm_add_ps( add, _mm_mul_ps( mul, _mm_loadu_ps( (float const*)(ptr) ) ) ) + #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = _mm_add_ss( add, _mm_mul_ss( mul, _mm_load_ss( (float const*)(ptr) ) ) ) + #endif + + #define stbir__simdf_add1( out, reg0, reg1 ) (out) = _mm_add_ss( reg0, reg1 ) + #define stbir__simdf_mult1( out, reg0, reg1 ) (out) = _mm_mul_ss( reg0, reg1 ) + + #define stbir__simdf_and( out, reg0, reg1 ) (out) = _mm_and_ps( reg0, reg1 ) + #define stbir__simdf_or( out, reg0, reg1 ) (out) = _mm_or_ps( reg0, reg1 ) + + #define stbir__simdf_min( out, reg0, reg1 ) (out) = _mm_min_ps( reg0, reg1 ) + #define stbir__simdf_max( out, reg0, reg1 ) (out) = _mm_max_ps( reg0, reg1 ) + #define stbir__simdf_min1( out, reg0, reg1 ) (out) = _mm_min_ss( reg0, reg1 ) + #define stbir__simdf_max1( out, reg0, reg1 ) (out) = _mm_max_ss( reg0, reg1 ) + + #define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_shuffle_ps( reg1,reg0, (0<<0) + (1<<2) + (2<<4) + (3<<6) )), (3<<0) + (0<<2) + (1<<4) + (2<<6) ) ) + #define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_shuffle_ps( reg1,reg0, (0<<0) + (1<<2) + (2<<4) + (3<<6) )), (2<<0) + (3<<2) + (0<<4) + (1<<6) ) ) + + static const stbir__simdf STBIR_zeroones = { 0.0f,1.0f,0.0f,1.0f }; + static const stbir__simdf STBIR_onezeros = { 1.0f,0.0f,1.0f,0.0f }; + #define stbir__simdf_aaa1( out, alp, ones ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_movehl_ps( ones, alp ) ), (1<<0) + (1<<2) + (1<<4) + (2<<6) ) ) + #define stbir__simdf_1aaa( out, alp, ones ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_movelh_ps( ones, alp ) ), (0<<0) + (2<<2) + (2<<4) + (2<<6) ) ) + #define stbir__simdf_a1a1( out, alp, ones) (out) = _mm_or_ps( _mm_castsi128_ps( _mm_srli_epi64( _mm_castps_si128(alp), 32 ) ), STBIR_zeroones ) + #define stbir__simdf_1a1a( out, alp, ones) (out) = _mm_or_ps( _mm_castsi128_ps( _mm_slli_epi64( _mm_castps_si128(alp), 32 ) ), STBIR_onezeros ) + + #define stbir__simdf_swiz( reg, one, two, three, four ) _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( reg ), (one<<0) + (two<<2) + (three<<4) + (four<<6) ) ) + + #define stbir__simdi_and( out, reg0, reg1 ) (out) = _mm_and_si128( reg0, reg1 ) + #define stbir__simdi_or( out, reg0, reg1 ) (out) = _mm_or_si128( reg0, reg1 ) + #define stbir__simdi_16madd( out, reg0, reg1 ) (out) = _mm_madd_epi16( reg0, reg1 ) + + #define stbir__simdf_pack_to_8bytes(out,aa,bb) \ + { \ + stbir__simdf af,bf; \ + stbir__simdi a,b; \ + af = _mm_min_ps( aa, STBIR_max_uint8_as_float ); \ + bf = _mm_min_ps( bb, STBIR_max_uint8_as_float ); \ + af = _mm_max_ps( af, _mm_setzero_ps() ); \ + bf = _mm_max_ps( bf, _mm_setzero_ps() ); \ + a = _mm_cvttps_epi32( af ); \ + b = _mm_cvttps_epi32( bf ); \ + a = _mm_packs_epi32( a, b ); \ + out = _mm_packus_epi16( a, a ); \ + } + + #define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \ + stbir__simdf_load( o0, (ptr) ); \ + stbir__simdf_load( o1, (ptr)+4 ); \ + stbir__simdf_load( o2, (ptr)+8 ); \ + stbir__simdf_load( o3, (ptr)+12 ); \ + { \ + __m128 tmp0, tmp1, tmp2, tmp3; \ + tmp0 = _mm_unpacklo_ps(o0, o1); \ + tmp2 = _mm_unpacklo_ps(o2, o3); \ + tmp1 = _mm_unpackhi_ps(o0, o1); \ + tmp3 = _mm_unpackhi_ps(o2, o3); \ + o0 = _mm_movelh_ps(tmp0, tmp2); \ + o1 = _mm_movehl_ps(tmp2, tmp0); \ + o2 = _mm_movelh_ps(tmp1, tmp3); \ + o3 = _mm_movehl_ps(tmp3, tmp1); \ + } + + #define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \ + r0 = _mm_packs_epi32( r0, r1 ); \ + r2 = _mm_packs_epi32( r2, r3 ); \ + r1 = _mm_unpacklo_epi16( r0, r2 ); \ + r3 = _mm_unpackhi_epi16( r0, r2 ); \ + r0 = _mm_unpacklo_epi16( r1, r3 ); \ + r2 = _mm_unpackhi_epi16( r1, r3 ); \ + r0 = _mm_packus_epi16( r0, r2 ); \ + stbir__simdi_store( ptr, r0 ); \ + + #define stbir__simdi_32shr( out, reg, imm ) out = _mm_srli_epi32( reg, imm ) + + #if defined(_MSC_VER) && !defined(__clang__) + // msvc inits with 8 bytes + #define STBIR__CONST_32_TO_8( v ) (char)(unsigned char)((v)&255),(char)(unsigned char)(((v)>>8)&255),(char)(unsigned char)(((v)>>16)&255),(char)(unsigned char)(((v)>>24)&255) + #define STBIR__CONST_4_32i( v ) STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v ) + #define STBIR__CONST_4d_32i( v0, v1, v2, v3 ) STBIR__CONST_32_TO_8( v0 ), STBIR__CONST_32_TO_8( v1 ), STBIR__CONST_32_TO_8( v2 ), STBIR__CONST_32_TO_8( v3 ) + #else + // everything else inits with long long's + #define STBIR__CONST_4_32i( v ) (long long)((((stbir_uint64)(stbir_uint32)(v))<<32)|((stbir_uint64)(stbir_uint32)(v))),(long long)((((stbir_uint64)(stbir_uint32)(v))<<32)|((stbir_uint64)(stbir_uint32)(v))) + #define STBIR__CONST_4d_32i( v0, v1, v2, v3 ) (long long)((((stbir_uint64)(stbir_uint32)(v1))<<32)|((stbir_uint64)(stbir_uint32)(v0))),(long long)((((stbir_uint64)(stbir_uint32)(v3))<<32)|((stbir_uint64)(stbir_uint32)(v2))) + #endif + + #define STBIR__SIMDF_CONST(var, x) stbir__simdf var = { x, x, x, x } + #define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { STBIR__CONST_4_32i(x) } + #define STBIR__CONSTF(var) (var) + #define STBIR__CONSTI(var) (var) + + #if defined(STBIR_AVX) || defined(__SSE4_1__) + #include + #define stbir__simdf_pack_to_8words(out,reg0,reg1) out = _mm_packus_epi32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg0,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())), _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg1,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps()))) + #else + STBIR__SIMDI_CONST(stbir__s32_32768, 32768); + STBIR__SIMDI_CONST(stbir__s16_32768, ((32768<<16)|32768)); + + #define stbir__simdf_pack_to_8words(out,reg0,reg1) \ + { \ + stbir__simdi tmp0,tmp1; \ + tmp0 = _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg0,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())); \ + tmp1 = _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg1,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())); \ + tmp0 = _mm_sub_epi32( tmp0, stbir__s32_32768 ); \ + tmp1 = _mm_sub_epi32( tmp1, stbir__s32_32768 ); \ + out = _mm_packs_epi32( tmp0, tmp1 ); \ + out = _mm_sub_epi16( out, stbir__s16_32768 ); \ + } + + #endif + + #define STBIR_SIMD + + // if we detect AVX, set the simd8 defines + #ifdef STBIR_AVX + #include + #define STBIR_SIMD8 + #define stbir__simdf8 __m256 + #define stbir__simdi8 __m256i + #define stbir__simdf8_load( out, ptr ) (out) = _mm256_loadu_ps( (float const *)(ptr) ) + #define stbir__simdi8_load( out, ptr ) (out) = _mm256_loadu_si256( (__m256i const *)(ptr) ) + #define stbir__simdf8_mult( out, a, b ) (out) = _mm256_mul_ps( (a), (b) ) + #define stbir__simdf8_store( ptr, out ) _mm256_storeu_ps( (float*)(ptr), out ) + #define stbir__simdi8_store( ptr, reg ) _mm256_storeu_si256( (__m256i*)(ptr), reg ) + #define stbir__simdf8_frep8( fval ) _mm256_set1_ps( fval ) + + #define stbir__simdf8_min( out, reg0, reg1 ) (out) = _mm256_min_ps( reg0, reg1 ) + #define stbir__simdf8_max( out, reg0, reg1 ) (out) = _mm256_max_ps( reg0, reg1 ) + + #define stbir__simdf8_add4halves( out, bot4, top8 ) (out) = _mm_add_ps( bot4, _mm256_extractf128_ps( top8, 1 ) ) + #define stbir__simdf8_mult_mem( out, reg, ptr ) (out) = _mm256_mul_ps( reg, _mm256_loadu_ps( (float const*)(ptr) ) ) + #define stbir__simdf8_add_mem( out, reg, ptr ) (out) = _mm256_add_ps( reg, _mm256_loadu_ps( (float const*)(ptr) ) ) + #define stbir__simdf8_add( out, a, b ) (out) = _mm256_add_ps( a, b ) + #define stbir__simdf8_load1b( out, ptr ) (out) = _mm256_broadcast_ss( ptr ) + #define stbir__simdf_load1rep4( out, ptr ) (out) = _mm_broadcast_ss( ptr ) // avx load instruction + + #define stbir__simdi8_convert_i32_to_float(out, ireg) (out) = _mm256_cvtepi32_ps( ireg ) + #define stbir__simdf8_convert_float_to_i32( i, f ) (i) = _mm256_cvttps_epi32(f) + + #define stbir__simdf8_bot4s( out, a, b ) (out) = _mm256_permute2f128_ps(a,b, (0<<0)+(2<<4) ) + #define stbir__simdf8_top4s( out, a, b ) (out) = _mm256_permute2f128_ps(a,b, (1<<0)+(3<<4) ) + + #define stbir__simdf8_gettop4( reg ) _mm256_extractf128_ps(reg,1) + + #ifdef STBIR_AVX2 + + #define stbir__simdi8_expand_u8_to_u32(out0,out1,ireg) \ + { \ + stbir__simdi8 a, zero =_mm256_setzero_si256();\ + a = _mm256_permute4x64_epi64( _mm256_unpacklo_epi8( _mm256_permute4x64_epi64(_mm256_castsi128_si256(ireg),(0<<0)+(2<<2)+(1<<4)+(3<<6)), zero ),(0<<0)+(2<<2)+(1<<4)+(3<<6)); \ + out0 = _mm256_unpacklo_epi16( a, zero ); \ + out1 = _mm256_unpackhi_epi16( a, zero ); \ + } + + #define stbir__simdf8_pack_to_16bytes(out,aa,bb) \ + { \ + stbir__simdi8 t; \ + stbir__simdf8 af,bf; \ + stbir__simdi8 a,b; \ + af = _mm256_min_ps( aa, STBIR_max_uint8_as_floatX ); \ + bf = _mm256_min_ps( bb, STBIR_max_uint8_as_floatX ); \ + af = _mm256_max_ps( af, _mm256_setzero_ps() ); \ + bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \ + a = _mm256_cvttps_epi32( af ); \ + b = _mm256_cvttps_epi32( bf ); \ + t = _mm256_permute4x64_epi64( _mm256_packs_epi32( a, b ), (0<<0)+(2<<2)+(1<<4)+(3<<6) ); \ + out = _mm256_castsi256_si128( _mm256_permute4x64_epi64( _mm256_packus_epi16( t, t ), (0<<0)+(2<<2)+(1<<4)+(3<<6) ) ); \ + } + + #define stbir__simdi8_expand_u16_to_u32(out,ireg) out = _mm256_unpacklo_epi16( _mm256_permute4x64_epi64(_mm256_castsi128_si256(ireg),(0<<0)+(2<<2)+(1<<4)+(3<<6)), _mm256_setzero_si256() ); + + #define stbir__simdf8_pack_to_16words(out,aa,bb) \ + { \ + stbir__simdf8 af,bf; \ + stbir__simdi8 a,b; \ + af = _mm256_min_ps( aa, STBIR_max_uint16_as_floatX ); \ + bf = _mm256_min_ps( bb, STBIR_max_uint16_as_floatX ); \ + af = _mm256_max_ps( af, _mm256_setzero_ps() ); \ + bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \ + a = _mm256_cvttps_epi32( af ); \ + b = _mm256_cvttps_epi32( bf ); \ + (out) = _mm256_permute4x64_epi64( _mm256_packus_epi32(a, b), (0<<0)+(2<<2)+(1<<4)+(3<<6) ); \ + } + + #else + + #define stbir__simdi8_expand_u8_to_u32(out0,out1,ireg) \ + { \ + stbir__simdi a,zero = _mm_setzero_si128(); \ + a = _mm_unpacklo_epi8( ireg, zero ); \ + out0 = _mm256_setr_m128i( _mm_unpacklo_epi16( a, zero ), _mm_unpackhi_epi16( a, zero ) ); \ + a = _mm_unpackhi_epi8( ireg, zero ); \ + out1 = _mm256_setr_m128i( _mm_unpacklo_epi16( a, zero ), _mm_unpackhi_epi16( a, zero ) ); \ + } + + #define stbir__simdf8_pack_to_16bytes(out,aa,bb) \ + { \ + stbir__simdi t; \ + stbir__simdf8 af,bf; \ + stbir__simdi8 a,b; \ + af = _mm256_min_ps( aa, STBIR_max_uint8_as_floatX ); \ + bf = _mm256_min_ps( bb, STBIR_max_uint8_as_floatX ); \ + af = _mm256_max_ps( af, _mm256_setzero_ps() ); \ + bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \ + a = _mm256_cvttps_epi32( af ); \ + b = _mm256_cvttps_epi32( bf ); \ + out = _mm_packs_epi32( _mm256_castsi256_si128(a), _mm256_extractf128_si256( a, 1 ) ); \ + out = _mm_packus_epi16( out, out ); \ + t = _mm_packs_epi32( _mm256_castsi256_si128(b), _mm256_extractf128_si256( b, 1 ) ); \ + t = _mm_packus_epi16( t, t ); \ + out = _mm_castps_si128( _mm_shuffle_ps( _mm_castsi128_ps(out), _mm_castsi128_ps(t), (0<<0)+(1<<2)+(0<<4)+(1<<6) ) ); \ + } + + #define stbir__simdi8_expand_u16_to_u32(out,ireg) \ + { \ + stbir__simdi a,b,zero = _mm_setzero_si128(); \ + a = _mm_unpacklo_epi16( ireg, zero ); \ + b = _mm_unpackhi_epi16( ireg, zero ); \ + out = _mm256_insertf128_si256( _mm256_castsi128_si256( a ), b, 1 ); \ + } + + #define stbir__simdf8_pack_to_16words(out,aa,bb) \ + { \ + stbir__simdi t0,t1; \ + stbir__simdf8 af,bf; \ + stbir__simdi8 a,b; \ + af = _mm256_min_ps( aa, STBIR_max_uint16_as_floatX ); \ + bf = _mm256_min_ps( bb, STBIR_max_uint16_as_floatX ); \ + af = _mm256_max_ps( af, _mm256_setzero_ps() ); \ + bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \ + a = _mm256_cvttps_epi32( af ); \ + b = _mm256_cvttps_epi32( bf ); \ + t0 = _mm_packus_epi32( _mm256_castsi256_si128(a), _mm256_extractf128_si256( a, 1 ) ); \ + t1 = _mm_packus_epi32( _mm256_castsi256_si128(b), _mm256_extractf128_si256( b, 1 ) ); \ + out = _mm256_setr_m128i( t0, t1 ); \ + } + + #endif + + static __m256i stbir_00001111 = { STBIR__CONST_4d_32i( 0, 0, 0, 0 ), STBIR__CONST_4d_32i( 1, 1, 1, 1 ) }; + #define stbir__simdf8_0123to00001111( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_00001111 ) + + static __m256i stbir_22223333 = { STBIR__CONST_4d_32i( 2, 2, 2, 2 ), STBIR__CONST_4d_32i( 3, 3, 3, 3 ) }; + #define stbir__simdf8_0123to22223333( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_22223333 ) + + #define stbir__simdf8_0123to2222( out, in ) (out) = stbir__simdf_swiz(_mm256_castps256_ps128(in), 2,2,2,2 ) + + #define stbir__simdf8_load4b( out, ptr ) (out) = _mm256_broadcast_ps( (__m128 const *)(ptr) ) + + static __m256i stbir_00112233 = { STBIR__CONST_4d_32i( 0, 0, 1, 1 ), STBIR__CONST_4d_32i( 2, 2, 3, 3 ) }; + #define stbir__simdf8_0123to00112233( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_00112233 ) + #define stbir__simdf8_add4( out, a8, b ) (out) = _mm256_add_ps( a8, _mm256_castps128_ps256( b ) ) + + static __m256i stbir_load6 = { STBIR__CONST_4_32i( 0x80000000 ), STBIR__CONST_4d_32i( 0x80000000, 0x80000000, 0, 0 ) }; + #define stbir__simdf8_load6z( out, ptr ) (out) = _mm256_maskload_ps( ptr, stbir_load6 ) + + #define stbir__simdf8_0123to00000000( out, in ) (out) = _mm256_shuffle_ps ( in, in, (0<<0)+(0<<2)+(0<<4)+(0<<6) ) + #define stbir__simdf8_0123to11111111( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(1<<2)+(1<<4)+(1<<6) ) + #define stbir__simdf8_0123to22222222( out, in ) (out) = _mm256_shuffle_ps ( in, in, (2<<0)+(2<<2)+(2<<4)+(2<<6) ) + #define stbir__simdf8_0123to33333333( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(3<<2)+(3<<4)+(3<<6) ) + #define stbir__simdf8_0123to21032103( out, in ) (out) = _mm256_shuffle_ps ( in, in, (2<<0)+(1<<2)+(0<<4)+(3<<6) ) + #define stbir__simdf8_0123to32103210( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(2<<2)+(1<<4)+(0<<6) ) + #define stbir__simdf8_0123to12301230( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(2<<2)+(3<<4)+(0<<6) ) + #define stbir__simdf8_0123to10321032( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(0<<2)+(3<<4)+(2<<6) ) + #define stbir__simdf8_0123to30123012( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(0<<2)+(1<<4)+(2<<6) ) + + #define stbir__simdf8_0123to11331133( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(1<<2)+(3<<4)+(3<<6) ) + #define stbir__simdf8_0123to00220022( out, in ) (out) = _mm256_shuffle_ps ( in, in, (0<<0)+(0<<2)+(2<<4)+(2<<6) ) + + #define stbir__simdf8_aaa1( out, alp, ones ) (out) = _mm256_blend_ps( alp, ones, (1<<0)+(1<<1)+(1<<2)+(0<<3)+(1<<4)+(1<<5)+(1<<6)+(0<<7)); (out)=_mm256_shuffle_ps( out,out, (3<<0) + (3<<2) + (3<<4) + (0<<6) ) + #define stbir__simdf8_1aaa( out, alp, ones ) (out) = _mm256_blend_ps( alp, ones, (0<<0)+(1<<1)+(1<<2)+(1<<3)+(0<<4)+(1<<5)+(1<<6)+(1<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (0<<4) + (0<<6) ) + #define stbir__simdf8_a1a1( out, alp, ones) (out) = _mm256_blend_ps( alp, ones, (1<<0)+(0<<1)+(1<<2)+(0<<3)+(1<<4)+(0<<5)+(1<<6)+(0<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (3<<4) + (2<<6) ) + #define stbir__simdf8_1a1a( out, alp, ones) (out) = _mm256_blend_ps( alp, ones, (0<<0)+(1<<1)+(0<<2)+(1<<3)+(0<<4)+(1<<5)+(0<<6)+(1<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (3<<4) + (2<<6) ) + + #define stbir__simdf8_zero( reg ) (reg) = _mm256_setzero_ps() + + #ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd + #define stbir__simdf8_madd( out, add, mul1, mul2 ) (out) = _mm256_fmadd_ps( mul1, mul2, add ) + #define stbir__simdf8_madd_mem( out, add, mul, ptr ) (out) = _mm256_fmadd_ps( mul, _mm256_loadu_ps( (float const*)(ptr) ), add ) + #define stbir__simdf8_madd_mem4( out, add, mul, ptr )(out) = _mm256_fmadd_ps( _mm256_setr_m128( mul, _mm_setzero_ps() ), _mm256_setr_m128( _mm_loadu_ps( (float const*)(ptr) ), _mm_setzero_ps() ), add ) + #else + #define stbir__simdf8_madd( out, add, mul1, mul2 ) (out) = _mm256_add_ps( add, _mm256_mul_ps( mul1, mul2 ) ) + #define stbir__simdf8_madd_mem( out, add, mul, ptr ) (out) = _mm256_add_ps( add, _mm256_mul_ps( mul, _mm256_loadu_ps( (float const*)(ptr) ) ) ) + #define stbir__simdf8_madd_mem4( out, add, mul, ptr ) (out) = _mm256_add_ps( add, _mm256_setr_m128( _mm_mul_ps( mul, _mm_loadu_ps( (float const*)(ptr) ) ), _mm_setzero_ps() ) ) + #endif + #define stbir__if_simdf8_cast_to_simdf4( val ) _mm256_castps256_ps128( val ) + + #endif + + #ifdef STBIR_FLOORF + #undef STBIR_FLOORF + #endif + #define STBIR_FLOORF stbir_simd_floorf + static stbir__inline float stbir_simd_floorf(float x) // martins floorf + { + #if defined(STBIR_AVX) || defined(__SSE4_1__) || defined(STBIR_SSE41) + __m128 t = _mm_set_ss(x); + return _mm_cvtss_f32( _mm_floor_ss(t, t) ); + #else + __m128 f = _mm_set_ss(x); + __m128 t = _mm_cvtepi32_ps(_mm_cvttps_epi32(f)); + __m128 r = _mm_add_ss(t, _mm_and_ps(_mm_cmplt_ss(f, t), _mm_set_ss(-1.0f))); + return _mm_cvtss_f32(r); + #endif + } + + #ifdef STBIR_CEILF + #undef STBIR_CEILF + #endif + #define STBIR_CEILF stbir_simd_ceilf + static stbir__inline float stbir_simd_ceilf(float x) // martins ceilf + { + #if defined(STBIR_AVX) || defined(__SSE4_1__) || defined(STBIR_SSE41) + __m128 t = _mm_set_ss(x); + return _mm_cvtss_f32( _mm_ceil_ss(t, t) ); + #else + __m128 f = _mm_set_ss(x); + __m128 t = _mm_cvtepi32_ps(_mm_cvttps_epi32(f)); + __m128 r = _mm_add_ss(t, _mm_and_ps(_mm_cmplt_ss(t, f), _mm_set_ss(1.0f))); + return _mm_cvtss_f32(r); + #endif + } + +#elif defined(STBIR_NEON) + + #include + + #define stbir__simdf float32x4_t + #define stbir__simdi uint32x4_t + + #define stbir_simdi_castf( reg ) vreinterpretq_u32_f32(reg) + #define stbir_simdf_casti( reg ) vreinterpretq_f32_u32(reg) + + #define stbir__simdf_load( reg, ptr ) (reg) = vld1q_f32( (float const*)(ptr) ) + #define stbir__simdi_load( reg, ptr ) (reg) = vld1q_u32( (uint32_t const*)(ptr) ) + #define stbir__simdf_load1( out, ptr ) (out) = vld1q_dup_f32( (float const*)(ptr) ) // top values can be random (not denormal or nan for perf) + #define stbir__simdi_load1( out, ptr ) (out) = vld1q_dup_u32( (uint32_t const*)(ptr) ) + #define stbir__simdf_load1z( out, ptr ) (out) = vld1q_lane_f32( (float const*)(ptr), vdupq_n_f32(0), 0 ) // top values must be zero + #define stbir__simdf_frep4( fvar ) vdupq_n_f32( fvar ) + #define stbir__simdf_load1frep4( out, fvar ) (out) = vdupq_n_f32( fvar ) + #define stbir__simdf_load2( out, ptr ) (out) = vcombine_f32( vld1_f32( (float const*)(ptr) ), vcreate_f32(0) ) // top values can be random (not denormal or nan for perf) + #define stbir__simdf_load2z( out, ptr ) (out) = vcombine_f32( vld1_f32( (float const*)(ptr) ), vcreate_f32(0) ) // top values must be zero + #define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = vcombine_f32( vget_low_f32(reg), vld1_f32( (float const*)(ptr) ) ) + + #define stbir__simdf_zeroP() vdupq_n_f32(0) + #define stbir__simdf_zero( reg ) (reg) = vdupq_n_f32(0) + + #define stbir__simdf_store( ptr, reg ) vst1q_f32( (float*)(ptr), reg ) + #define stbir__simdf_store1( ptr, reg ) vst1q_lane_f32( (float*)(ptr), reg, 0) + #define stbir__simdf_store2( ptr, reg ) vst1_f32( (float*)(ptr), vget_low_f32(reg) ) + #define stbir__simdf_store2h( ptr, reg ) vst1_f32( (float*)(ptr), vget_high_f32(reg) ) + + #define stbir__simdi_store( ptr, reg ) vst1q_u32( (uint32_t*)(ptr), reg ) + #define stbir__simdi_store1( ptr, reg ) vst1q_lane_u32( (uint32_t*)(ptr), reg, 0 ) + #define stbir__simdi_store2( ptr, reg ) vst1_u32( (uint32_t*)(ptr), vget_low_u32(reg) ) + + #define stbir__prefetch( ptr ) + + #define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \ + { \ + uint16x8_t l = vmovl_u8( vget_low_u8 ( vreinterpretq_u8_u32(ireg) ) ); \ + uint16x8_t h = vmovl_u8( vget_high_u8( vreinterpretq_u8_u32(ireg) ) ); \ + out0 = vmovl_u16( vget_low_u16 ( l ) ); \ + out1 = vmovl_u16( vget_high_u16( l ) ); \ + out2 = vmovl_u16( vget_low_u16 ( h ) ); \ + out3 = vmovl_u16( vget_high_u16( h ) ); \ + } + + #define stbir__simdi_expand_u8_to_1u32(out,ireg) \ + { \ + uint16x8_t tmp = vmovl_u8( vget_low_u8( vreinterpretq_u8_u32(ireg) ) ); \ + out = vmovl_u16( vget_low_u16( tmp ) ); \ + } + + #define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \ + { \ + uint16x8_t tmp = vreinterpretq_u16_u32(ireg); \ + out0 = vmovl_u16( vget_low_u16 ( tmp ) ); \ + out1 = vmovl_u16( vget_high_u16( tmp ) ); \ + } + + #define stbir__simdf_convert_float_to_i32( i, f ) (i) = vreinterpretq_u32_s32( vcvtq_s32_f32(f) ) + #define stbir__simdf_convert_float_to_int( f ) vgetq_lane_s32(vcvtq_s32_f32(f), 0) + #define stbir__simdi_to_int( i ) (int)vgetq_lane_u32(i, 0) + #define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)vgetq_lane_s32(vcvtq_s32_f32(vmaxq_f32(vminq_f32(f,STBIR__CONSTF(STBIR_max_uint8_as_float)),vdupq_n_f32(0))), 0)) + #define stbir__simdf_convert_float_to_short( f ) ((unsigned short)vgetq_lane_s32(vcvtq_s32_f32(vmaxq_f32(vminq_f32(f,STBIR__CONSTF(STBIR_max_uint16_as_float)),vdupq_n_f32(0))), 0)) + #define stbir__simdi_convert_i32_to_float(out, ireg) (out) = vcvtq_f32_s32( vreinterpretq_s32_u32(ireg) ) + #define stbir__simdf_add( out, reg0, reg1 ) (out) = vaddq_f32( reg0, reg1 ) + #define stbir__simdf_mult( out, reg0, reg1 ) (out) = vmulq_f32( reg0, reg1 ) + #define stbir__simdf_mult_mem( out, reg, ptr ) (out) = vmulq_f32( reg, vld1q_f32( (float const*)(ptr) ) ) + #define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = vmulq_f32( reg, vld1q_dup_f32( (float const*)(ptr) ) ) + #define stbir__simdf_add_mem( out, reg, ptr ) (out) = vaddq_f32( reg, vld1q_f32( (float const*)(ptr) ) ) + #define stbir__simdf_add1_mem( out, reg, ptr ) (out) = vaddq_f32( reg, vld1q_dup_f32( (float const*)(ptr) ) ) + + #ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd (and also x64 no madd to arm madd) + #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = vfmaq_f32( add, mul1, mul2 ) + #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = vfmaq_f32( add, mul1, mul2 ) + #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = vfmaq_f32( add, mul, vld1q_f32( (float const*)(ptr) ) ) + #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = vfmaq_f32( add, mul, vld1q_dup_f32( (float const*)(ptr) ) ) + #else + #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = vaddq_f32( add, vmulq_f32( mul1, mul2 ) ) + #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = vaddq_f32( add, vmulq_f32( mul1, mul2 ) ) + #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = vaddq_f32( add, vmulq_f32( mul, vld1q_f32( (float const*)(ptr) ) ) ) + #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = vaddq_f32( add, vmulq_f32( mul, vld1q_dup_f32( (float const*)(ptr) ) ) ) + #endif + + #define stbir__simdf_add1( out, reg0, reg1 ) (out) = vaddq_f32( reg0, reg1 ) + #define stbir__simdf_mult1( out, reg0, reg1 ) (out) = vmulq_f32( reg0, reg1 ) + + #define stbir__simdf_and( out, reg0, reg1 ) (out) = vreinterpretq_f32_u32( vandq_u32( vreinterpretq_u32_f32(reg0), vreinterpretq_u32_f32(reg1) ) ) + #define stbir__simdf_or( out, reg0, reg1 ) (out) = vreinterpretq_f32_u32( vorrq_u32( vreinterpretq_u32_f32(reg0), vreinterpretq_u32_f32(reg1) ) ) + + #define stbir__simdf_min( out, reg0, reg1 ) (out) = vminq_f32( reg0, reg1 ) + #define stbir__simdf_max( out, reg0, reg1 ) (out) = vmaxq_f32( reg0, reg1 ) + #define stbir__simdf_min1( out, reg0, reg1 ) (out) = vminq_f32( reg0, reg1 ) + #define stbir__simdf_max1( out, reg0, reg1 ) (out) = vmaxq_f32( reg0, reg1 ) + + #define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out) = vextq_f32( reg0, reg1, 3 ) + #define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out) = vextq_f32( reg0, reg1, 2 ) + + #define stbir__simdf_a1a1( out, alp, ones ) (out) = vzipq_f32(vuzpq_f32(alp, alp).val[1], ones).val[0] + #define stbir__simdf_1a1a( out, alp, ones ) (out) = vzipq_f32(ones, vuzpq_f32(alp, alp).val[0]).val[0] + + #if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) + + #define stbir__simdf_aaa1( out, alp, ones ) (out) = vcopyq_laneq_f32(vdupq_n_f32(vgetq_lane_f32(alp, 3)), 3, ones, 3) + #define stbir__simdf_1aaa( out, alp, ones ) (out) = vcopyq_laneq_f32(vdupq_n_f32(vgetq_lane_f32(alp, 0)), 0, ones, 0) + + #if defined( _MSC_VER ) && !defined(__clang__) + #define stbir_make16(a,b,c,d) vcombine_u8( \ + vcreate_u8( (4*a+0) | ((4*a+1)<<8) | ((4*a+2)<<16) | ((4*a+3)<<24) | \ + ((stbir_uint64)(4*b+0)<<32) | ((stbir_uint64)(4*b+1)<<40) | ((stbir_uint64)(4*b+2)<<48) | ((stbir_uint64)(4*b+3)<<56)), \ + vcreate_u8( (4*c+0) | ((4*c+1)<<8) | ((4*c+2)<<16) | ((4*c+3)<<24) | \ + ((stbir_uint64)(4*d+0)<<32) | ((stbir_uint64)(4*d+1)<<40) | ((stbir_uint64)(4*d+2)<<48) | ((stbir_uint64)(4*d+3)<<56) ) ) + + static stbir__inline uint8x16x2_t stbir_make16x2(float32x4_t rega,float32x4_t regb) + { + uint8x16x2_t r = { vreinterpretq_u8_f32(rega), vreinterpretq_u8_f32(regb) }; + return r; + } + #else + #define stbir_make16(a,b,c,d) (uint8x16_t){4*a+0,4*a+1,4*a+2,4*a+3,4*b+0,4*b+1,4*b+2,4*b+3,4*c+0,4*c+1,4*c+2,4*c+3,4*d+0,4*d+1,4*d+2,4*d+3} + #define stbir_make16x2(a,b) (uint8x16x2_t){{vreinterpretq_u8_f32(a),vreinterpretq_u8_f32(b)}} + #endif + + #define stbir__simdf_swiz( reg, one, two, three, four ) vreinterpretq_f32_u8( vqtbl1q_u8( vreinterpretq_u8_f32(reg), stbir_make16(one, two, three, four) ) ) + #define stbir__simdf_swiz2( rega, regb, one, two, three, four ) vreinterpretq_f32_u8( vqtbl2q_u8( stbir_make16x2(rega,regb), stbir_make16(one, two, three, four) ) ) + + #define stbir__simdi_16madd( out, reg0, reg1 ) \ + { \ + int16x8_t r0 = vreinterpretq_s16_u32(reg0); \ + int16x8_t r1 = vreinterpretq_s16_u32(reg1); \ + int32x4_t tmp0 = vmull_s16( vget_low_s16(r0), vget_low_s16(r1) ); \ + int32x4_t tmp1 = vmull_s16( vget_high_s16(r0), vget_high_s16(r1) ); \ + (out) = vreinterpretq_u32_s32( vpaddq_s32(tmp0, tmp1) ); \ + } + + #else + + #define stbir__simdf_aaa1( out, alp, ones ) (out) = vsetq_lane_f32(1.0f, vdupq_n_f32(vgetq_lane_f32(alp, 3)), 3) + #define stbir__simdf_1aaa( out, alp, ones ) (out) = vsetq_lane_f32(1.0f, vdupq_n_f32(vgetq_lane_f32(alp, 0)), 0) + + #if defined( _MSC_VER ) && !defined(__clang__) + static stbir__inline uint8x8x2_t stbir_make8x2(float32x4_t reg) + { + uint8x8x2_t r = { { vget_low_u8(vreinterpretq_u8_f32(reg)), vget_high_u8(vreinterpretq_u8_f32(reg)) } }; + return r; + } + #define stbir_make8(a,b) vcreate_u8( \ + (4*a+0) | ((4*a+1)<<8) | ((4*a+2)<<16) | ((4*a+3)<<24) | \ + ((stbir_uint64)(4*b+0)<<32) | ((stbir_uint64)(4*b+1)<<40) | ((stbir_uint64)(4*b+2)<<48) | ((stbir_uint64)(4*b+3)<<56) ) + #else + #define stbir_make8x2(reg) (uint8x8x2_t){ { vget_low_u8(vreinterpretq_u8_f32(reg)), vget_high_u8(vreinterpretq_u8_f32(reg)) } } + #define stbir_make8(a,b) (uint8x8_t){4*a+0,4*a+1,4*a+2,4*a+3,4*b+0,4*b+1,4*b+2,4*b+3} + #endif + + #define stbir__simdf_swiz( reg, one, two, three, four ) vreinterpretq_f32_u8( vcombine_u8( \ + vtbl2_u8( stbir_make8x2( reg ), stbir_make8( one, two ) ), \ + vtbl2_u8( stbir_make8x2( reg ), stbir_make8( three, four ) ) ) ) + + #define stbir__simdi_16madd( out, reg0, reg1 ) \ + { \ + int16x8_t r0 = vreinterpretq_s16_u32(reg0); \ + int16x8_t r1 = vreinterpretq_s16_u32(reg1); \ + int32x4_t tmp0 = vmull_s16( vget_low_s16(r0), vget_low_s16(r1) ); \ + int32x4_t tmp1 = vmull_s16( vget_high_s16(r0), vget_high_s16(r1) ); \ + int32x2_t out0 = vpadd_s32( vget_low_s32(tmp0), vget_high_s32(tmp0) ); \ + int32x2_t out1 = vpadd_s32( vget_low_s32(tmp1), vget_high_s32(tmp1) ); \ + (out) = vreinterpretq_u32_s32( vcombine_s32(out0, out1) ); \ + } + + #endif + + #define stbir__simdi_and( out, reg0, reg1 ) (out) = vandq_u32( reg0, reg1 ) + #define stbir__simdi_or( out, reg0, reg1 ) (out) = vorrq_u32( reg0, reg1 ) + + #define stbir__simdf_pack_to_8bytes(out,aa,bb) \ + { \ + float32x4_t af = vmaxq_f32( vminq_f32(aa,STBIR__CONSTF(STBIR_max_uint8_as_float) ), vdupq_n_f32(0) ); \ + float32x4_t bf = vmaxq_f32( vminq_f32(bb,STBIR__CONSTF(STBIR_max_uint8_as_float) ), vdupq_n_f32(0) ); \ + int16x4_t ai = vqmovn_s32( vcvtq_s32_f32( af ) ); \ + int16x4_t bi = vqmovn_s32( vcvtq_s32_f32( bf ) ); \ + uint8x8_t out8 = vqmovun_s16( vcombine_s16(ai, bi) ); \ + out = vreinterpretq_u32_u8( vcombine_u8(out8, out8) ); \ + } + + #define stbir__simdf_pack_to_8words(out,aa,bb) \ + { \ + float32x4_t af = vmaxq_f32( vminq_f32(aa,STBIR__CONSTF(STBIR_max_uint16_as_float) ), vdupq_n_f32(0) ); \ + float32x4_t bf = vmaxq_f32( vminq_f32(bb,STBIR__CONSTF(STBIR_max_uint16_as_float) ), vdupq_n_f32(0) ); \ + int32x4_t ai = vcvtq_s32_f32( af ); \ + int32x4_t bi = vcvtq_s32_f32( bf ); \ + out = vreinterpretq_u32_u16( vcombine_u16(vqmovun_s32(ai), vqmovun_s32(bi)) ); \ + } + + #define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \ + { \ + int16x4x2_t tmp0 = vzip_s16( vqmovn_s32(vreinterpretq_s32_u32(r0)), vqmovn_s32(vreinterpretq_s32_u32(r2)) ); \ + int16x4x2_t tmp1 = vzip_s16( vqmovn_s32(vreinterpretq_s32_u32(r1)), vqmovn_s32(vreinterpretq_s32_u32(r3)) ); \ + uint8x8x2_t out = \ + { { \ + vqmovun_s16( vcombine_s16(tmp0.val[0], tmp0.val[1]) ), \ + vqmovun_s16( vcombine_s16(tmp1.val[0], tmp1.val[1]) ), \ + } }; \ + vst2_u8(ptr, out); \ + } + + #define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \ + { \ + float32x4x4_t tmp = vld4q_f32(ptr); \ + o0 = tmp.val[0]; \ + o1 = tmp.val[1]; \ + o2 = tmp.val[2]; \ + o3 = tmp.val[3]; \ + } + + #define stbir__simdi_32shr( out, reg, imm ) out = vshrq_n_u32( reg, imm ) + + #if defined( _MSC_VER ) && !defined(__clang__) + #define STBIR__SIMDF_CONST(var, x) __declspec(align(8)) float var[] = { x, x, x, x } + #define STBIR__SIMDI_CONST(var, x) __declspec(align(8)) uint32_t var[] = { x, x, x, x } + #define STBIR__CONSTF(var) (*(const float32x4_t*)var) + #define STBIR__CONSTI(var) (*(const uint32x4_t*)var) + #else + #define STBIR__SIMDF_CONST(var, x) stbir__simdf var = { x, x, x, x } + #define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { x, x, x, x } + #define STBIR__CONSTF(var) (var) + #define STBIR__CONSTI(var) (var) + #endif + + #ifdef STBIR_FLOORF + #undef STBIR_FLOORF + #endif + #define STBIR_FLOORF stbir_simd_floorf + static stbir__inline float stbir_simd_floorf(float x) + { + #if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) + return vget_lane_f32( vrndm_f32( vdup_n_f32(x) ), 0); + #else + float32x2_t f = vdup_n_f32(x); + float32x2_t t = vcvt_f32_s32(vcvt_s32_f32(f)); + uint32x2_t a = vclt_f32(f, t); + uint32x2_t b = vreinterpret_u32_f32(vdup_n_f32(-1.0f)); + float32x2_t r = vadd_f32(t, vreinterpret_f32_u32(vand_u32(a, b))); + return vget_lane_f32(r, 0); + #endif + } + + #ifdef STBIR_CEILF + #undef STBIR_CEILF + #endif + #define STBIR_CEILF stbir_simd_ceilf + static stbir__inline float stbir_simd_ceilf(float x) + { + #if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) + return vget_lane_f32( vrndp_f32( vdup_n_f32(x) ), 0); + #else + float32x2_t f = vdup_n_f32(x); + float32x2_t t = vcvt_f32_s32(vcvt_s32_f32(f)); + uint32x2_t a = vclt_f32(t, f); + uint32x2_t b = vreinterpret_u32_f32(vdup_n_f32(1.0f)); + float32x2_t r = vadd_f32(t, vreinterpret_f32_u32(vand_u32(a, b))); + return vget_lane_f32(r, 0); + #endif + } + + #define STBIR_SIMD + +#elif defined(STBIR_WASM) + + #include + + #define stbir__simdf v128_t + #define stbir__simdi v128_t + + #define stbir_simdi_castf( reg ) (reg) + #define stbir_simdf_casti( reg ) (reg) + + #define stbir__simdf_load( reg, ptr ) (reg) = wasm_v128_load( (void const*)(ptr) ) + #define stbir__simdi_load( reg, ptr ) (reg) = wasm_v128_load( (void const*)(ptr) ) + #define stbir__simdf_load1( out, ptr ) (out) = wasm_v128_load32_splat( (void const*)(ptr) ) // top values can be random (not denormal or nan for perf) + #define stbir__simdi_load1( out, ptr ) (out) = wasm_v128_load32_splat( (void const*)(ptr) ) + #define stbir__simdf_load1z( out, ptr ) (out) = wasm_v128_load32_zero( (void const*)(ptr) ) // top values must be zero + #define stbir__simdf_frep4( fvar ) wasm_f32x4_splat( fvar ) + #define stbir__simdf_load1frep4( out, fvar ) (out) = wasm_f32x4_splat( fvar ) + #define stbir__simdf_load2( out, ptr ) (out) = wasm_v128_load64_splat( (void const*)(ptr) ) // top values can be random (not denormal or nan for perf) + #define stbir__simdf_load2z( out, ptr ) (out) = wasm_v128_load64_zero( (void const*)(ptr) ) // top values must be zero + #define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = wasm_v128_load64_lane( (void const*)(ptr), reg, 1 ) + + #define stbir__simdf_zeroP() wasm_f32x4_const_splat(0) + #define stbir__simdf_zero( reg ) (reg) = wasm_f32x4_const_splat(0) + + #define stbir__simdf_store( ptr, reg ) wasm_v128_store( (void*)(ptr), reg ) + #define stbir__simdf_store1( ptr, reg ) wasm_v128_store32_lane( (void*)(ptr), reg, 0 ) + #define stbir__simdf_store2( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 0 ) + #define stbir__simdf_store2h( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 1 ) + + #define stbir__simdi_store( ptr, reg ) wasm_v128_store( (void*)(ptr), reg ) + #define stbir__simdi_store1( ptr, reg ) wasm_v128_store32_lane( (void*)(ptr), reg, 0 ) + #define stbir__simdi_store2( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 0 ) + + #define stbir__prefetch( ptr ) + + #define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \ + { \ + v128_t l = wasm_u16x8_extend_low_u8x16 ( ireg ); \ + v128_t h = wasm_u16x8_extend_high_u8x16( ireg ); \ + out0 = wasm_u32x4_extend_low_u16x8 ( l ); \ + out1 = wasm_u32x4_extend_high_u16x8( l ); \ + out2 = wasm_u32x4_extend_low_u16x8 ( h ); \ + out3 = wasm_u32x4_extend_high_u16x8( h ); \ + } + + #define stbir__simdi_expand_u8_to_1u32(out,ireg) \ + { \ + v128_t tmp = wasm_u16x8_extend_low_u8x16(ireg); \ + out = wasm_u32x4_extend_low_u16x8(tmp); \ + } + + #define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \ + { \ + out0 = wasm_u32x4_extend_low_u16x8 ( ireg ); \ + out1 = wasm_u32x4_extend_high_u16x8( ireg ); \ + } + + #define stbir__simdf_convert_float_to_i32( i, f ) (i) = wasm_i32x4_trunc_sat_f32x4(f) + #define stbir__simdf_convert_float_to_int( f ) wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(f), 0) + #define stbir__simdi_to_int( i ) wasm_i32x4_extract_lane(i, 0) + #define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(wasm_f32x4_max(wasm_f32x4_min(f,STBIR_max_uint8_as_float),wasm_f32x4_const_splat(0))), 0)) + #define stbir__simdf_convert_float_to_short( f ) ((unsigned short)wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(wasm_f32x4_max(wasm_f32x4_min(f,STBIR_max_uint16_as_float),wasm_f32x4_const_splat(0))), 0)) + #define stbir__simdi_convert_i32_to_float(out, ireg) (out) = wasm_f32x4_convert_i32x4(ireg) + #define stbir__simdf_add( out, reg0, reg1 ) (out) = wasm_f32x4_add( reg0, reg1 ) + #define stbir__simdf_mult( out, reg0, reg1 ) (out) = wasm_f32x4_mul( reg0, reg1 ) + #define stbir__simdf_mult_mem( out, reg, ptr ) (out) = wasm_f32x4_mul( reg, wasm_v128_load( (void const*)(ptr) ) ) + #define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = wasm_f32x4_mul( reg, wasm_v128_load32_splat( (void const*)(ptr) ) ) + #define stbir__simdf_add_mem( out, reg, ptr ) (out) = wasm_f32x4_add( reg, wasm_v128_load( (void const*)(ptr) ) ) + #define stbir__simdf_add1_mem( out, reg, ptr ) (out) = wasm_f32x4_add( reg, wasm_v128_load32_splat( (void const*)(ptr) ) ) + + #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul1, mul2 ) ) + #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul1, mul2 ) ) + #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul, wasm_v128_load( (void const*)(ptr) ) ) ) + #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul, wasm_v128_load32_splat( (void const*)(ptr) ) ) ) + + #define stbir__simdf_add1( out, reg0, reg1 ) (out) = wasm_f32x4_add( reg0, reg1 ) + #define stbir__simdf_mult1( out, reg0, reg1 ) (out) = wasm_f32x4_mul( reg0, reg1 ) + + #define stbir__simdf_and( out, reg0, reg1 ) (out) = wasm_v128_and( reg0, reg1 ) + #define stbir__simdf_or( out, reg0, reg1 ) (out) = wasm_v128_or( reg0, reg1 ) + + #define stbir__simdf_min( out, reg0, reg1 ) (out) = wasm_f32x4_min( reg0, reg1 ) + #define stbir__simdf_max( out, reg0, reg1 ) (out) = wasm_f32x4_max( reg0, reg1 ) + #define stbir__simdf_min1( out, reg0, reg1 ) (out) = wasm_f32x4_min( reg0, reg1 ) + #define stbir__simdf_max1( out, reg0, reg1 ) (out) = wasm_f32x4_max( reg0, reg1 ) + + #define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out) = wasm_i32x4_shuffle( reg0, reg1, 3, 4, 5, -1 ) + #define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out) = wasm_i32x4_shuffle( reg0, reg1, 2, 3, 4, -1 ) + + #define stbir__simdf_aaa1(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 3, 3, 3, 4) + #define stbir__simdf_1aaa(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 4, 0, 0, 0) + #define stbir__simdf_a1a1(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 1, 4, 3, 4) + #define stbir__simdf_1a1a(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 4, 0, 4, 2) + + #define stbir__simdf_swiz( reg, one, two, three, four ) wasm_i32x4_shuffle(reg, reg, one, two, three, four) + + #define stbir__simdi_and( out, reg0, reg1 ) (out) = wasm_v128_and( reg0, reg1 ) + #define stbir__simdi_or( out, reg0, reg1 ) (out) = wasm_v128_or( reg0, reg1 ) + #define stbir__simdi_16madd( out, reg0, reg1 ) (out) = wasm_i32x4_dot_i16x8( reg0, reg1 ) + + #define stbir__simdf_pack_to_8bytes(out,aa,bb) \ + { \ + v128_t af = wasm_f32x4_max( wasm_f32x4_min(aa, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0) ); \ + v128_t bf = wasm_f32x4_max( wasm_f32x4_min(bb, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0) ); \ + v128_t ai = wasm_i32x4_trunc_sat_f32x4( af ); \ + v128_t bi = wasm_i32x4_trunc_sat_f32x4( bf ); \ + v128_t out16 = wasm_i16x8_narrow_i32x4( ai, bi ); \ + out = wasm_u8x16_narrow_i16x8( out16, out16 ); \ + } + + #define stbir__simdf_pack_to_8words(out,aa,bb) \ + { \ + v128_t af = wasm_f32x4_max( wasm_f32x4_min(aa, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0)); \ + v128_t bf = wasm_f32x4_max( wasm_f32x4_min(bb, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0)); \ + v128_t ai = wasm_i32x4_trunc_sat_f32x4( af ); \ + v128_t bi = wasm_i32x4_trunc_sat_f32x4( bf ); \ + out = wasm_u16x8_narrow_i32x4( ai, bi ); \ + } + + #define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \ + { \ + v128_t tmp0 = wasm_i16x8_narrow_i32x4(r0, r1); \ + v128_t tmp1 = wasm_i16x8_narrow_i32x4(r2, r3); \ + v128_t tmp = wasm_u8x16_narrow_i16x8(tmp0, tmp1); \ + tmp = wasm_i8x16_shuffle(tmp, tmp, 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15); \ + wasm_v128_store( (void*)(ptr), tmp); \ + } + + #define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \ + { \ + v128_t t0 = wasm_v128_load( ptr ); \ + v128_t t1 = wasm_v128_load( ptr+4 ); \ + v128_t t2 = wasm_v128_load( ptr+8 ); \ + v128_t t3 = wasm_v128_load( ptr+12 ); \ + v128_t s0 = wasm_i32x4_shuffle(t0, t1, 0, 4, 2, 6); \ + v128_t s1 = wasm_i32x4_shuffle(t0, t1, 1, 5, 3, 7); \ + v128_t s2 = wasm_i32x4_shuffle(t2, t3, 0, 4, 2, 6); \ + v128_t s3 = wasm_i32x4_shuffle(t2, t3, 1, 5, 3, 7); \ + o0 = wasm_i32x4_shuffle(s0, s2, 0, 1, 4, 5); \ + o1 = wasm_i32x4_shuffle(s1, s3, 0, 1, 4, 5); \ + o2 = wasm_i32x4_shuffle(s0, s2, 2, 3, 6, 7); \ + o3 = wasm_i32x4_shuffle(s1, s3, 2, 3, 6, 7); \ + } + + #define stbir__simdi_32shr( out, reg, imm ) out = wasm_u32x4_shr( reg, imm ) + + typedef float stbir__f32x4 __attribute__((__vector_size__(16), __aligned__(16))); + #define STBIR__SIMDF_CONST(var, x) stbir__simdf var = (v128_t)(stbir__f32x4){ x, x, x, x } + #define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { x, x, x, x } + #define STBIR__CONSTF(var) (var) + #define STBIR__CONSTI(var) (var) + + #ifdef STBIR_FLOORF + #undef STBIR_FLOORF + #endif + #define STBIR_FLOORF stbir_simd_floorf + static stbir__inline float stbir_simd_floorf(float x) + { + return wasm_f32x4_extract_lane( wasm_f32x4_floor( wasm_f32x4_splat(x) ), 0); + } + + #ifdef STBIR_CEILF + #undef STBIR_CEILF + #endif + #define STBIR_CEILF stbir_simd_ceilf + static stbir__inline float stbir_simd_ceilf(float x) + { + return wasm_f32x4_extract_lane( wasm_f32x4_ceil( wasm_f32x4_splat(x) ), 0); + } + + #define STBIR_SIMD + +#endif // SSE2/NEON/WASM + +#endif // NO SIMD + +#ifdef STBIR_SIMD8 + #define stbir__simdfX stbir__simdf8 + #define stbir__simdiX stbir__simdi8 + #define stbir__simdfX_load stbir__simdf8_load + #define stbir__simdiX_load stbir__simdi8_load + #define stbir__simdfX_mult stbir__simdf8_mult + #define stbir__simdfX_add_mem stbir__simdf8_add_mem + #define stbir__simdfX_madd_mem stbir__simdf8_madd_mem + #define stbir__simdfX_store stbir__simdf8_store + #define stbir__simdiX_store stbir__simdi8_store + #define stbir__simdf_frepX stbir__simdf8_frep8 + #define stbir__simdfX_madd stbir__simdf8_madd + #define stbir__simdfX_min stbir__simdf8_min + #define stbir__simdfX_max stbir__simdf8_max + #define stbir__simdfX_aaa1 stbir__simdf8_aaa1 + #define stbir__simdfX_1aaa stbir__simdf8_1aaa + #define stbir__simdfX_a1a1 stbir__simdf8_a1a1 + #define stbir__simdfX_1a1a stbir__simdf8_1a1a + #define stbir__simdfX_convert_float_to_i32 stbir__simdf8_convert_float_to_i32 + #define stbir__simdfX_pack_to_words stbir__simdf8_pack_to_16words + #define stbir__simdfX_zero stbir__simdf8_zero + #define STBIR_onesX STBIR_ones8 + #define STBIR_max_uint8_as_floatX STBIR_max_uint8_as_float8 + #define STBIR_max_uint16_as_floatX STBIR_max_uint16_as_float8 + #define STBIR_simd_point5X STBIR_simd_point58 + #define stbir__simdfX_float_count 8 + #define stbir__simdfX_0123to1230 stbir__simdf8_0123to12301230 + #define stbir__simdfX_0123to2103 stbir__simdf8_0123to21032103 + static const stbir__simdf8 STBIR_max_uint16_as_float_inverted8 = { stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted }; + static const stbir__simdf8 STBIR_max_uint8_as_float_inverted8 = { stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted }; + static const stbir__simdf8 STBIR_ones8 = { 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0 }; + static const stbir__simdf8 STBIR_simd_point58 = { 0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5 }; + static const stbir__simdf8 STBIR_max_uint8_as_float8 = { stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float, stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float }; + static const stbir__simdf8 STBIR_max_uint16_as_float8 = { stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float, stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float }; +#else + #define stbir__simdfX stbir__simdf + #define stbir__simdiX stbir__simdi + #define stbir__simdfX_load stbir__simdf_load + #define stbir__simdiX_load stbir__simdi_load + #define stbir__simdfX_mult stbir__simdf_mult + #define stbir__simdfX_add_mem stbir__simdf_add_mem + #define stbir__simdfX_madd_mem stbir__simdf_madd_mem + #define stbir__simdfX_store stbir__simdf_store + #define stbir__simdiX_store stbir__simdi_store + #define stbir__simdf_frepX stbir__simdf_frep4 + #define stbir__simdfX_madd stbir__simdf_madd + #define stbir__simdfX_min stbir__simdf_min + #define stbir__simdfX_max stbir__simdf_max + #define stbir__simdfX_aaa1 stbir__simdf_aaa1 + #define stbir__simdfX_1aaa stbir__simdf_1aaa + #define stbir__simdfX_a1a1 stbir__simdf_a1a1 + #define stbir__simdfX_1a1a stbir__simdf_1a1a + #define stbir__simdfX_convert_float_to_i32 stbir__simdf_convert_float_to_i32 + #define stbir__simdfX_pack_to_words stbir__simdf_pack_to_8words + #define stbir__simdfX_zero stbir__simdf_zero + #define STBIR_onesX STBIR__CONSTF(STBIR_ones) + #define STBIR_simd_point5X STBIR__CONSTF(STBIR_simd_point5) + #define STBIR_max_uint8_as_floatX STBIR__CONSTF(STBIR_max_uint8_as_float) + #define STBIR_max_uint16_as_floatX STBIR__CONSTF(STBIR_max_uint16_as_float) + #define stbir__simdfX_float_count 4 + #define stbir__if_simdf8_cast_to_simdf4( val ) ( val ) + #define stbir__simdfX_0123to1230 stbir__simdf_0123to1230 + #define stbir__simdfX_0123to2103 stbir__simdf_0123to2103 +#endif + + +#if defined(STBIR_NEON) && !defined(_M_ARM) && !defined(__arm__) + + #if defined( _MSC_VER ) && !defined(__clang__) + typedef __int16 stbir__FP16; + #else + typedef float16_t stbir__FP16; + #endif + +#else // no NEON, or 32-bit ARM for MSVC + + typedef union stbir__FP16 + { + unsigned short u; + } stbir__FP16; + +#endif + +#if (!defined(STBIR_NEON) && !defined(STBIR_FP16C)) || (defined(STBIR_NEON) && defined(_M_ARM)) || (defined(STBIR_NEON) && defined(__arm__)) + + // Fabian's half float routines, see: https://gist.github.com/rygorous/2156668 + + static stbir__inline float stbir__half_to_float( stbir__FP16 h ) + { + static const stbir__FP32 magic = { (254 - 15) << 23 }; + static const stbir__FP32 was_infnan = { (127 + 16) << 23 }; + stbir__FP32 o; + + o.u = (h.u & 0x7fff) << 13; // exponent/mantissa bits + o.f *= magic.f; // exponent adjust + if (o.f >= was_infnan.f) // make sure Inf/NaN survive + o.u |= 255 << 23; + o.u |= (h.u & 0x8000) << 16; // sign bit + return o.f; + } + + static stbir__inline stbir__FP16 stbir__float_to_half(float val) + { + stbir__FP32 f32infty = { 255 << 23 }; + stbir__FP32 f16max = { (127 + 16) << 23 }; + stbir__FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; + unsigned int sign_mask = 0x80000000u; + stbir__FP16 o = { 0 }; + stbir__FP32 f; + unsigned int sign; + + f.f = val; + sign = f.u & sign_mask; + f.u ^= sign; + + if (f.u >= f16max.u) // result is Inf or NaN (all exponent bits set) + o.u = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf + else // (De)normalized number or zero + { + if (f.u < (113 << 23)) // resulting FP16 is subnormal or zero + { + // use a magic value to align our 10 mantissa bits at the bottom of + // the float. as long as FP addition is round-to-nearest-even this + // just works. + f.f += denorm_magic.f; + // and one integer subtract of the bias later, we have our final float! + o.u = (unsigned short) ( f.u - denorm_magic.u ); + } + else + { + unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd + // update exponent, rounding bias part 1 + f.u = f.u + ((15u - 127) << 23) + 0xfff; + // rounding bias part 2 + f.u += mant_odd; + // take the bits! + o.u = (unsigned short) ( f.u >> 13 ); + } + } + + o.u |= sign >> 16; + return o; + } + +#endif + + +#if defined(STBIR_FP16C) + + #include + + static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input) + { + _mm256_storeu_ps( (float*)output, _mm256_cvtph_ps( _mm_loadu_si128( (__m128i const* )input ) ) ); + } + + static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input) + { + _mm_storeu_si128( (__m128i*)output, _mm256_cvtps_ph( _mm256_loadu_ps( input ), 0 ) ); + } + + static stbir__inline float stbir__half_to_float( stbir__FP16 h ) + { + return _mm_cvtss_f32( _mm_cvtph_ps( _mm_cvtsi32_si128( (int)h.u ) ) ); + } + + static stbir__inline stbir__FP16 stbir__float_to_half( float f ) + { + stbir__FP16 h; + h.u = (unsigned short) _mm_cvtsi128_si32( _mm_cvtps_ph( _mm_set_ss( f ), 0 ) ); + return h; + } + +#elif defined(STBIR_SSE2) + + // Fabian's half float routines, see: https://gist.github.com/rygorous/2156668 + stbir__inline static void stbir__half_to_float_SIMD(float * output, void const * input) + { + static const STBIR__SIMDI_CONST(mask_nosign, 0x7fff); + static const STBIR__SIMDI_CONST(smallest_normal, 0x0400); + static const STBIR__SIMDI_CONST(infinity, 0x7c00); + static const STBIR__SIMDI_CONST(expadjust_normal, (127 - 15) << 23); + static const STBIR__SIMDI_CONST(magic_denorm, 113 << 23); + + __m128i i = _mm_loadu_si128 ( (__m128i const*)(input) ); + __m128i h = _mm_unpacklo_epi16 ( i, _mm_setzero_si128() ); + __m128i mnosign = STBIR__CONSTI(mask_nosign); + __m128i eadjust = STBIR__CONSTI(expadjust_normal); + __m128i smallest = STBIR__CONSTI(smallest_normal); + __m128i infty = STBIR__CONSTI(infinity); + __m128i expmant = _mm_and_si128(mnosign, h); + __m128i justsign = _mm_xor_si128(h, expmant); + __m128i b_notinfnan = _mm_cmpgt_epi32(infty, expmant); + __m128i b_isdenorm = _mm_cmpgt_epi32(smallest, expmant); + __m128i shifted = _mm_slli_epi32(expmant, 13); + __m128i adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust); + __m128i adjusted = _mm_add_epi32(eadjust, shifted); + __m128i den1 = _mm_add_epi32(shifted, STBIR__CONSTI(magic_denorm)); + __m128i adjusted2 = _mm_add_epi32(adjusted, adj_infnan); + __m128 den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm); + __m128 adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm)); + __m128 adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2)); + __m128 adjusted5 = _mm_or_ps(adjusted3, adjusted4); + __m128i sign = _mm_slli_epi32(justsign, 16); + __m128 final = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign)); + stbir__simdf_store( output + 0, final ); + + h = _mm_unpackhi_epi16 ( i, _mm_setzero_si128() ); + expmant = _mm_and_si128(mnosign, h); + justsign = _mm_xor_si128(h, expmant); + b_notinfnan = _mm_cmpgt_epi32(infty, expmant); + b_isdenorm = _mm_cmpgt_epi32(smallest, expmant); + shifted = _mm_slli_epi32(expmant, 13); + adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust); + adjusted = _mm_add_epi32(eadjust, shifted); + den1 = _mm_add_epi32(shifted, STBIR__CONSTI(magic_denorm)); + adjusted2 = _mm_add_epi32(adjusted, adj_infnan); + den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm); + adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm)); + adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2)); + adjusted5 = _mm_or_ps(adjusted3, adjusted4); + sign = _mm_slli_epi32(justsign, 16); + final = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign)); + stbir__simdf_store( output + 4, final ); + + // ~38 SSE2 ops for 8 values + } + + // Fabian's round-to-nearest-even float to half + // ~48 SSE2 ops for 8 output + stbir__inline static void stbir__float_to_half_SIMD(void * output, float const * input) + { + static const STBIR__SIMDI_CONST(mask_sign, 0x80000000u); + static const STBIR__SIMDI_CONST(c_f16max, (127 + 16) << 23); // all FP32 values >=this round to +inf + static const STBIR__SIMDI_CONST(c_nanbit, 0x200); + static const STBIR__SIMDI_CONST(c_infty_as_fp16, 0x7c00); + static const STBIR__SIMDI_CONST(c_min_normal, (127 - 14) << 23); // smallest FP32 that yields a normalized FP16 + static const STBIR__SIMDI_CONST(c_subnorm_magic, ((127 - 15) + (23 - 10) + 1) << 23); + static const STBIR__SIMDI_CONST(c_normal_bias, 0xfff - ((127 - 15) << 23)); // adjust exponent and add mantissa rounding + + __m128 f = _mm_loadu_ps(input); + __m128 msign = _mm_castsi128_ps(STBIR__CONSTI(mask_sign)); + __m128 justsign = _mm_and_ps(msign, f); + __m128 absf = _mm_xor_ps(f, justsign); + __m128i absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit) + __m128i f16max = STBIR__CONSTI(c_f16max); + __m128 b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN? + __m128i b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special? + __m128i nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), STBIR__CONSTI(c_nanbit)); + __m128i inf_or_nan = _mm_or_si128(nanbit, STBIR__CONSTI(c_infty_as_fp16)); // output for specials + + __m128i min_normal = STBIR__CONSTI(c_min_normal); + __m128i b_issub = _mm_cmpgt_epi32(min_normal, absf_int); + + // "result is subnormal" path + __m128 subnorm1 = _mm_add_ps(absf, _mm_castsi128_ps(STBIR__CONSTI(c_subnorm_magic))); // magic value to round output mantissa + __m128i subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), STBIR__CONSTI(c_subnorm_magic)); // subtract out bias + + // "result is normal" path + __m128i mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign + __m128i mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0 + + __m128i round1 = _mm_add_epi32(absf_int, STBIR__CONSTI(c_normal_bias)); + __m128i round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE) + __m128i normal = _mm_srli_epi32(round2, 13); // rounded result + + // combine the two non-specials + __m128i nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal)); + + // merge in specials as well + __m128i joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan)); + + __m128i sign_shift = _mm_srai_epi32(_mm_castps_si128(justsign), 16); + __m128i final2, final= _mm_or_si128(joined, sign_shift); + + f = _mm_loadu_ps(input+4); + justsign = _mm_and_ps(msign, f); + absf = _mm_xor_ps(f, justsign); + absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit) + b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN? + b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special? + nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), c_nanbit); + inf_or_nan = _mm_or_si128(nanbit, STBIR__CONSTI(c_infty_as_fp16)); // output for specials + + b_issub = _mm_cmpgt_epi32(min_normal, absf_int); + + // "result is subnormal" path + subnorm1 = _mm_add_ps(absf, _mm_castsi128_ps(STBIR__CONSTI(c_subnorm_magic))); // magic value to round output mantissa + subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), STBIR__CONSTI(c_subnorm_magic)); // subtract out bias + + // "result is normal" path + mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign + mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0 + + round1 = _mm_add_epi32(absf_int, STBIR__CONSTI(c_normal_bias)); + round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE) + normal = _mm_srli_epi32(round2, 13); // rounded result + + // combine the two non-specials + nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal)); + + // merge in specials as well + joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan)); + + sign_shift = _mm_srai_epi32(_mm_castps_si128(justsign), 16); + final2 = _mm_or_si128(joined, sign_shift); + final = _mm_packs_epi32(final, final2); + stbir__simdi_store( output,final ); + } + +#elif defined(STBIR_NEON) && defined(_MSC_VER) && defined(_M_ARM64) && !defined(__clang__) // 64-bit ARM on MSVC (not clang) + + static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input) + { + float16x4_t in0 = vld1_f16(input + 0); + float16x4_t in1 = vld1_f16(input + 4); + vst1q_f32(output + 0, vcvt_f32_f16(in0)); + vst1q_f32(output + 4, vcvt_f32_f16(in1)); + } + + static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input) + { + float16x4_t out0 = vcvt_f16_f32(vld1q_f32(input + 0)); + float16x4_t out1 = vcvt_f16_f32(vld1q_f32(input + 4)); + vst1_f16(output+0, out0); + vst1_f16(output+4, out1); + } + + static stbir__inline float stbir__half_to_float( stbir__FP16 h ) + { + return vgetq_lane_f32(vcvt_f32_f16(vld1_dup_f16(&h)), 0); + } + + static stbir__inline stbir__FP16 stbir__float_to_half( float f ) + { + return vget_lane_f16(vcvt_f16_f32(vdupq_n_f32(f)), 0).n16_u16[0]; + } + +#elif defined(STBIR_NEON) && ( defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) ) // 64-bit ARM + + static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input) + { + float16x8_t in = vld1q_f16(input); + vst1q_f32(output + 0, vcvt_f32_f16(vget_low_f16(in))); + vst1q_f32(output + 4, vcvt_f32_f16(vget_high_f16(in))); + } + + static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input) + { + float16x4_t out0 = vcvt_f16_f32(vld1q_f32(input + 0)); + float16x4_t out1 = vcvt_f16_f32(vld1q_f32(input + 4)); + vst1q_f16(output, vcombine_f16(out0, out1)); + } + + static stbir__inline float stbir__half_to_float( stbir__FP16 h ) + { + return vgetq_lane_f32(vcvt_f32_f16(vdup_n_f16(h)), 0); + } + + static stbir__inline stbir__FP16 stbir__float_to_half( float f ) + { + return vget_lane_f16(vcvt_f16_f32(vdupq_n_f32(f)), 0); + } + +#elif defined(STBIR_WASM) || (defined(STBIR_NEON) && (defined(_MSC_VER) || defined(_M_ARM) || defined(__arm__))) // WASM or 32-bit ARM on MSVC/clang + + static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input) + { + for (int i=0; i<8; i++) + { + output[i] = stbir__half_to_float(input[i]); + } + } + static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input) + { + for (int i=0; i<8; i++) + { + output[i] = stbir__float_to_half(input[i]); + } + } + +#endif + + +#ifdef STBIR_SIMD + +#define stbir__simdf_0123to3333( out, reg ) (out) = stbir__simdf_swiz( reg, 3,3,3,3 ) +#define stbir__simdf_0123to2222( out, reg ) (out) = stbir__simdf_swiz( reg, 2,2,2,2 ) +#define stbir__simdf_0123to1111( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,1,1 ) +#define stbir__simdf_0123to0000( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,0 ) +#define stbir__simdf_0123to0003( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,3 ) +#define stbir__simdf_0123to0001( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,1 ) +#define stbir__simdf_0123to1122( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,2,2 ) +#define stbir__simdf_0123to2333( out, reg ) (out) = stbir__simdf_swiz( reg, 2,3,3,3 ) +#define stbir__simdf_0123to0023( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,2,3 ) +#define stbir__simdf_0123to1230( out, reg ) (out) = stbir__simdf_swiz( reg, 1,2,3,0 ) +#define stbir__simdf_0123to2103( out, reg ) (out) = stbir__simdf_swiz( reg, 2,1,0,3 ) +#define stbir__simdf_0123to3210( out, reg ) (out) = stbir__simdf_swiz( reg, 3,2,1,0 ) +#define stbir__simdf_0123to2301( out, reg ) (out) = stbir__simdf_swiz( reg, 2,3,0,1 ) +#define stbir__simdf_0123to3012( out, reg ) (out) = stbir__simdf_swiz( reg, 3,0,1,2 ) +#define stbir__simdf_0123to0011( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,1,1 ) +#define stbir__simdf_0123to1100( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,0,0 ) +#define stbir__simdf_0123to2233( out, reg ) (out) = stbir__simdf_swiz( reg, 2,2,3,3 ) +#define stbir__simdf_0123to1133( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,3,3 ) +#define stbir__simdf_0123to0022( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,2,2 ) +#define stbir__simdf_0123to1032( out, reg ) (out) = stbir__simdf_swiz( reg, 1,0,3,2 ) + +typedef union stbir__simdi_u32 +{ + stbir_uint32 m128i_u32[4]; + int m128i_i32[4]; + stbir__simdi m128i_i128; +} stbir__simdi_u32; + +static const int STBIR_mask[9] = { 0,0,0,-1,-1,-1,0,0,0 }; + +static const STBIR__SIMDF_CONST(STBIR_max_uint8_as_float, stbir__max_uint8_as_float); +static const STBIR__SIMDF_CONST(STBIR_max_uint16_as_float, stbir__max_uint16_as_float); +static const STBIR__SIMDF_CONST(STBIR_max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted); +static const STBIR__SIMDF_CONST(STBIR_max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted); + +static const STBIR__SIMDF_CONST(STBIR_simd_point5, 0.5f); +static const STBIR__SIMDF_CONST(STBIR_ones, 1.0f); +static const STBIR__SIMDI_CONST(STBIR_almost_zero, (127 - 13) << 23); +static const STBIR__SIMDI_CONST(STBIR_almost_one, 0x3f7fffff); +static const STBIR__SIMDI_CONST(STBIR_mastissa_mask, 0xff); +static const STBIR__SIMDI_CONST(STBIR_topscale, 0x02000000); + +// Basically, in simd mode, we unroll the proper amount, and we don't want +// the non-simd remnant loops to be unroll because they only run a few times +// Adding this switch saves about 5K on clang which is Captain Unroll the 3rd. +#define STBIR_SIMD_STREAMOUT_PTR( star ) STBIR_STREAMOUT_PTR( star ) +#define STBIR_SIMD_NO_UNROLL(ptr) STBIR_NO_UNROLL(ptr) +#define STBIR_SIMD_NO_UNROLL_LOOP_START STBIR_NO_UNROLL_LOOP_START +#define STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR STBIR_NO_UNROLL_LOOP_START_INF_FOR + +#ifdef STBIR_MEMCPY +#undef STBIR_MEMCPY +#endif +#define STBIR_MEMCPY stbir_simd_memcpy + +// override normal use of memcpy with much simpler copy (faster and smaller with our sized copies) +static void stbir_simd_memcpy( void * dest, void const * src, size_t bytes ) +{ + char STBIR_SIMD_STREAMOUT_PTR (*) d = (char*) dest; + char STBIR_SIMD_STREAMOUT_PTR( * ) d_end = ((char*) dest) + bytes; + ptrdiff_t ofs_to_src = (char*)src - (char*)dest; + + // check overlaps + STBIR_ASSERT( ( ( d >= ( (char*)src) + bytes ) ) || ( ( d + bytes ) <= (char*)src ) ); + + if ( bytes < (16*stbir__simdfX_float_count) ) + { + if ( bytes < 16 ) + { + if ( bytes ) + { + STBIR_SIMD_NO_UNROLL_LOOP_START + do + { + STBIR_SIMD_NO_UNROLL(d); + d[ 0 ] = d[ ofs_to_src ]; + ++d; + } while ( d < d_end ); + } + } + else + { + stbir__simdf x; + // do one unaligned to get us aligned for the stream out below + stbir__simdf_load( x, ( d + ofs_to_src ) ); + stbir__simdf_store( d, x ); + d = (char*)( ( ( (size_t)d ) + 16 ) & ~15 ); + + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + STBIR_SIMD_NO_UNROLL(d); + + if ( d > ( d_end - 16 ) ) + { + if ( d == d_end ) + return; + d = d_end - 16; + } + + stbir__simdf_load( x, ( d + ofs_to_src ) ); + stbir__simdf_store( d, x ); + d += 16; + } + } + } + else + { + stbir__simdfX x0,x1,x2,x3; + + // do one unaligned to get us aligned for the stream out below + stbir__simdfX_load( x0, ( d + ofs_to_src ) + 0*stbir__simdfX_float_count ); + stbir__simdfX_load( x1, ( d + ofs_to_src ) + 4*stbir__simdfX_float_count ); + stbir__simdfX_load( x2, ( d + ofs_to_src ) + 8*stbir__simdfX_float_count ); + stbir__simdfX_load( x3, ( d + ofs_to_src ) + 12*stbir__simdfX_float_count ); + stbir__simdfX_store( d + 0*stbir__simdfX_float_count, x0 ); + stbir__simdfX_store( d + 4*stbir__simdfX_float_count, x1 ); + stbir__simdfX_store( d + 8*stbir__simdfX_float_count, x2 ); + stbir__simdfX_store( d + 12*stbir__simdfX_float_count, x3 ); + d = (char*)( ( ( (size_t)d ) + (16*stbir__simdfX_float_count) ) & ~((16*stbir__simdfX_float_count)-1) ); + + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + STBIR_SIMD_NO_UNROLL(d); + + if ( d > ( d_end - (16*stbir__simdfX_float_count) ) ) + { + if ( d == d_end ) + return; + d = d_end - (16*stbir__simdfX_float_count); + } + + stbir__simdfX_load( x0, ( d + ofs_to_src ) + 0*stbir__simdfX_float_count ); + stbir__simdfX_load( x1, ( d + ofs_to_src ) + 4*stbir__simdfX_float_count ); + stbir__simdfX_load( x2, ( d + ofs_to_src ) + 8*stbir__simdfX_float_count ); + stbir__simdfX_load( x3, ( d + ofs_to_src ) + 12*stbir__simdfX_float_count ); + stbir__simdfX_store( d + 0*stbir__simdfX_float_count, x0 ); + stbir__simdfX_store( d + 4*stbir__simdfX_float_count, x1 ); + stbir__simdfX_store( d + 8*stbir__simdfX_float_count, x2 ); + stbir__simdfX_store( d + 12*stbir__simdfX_float_count, x3 ); + d += (16*stbir__simdfX_float_count); + } + } +} + +// memcpy that is specically intentionally overlapping (src is smaller then dest, so can be +// a normal forward copy, bytes is divisible by 4 and bytes is greater than or equal to +// the diff between dest and src) +static void stbir_overlapping_memcpy( void * dest, void const * src, size_t bytes ) +{ + char STBIR_SIMD_STREAMOUT_PTR (*) sd = (char*) src; + char STBIR_SIMD_STREAMOUT_PTR( * ) s_end = ((char*) src) + bytes; + ptrdiff_t ofs_to_dest = (char*)dest - (char*)src; + + if ( ofs_to_dest >= 16 ) // is the overlap more than 16 away? + { + char STBIR_SIMD_STREAMOUT_PTR( * ) s_end16 = ((char*) src) + (bytes&~15); + STBIR_SIMD_NO_UNROLL_LOOP_START + do + { + stbir__simdf x; + STBIR_SIMD_NO_UNROLL(sd); + stbir__simdf_load( x, sd ); + stbir__simdf_store( ( sd + ofs_to_dest ), x ); + sd += 16; + } while ( sd < s_end16 ); + + if ( sd == s_end ) + return; + } + + do + { + STBIR_SIMD_NO_UNROLL(sd); + *(int*)( sd + ofs_to_dest ) = *(int*) sd; + sd += 4; + } while ( sd < s_end ); +} + +#else // no SSE2 + +// when in scalar mode, we let unrolling happen, so this macro just does the __restrict +#define STBIR_SIMD_STREAMOUT_PTR( star ) STBIR_STREAMOUT_PTR( star ) +#define STBIR_SIMD_NO_UNROLL(ptr) +#define STBIR_SIMD_NO_UNROLL_LOOP_START +#define STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + +#endif // SSE2 + + +#ifdef STBIR_PROFILE + +#ifndef STBIR_PROFILE_FUNC + +#if defined(_x86_64) || defined( __x86_64__ ) || defined( _M_X64 ) || defined(__x86_64) || defined(__SSE2__) || defined(STBIR_SSE) || defined( _M_IX86_FP ) || defined(__i386) || defined( __i386__ ) || defined( _M_IX86 ) || defined( _X86_ ) + +#ifdef _MSC_VER + + STBIRDEF stbir_uint64 __rdtsc(); + #define STBIR_PROFILE_FUNC() __rdtsc() + +#else // non msvc + + static stbir__inline stbir_uint64 STBIR_PROFILE_FUNC() + { + stbir_uint32 lo, hi; + asm volatile ("rdtsc" : "=a" (lo), "=d" (hi) ); + return ( ( (stbir_uint64) hi ) << 32 ) | ( (stbir_uint64) lo ); + } + +#endif // msvc + +#elif defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) || defined(__ARM_NEON__) + +#if defined( _MSC_VER ) && !defined(__clang__) + + #define STBIR_PROFILE_FUNC() _ReadStatusReg(ARM64_CNTVCT) + +#else + + static stbir__inline stbir_uint64 STBIR_PROFILE_FUNC() + { + stbir_uint64 tsc; + asm volatile("mrs %0, cntvct_el0" : "=r" (tsc)); + return tsc; + } + +#endif + +#else // x64, arm + +#error Unknown platform for profiling. + +#endif // x64, arm + +#endif // STBIR_PROFILE_FUNC + +#define STBIR_ONLY_PROFILE_GET_SPLIT_INFO ,stbir__per_split_info * split_info +#define STBIR_ONLY_PROFILE_SET_SPLIT_INFO ,split_info + +#define STBIR_ONLY_PROFILE_BUILD_GET_INFO ,stbir__info * profile_info +#define STBIR_ONLY_PROFILE_BUILD_SET_INFO ,profile_info + +// super light-weight micro profiler +#define STBIR_PROFILE_START_ll( info, wh ) { stbir_uint64 wh##thiszonetime = STBIR_PROFILE_FUNC(); stbir_uint64 * wh##save_parent_excluded_ptr = info->current_zone_excluded_ptr; stbir_uint64 wh##current_zone_excluded = 0; info->current_zone_excluded_ptr = &wh##current_zone_excluded; +#define STBIR_PROFILE_END_ll( info, wh ) wh##thiszonetime = STBIR_PROFILE_FUNC() - wh##thiszonetime; info->profile.named.wh += wh##thiszonetime - wh##current_zone_excluded; *wh##save_parent_excluded_ptr += wh##thiszonetime; info->current_zone_excluded_ptr = wh##save_parent_excluded_ptr; } +#define STBIR_PROFILE_FIRST_START_ll( info, wh ) { int i; info->current_zone_excluded_ptr = &info->profile.named.total; for(i=0;iprofile.array);i++) info->profile.array[i]=0; } STBIR_PROFILE_START_ll( info, wh ); +#define STBIR_PROFILE_CLEAR_EXTRAS_ll( info, num ) { int extra; for(extra=1;extra<(num);extra++) { int i; for(i=0;iprofile.array);i++) (info)[extra].profile.array[i]=0; } } + +// for thread data +#define STBIR_PROFILE_START( wh ) STBIR_PROFILE_START_ll( split_info, wh ) +#define STBIR_PROFILE_END( wh ) STBIR_PROFILE_END_ll( split_info, wh ) +#define STBIR_PROFILE_FIRST_START( wh ) STBIR_PROFILE_FIRST_START_ll( split_info, wh ) +#define STBIR_PROFILE_CLEAR_EXTRAS() STBIR_PROFILE_CLEAR_EXTRAS_ll( split_info, split_count ) + +// for build data +#define STBIR_PROFILE_BUILD_START( wh ) STBIR_PROFILE_START_ll( profile_info, wh ) +#define STBIR_PROFILE_BUILD_END( wh ) STBIR_PROFILE_END_ll( profile_info, wh ) +#define STBIR_PROFILE_BUILD_FIRST_START( wh ) STBIR_PROFILE_FIRST_START_ll( profile_info, wh ) +#define STBIR_PROFILE_BUILD_CLEAR( info ) { int i; for(i=0;iprofile.array);i++) info->profile.array[i]=0; } + +#else // no profile + +#define STBIR_ONLY_PROFILE_GET_SPLIT_INFO +#define STBIR_ONLY_PROFILE_SET_SPLIT_INFO + +#define STBIR_ONLY_PROFILE_BUILD_GET_INFO +#define STBIR_ONLY_PROFILE_BUILD_SET_INFO + +#define STBIR_PROFILE_START( wh ) +#define STBIR_PROFILE_END( wh ) +#define STBIR_PROFILE_FIRST_START( wh ) +#define STBIR_PROFILE_CLEAR_EXTRAS( ) + +#define STBIR_PROFILE_BUILD_START( wh ) +#define STBIR_PROFILE_BUILD_END( wh ) +#define STBIR_PROFILE_BUILD_FIRST_START( wh ) +#define STBIR_PROFILE_BUILD_CLEAR( info ) + +#endif // stbir_profile + +#ifndef STBIR_CEILF +#include +#if _MSC_VER <= 1200 // support VC6 for Sean +#define STBIR_CEILF(x) ((float)ceil((float)(x))) +#define STBIR_FLOORF(x) ((float)floor((float)(x))) +#else +#define STBIR_CEILF(x) ceilf(x) +#define STBIR_FLOORF(x) floorf(x) +#endif +#endif + +#ifndef STBIR_MEMCPY +// For memcpy +#include +#define STBIR_MEMCPY( dest, src, len ) memcpy( dest, src, len ) +#endif + +#ifndef STBIR_SIMD + +// memcpy that is specifically intentionally overlapping (src is smaller then dest, so can be +// a normal forward copy, bytes is divisible by 4 and bytes is greater than or equal to +// the diff between dest and src) +static void stbir_overlapping_memcpy( void * dest, void const * src, size_t bytes ) +{ + char STBIR_SIMD_STREAMOUT_PTR (*) sd = (char*) src; + char STBIR_SIMD_STREAMOUT_PTR( * ) s_end = ((char*) src) + bytes; + ptrdiff_t ofs_to_dest = (char*)dest - (char*)src; + + if ( ofs_to_dest >= 8 ) // is the overlap more than 8 away? + { + char STBIR_SIMD_STREAMOUT_PTR( * ) s_end8 = ((char*) src) + (bytes&~7); + STBIR_NO_UNROLL_LOOP_START + do + { + STBIR_NO_UNROLL(sd); + *(stbir_uint64*)( sd + ofs_to_dest ) = *(stbir_uint64*) sd; + sd += 8; + } while ( sd < s_end8 ); + + if ( sd == s_end ) + return; + } + + STBIR_NO_UNROLL_LOOP_START + do + { + STBIR_NO_UNROLL(sd); + *(int*)( sd + ofs_to_dest ) = *(int*) sd; + sd += 4; + } while ( sd < s_end ); +} + +#endif + +static float stbir__filter_trapezoid(float x, float scale, void * user_data) +{ + float halfscale = scale / 2; + float t = 0.5f + halfscale; + STBIR_ASSERT(scale <= 1); + STBIR__UNUSED(user_data); + + if ( x < 0.0f ) x = -x; + + if (x >= t) + return 0.0f; + else + { + float r = 0.5f - halfscale; + if (x <= r) + return 1.0f; + else + return (t - x) / scale; + } +} + +static float stbir__support_trapezoid(float scale, void * user_data) +{ + STBIR__UNUSED(user_data); + return 0.5f + scale / 2.0f; +} + +static float stbir__filter_triangle(float x, float s, void * user_data) +{ + STBIR__UNUSED(s); + STBIR__UNUSED(user_data); + + if ( x < 0.0f ) x = -x; + + if (x <= 1.0f) + return 1.0f - x; + else + return 0.0f; +} + +static float stbir__filter_point(float x, float s, void * user_data) +{ + STBIR__UNUSED(x); + STBIR__UNUSED(s); + STBIR__UNUSED(user_data); + + return 1.0f; +} + +static float stbir__filter_cubic(float x, float s, void * user_data) +{ + STBIR__UNUSED(s); + STBIR__UNUSED(user_data); + + if ( x < 0.0f ) x = -x; + + if (x < 1.0f) + return (4.0f + x*x*(3.0f*x - 6.0f))/6.0f; + else if (x < 2.0f) + return (8.0f + x*(-12.0f + x*(6.0f - x)))/6.0f; + + return (0.0f); +} + +static float stbir__filter_catmullrom(float x, float s, void * user_data) +{ + STBIR__UNUSED(s); + STBIR__UNUSED(user_data); + + if ( x < 0.0f ) x = -x; + + if (x < 1.0f) + return 1.0f - x*x*(2.5f - 1.5f*x); + else if (x < 2.0f) + return 2.0f - x*(4.0f + x*(0.5f*x - 2.5f)); + + return (0.0f); +} + +static float stbir__filter_mitchell(float x, float s, void * user_data) +{ + STBIR__UNUSED(s); + STBIR__UNUSED(user_data); + + if ( x < 0.0f ) x = -x; + + if (x < 1.0f) + return (16.0f + x*x*(21.0f * x - 36.0f))/18.0f; + else if (x < 2.0f) + return (32.0f + x*(-60.0f + x*(36.0f - 7.0f*x)))/18.0f; + + return (0.0f); +} + +static float stbir__support_zeropoint5(float s, void * user_data) +{ + STBIR__UNUSED(s); + STBIR__UNUSED(user_data); + return 0.5f; +} + +static float stbir__support_one(float s, void * user_data) +{ + STBIR__UNUSED(s); + STBIR__UNUSED(user_data); + return 1; +} + +static float stbir__support_two(float s, void * user_data) +{ + STBIR__UNUSED(s); + STBIR__UNUSED(user_data); + return 2; +} + +// This is the maximum number of input samples that can affect an output sample +// with the given filter from the output pixel's perspective +static int stbir__get_filter_pixel_width(stbir__support_callback * support, float scale, void * user_data) +{ + STBIR_ASSERT(support != 0); + + if ( scale >= ( 1.0f-stbir__small_float ) ) // upscale + return (int)STBIR_CEILF(support(1.0f/scale,user_data) * 2.0f); + else + return (int)STBIR_CEILF(support(scale,user_data) * 2.0f / scale); +} + +// this is how many coefficents per run of the filter (which is different +// from the filter_pixel_width depending on if we are scattering or gathering) +static int stbir__get_coefficient_width(stbir__sampler * samp, int is_gather, void * user_data) +{ + float scale = samp->scale_info.scale; + stbir__support_callback * support = samp->filter_support; + + switch( is_gather ) + { + case 1: + return (int)STBIR_CEILF(support(1.0f / scale, user_data) * 2.0f); + case 2: + return (int)STBIR_CEILF(support(scale, user_data) * 2.0f / scale); + case 0: + return (int)STBIR_CEILF(support(scale, user_data) * 2.0f); + default: + STBIR_ASSERT( (is_gather >= 0 ) && (is_gather <= 2 ) ); + return 0; + } +} + +static int stbir__get_contributors(stbir__sampler * samp, int is_gather) +{ + if (is_gather) + return samp->scale_info.output_sub_size; + else + return (samp->scale_info.input_full_size + samp->filter_pixel_margin * 2); +} + +static int stbir__edge_zero_full( int n, int max ) +{ + STBIR__UNUSED(n); + STBIR__UNUSED(max); + return 0; // NOTREACHED +} + +static int stbir__edge_clamp_full( int n, int max ) +{ + if (n < 0) + return 0; + + if (n >= max) + return max - 1; + + return n; // NOTREACHED +} + +static int stbir__edge_reflect_full( int n, int max ) +{ + if (n < 0) + { + if (n > -max) + return -n; + else + return max - 1; + } + + if (n >= max) + { + int max2 = max * 2; + if (n >= max2) + return 0; + else + return max2 - n - 1; + } + + return n; // NOTREACHED +} + +static int stbir__edge_wrap_full( int n, int max ) +{ + if (n >= 0) + return (n % max); + else + { + int m = (-n) % max; + + if (m != 0) + m = max - m; + + return (m); + } +} + +typedef int stbir__edge_wrap_func( int n, int max ); +static stbir__edge_wrap_func * stbir__edge_wrap_slow[] = +{ + stbir__edge_clamp_full, // STBIR_EDGE_CLAMP + stbir__edge_reflect_full, // STBIR_EDGE_REFLECT + stbir__edge_wrap_full, // STBIR_EDGE_WRAP + stbir__edge_zero_full, // STBIR_EDGE_ZERO +}; + +stbir__inline static int stbir__edge_wrap(stbir_edge edge, int n, int max) +{ + // avoid per-pixel switch + if (n >= 0 && n < max) + return n; + return stbir__edge_wrap_slow[edge]( n, max ); +} + +#define STBIR__MERGE_RUNS_PIXEL_THRESHOLD 16 + +// get information on the extents of a sampler +static void stbir__get_extents( stbir__sampler * samp, stbir__extents * scanline_extents ) +{ + int j, stop; + int left_margin, right_margin; + int min_n = 0x7fffffff, max_n = -0x7fffffff; + int min_left = 0x7fffffff, max_left = -0x7fffffff; + int min_right = 0x7fffffff, max_right = -0x7fffffff; + stbir_edge edge = samp->edge; + stbir__contributors* contributors = samp->contributors; + int output_sub_size = samp->scale_info.output_sub_size; + int input_full_size = samp->scale_info.input_full_size; + int filter_pixel_margin = samp->filter_pixel_margin; + + STBIR_ASSERT( samp->is_gather ); + + stop = output_sub_size; + for (j = 0; j < stop; j++ ) + { + STBIR_ASSERT( contributors[j].n1 >= contributors[j].n0 ); + if ( contributors[j].n0 < min_n ) + { + min_n = contributors[j].n0; + stop = j + filter_pixel_margin; // if we find a new min, only scan another filter width + if ( stop > output_sub_size ) stop = output_sub_size; + } + } + + stop = 0; + for (j = output_sub_size - 1; j >= stop; j-- ) + { + STBIR_ASSERT( contributors[j].n1 >= contributors[j].n0 ); + if ( contributors[j].n1 > max_n ) + { + max_n = contributors[j].n1; + stop = j - filter_pixel_margin; // if we find a new max, only scan another filter width + if (stop<0) stop = 0; + } + } + + STBIR_ASSERT( scanline_extents->conservative.n0 <= min_n ); + STBIR_ASSERT( scanline_extents->conservative.n1 >= max_n ); + + // now calculate how much into the margins we really read + left_margin = 0; + if ( min_n < 0 ) + { + left_margin = -min_n; + min_n = 0; + } + + right_margin = 0; + if ( max_n >= input_full_size ) + { + right_margin = max_n - input_full_size + 1; + max_n = input_full_size - 1; + } + + // index 1 is margin pixel extents (how many pixels we hang over the edge) + scanline_extents->edge_sizes[0] = left_margin; + scanline_extents->edge_sizes[1] = right_margin; + + // index 2 is pixels read from the input + scanline_extents->spans[0].n0 = min_n; + scanline_extents->spans[0].n1 = max_n; + scanline_extents->spans[0].pixel_offset_for_input = min_n; + + // default to no other input range + scanline_extents->spans[1].n0 = 0; + scanline_extents->spans[1].n1 = -1; + scanline_extents->spans[1].pixel_offset_for_input = 0; + + // don't have to do edge calc for zero clamp + if ( edge == STBIR_EDGE_ZERO ) + return; + + // convert margin pixels to the pixels within the input (min and max) + for( j = -left_margin ; j < 0 ; j++ ) + { + int p = stbir__edge_wrap( edge, j, input_full_size ); + if ( p < min_left ) + min_left = p; + if ( p > max_left ) + max_left = p; + } + + for( j = input_full_size ; j < (input_full_size + right_margin) ; j++ ) + { + int p = stbir__edge_wrap( edge, j, input_full_size ); + if ( p < min_right ) + min_right = p; + if ( p > max_right ) + max_right = p; + } + + // merge the left margin pixel region if it connects within 4 pixels of main pixel region + if ( min_left != 0x7fffffff ) + { + if ( ( ( min_left <= min_n ) && ( ( max_left + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= min_n ) ) || + ( ( min_n <= min_left ) && ( ( max_n + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= max_left ) ) ) + { + scanline_extents->spans[0].n0 = min_n = stbir__min( min_n, min_left ); + scanline_extents->spans[0].n1 = max_n = stbir__max( max_n, max_left ); + scanline_extents->spans[0].pixel_offset_for_input = min_n; + left_margin = 0; + } + } + + // merge the right margin pixel region if it connects within 4 pixels of main pixel region + if ( min_right != 0x7fffffff ) + { + if ( ( ( min_right <= min_n ) && ( ( max_right + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= min_n ) ) || + ( ( min_n <= min_right ) && ( ( max_n + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= max_right ) ) ) + { + scanline_extents->spans[0].n0 = min_n = stbir__min( min_n, min_right ); + scanline_extents->spans[0].n1 = max_n = stbir__max( max_n, max_right ); + scanline_extents->spans[0].pixel_offset_for_input = min_n; + right_margin = 0; + } + } + + STBIR_ASSERT( scanline_extents->conservative.n0 <= min_n ); + STBIR_ASSERT( scanline_extents->conservative.n1 >= max_n ); + + // you get two ranges when you have the WRAP edge mode and you are doing just the a piece of the resize + // so you need to get a second run of pixels from the opposite side of the scanline (which you + // wouldn't need except for WRAP) + + + // if we can't merge the min_left range, add it as a second range + if ( ( left_margin ) && ( min_left != 0x7fffffff ) ) + { + stbir__span * newspan = scanline_extents->spans + 1; + STBIR_ASSERT( right_margin == 0 ); + if ( min_left < scanline_extents->spans[0].n0 ) + { + scanline_extents->spans[1].pixel_offset_for_input = scanline_extents->spans[0].n0; + scanline_extents->spans[1].n0 = scanline_extents->spans[0].n0; + scanline_extents->spans[1].n1 = scanline_extents->spans[0].n1; + --newspan; + } + newspan->pixel_offset_for_input = min_left; + newspan->n0 = -left_margin; + newspan->n1 = ( max_left - min_left ) - left_margin; + scanline_extents->edge_sizes[0] = 0; // don't need to copy the left margin, since we are directly decoding into the margin + return; + } + + // if we can't merge the min_left range, add it as a second range + if ( ( right_margin ) && ( min_right != 0x7fffffff ) ) + { + stbir__span * newspan = scanline_extents->spans + 1; + if ( min_right < scanline_extents->spans[0].n0 ) + { + scanline_extents->spans[1].pixel_offset_for_input = scanline_extents->spans[0].n0; + scanline_extents->spans[1].n0 = scanline_extents->spans[0].n0; + scanline_extents->spans[1].n1 = scanline_extents->spans[0].n1; + --newspan; + } + newspan->pixel_offset_for_input = min_right; + newspan->n0 = scanline_extents->spans[1].n1 + 1; + newspan->n1 = scanline_extents->spans[1].n1 + 1 + ( max_right - min_right ); + scanline_extents->edge_sizes[1] = 0; // don't need to copy the right margin, since we are directly decoding into the margin + return; + } +} + +static void stbir__calculate_in_pixel_range( int * first_pixel, int * last_pixel, float out_pixel_center, float out_filter_radius, float inv_scale, float out_shift, int input_size, stbir_edge edge ) +{ + int first, last; + float out_pixel_influence_lowerbound = out_pixel_center - out_filter_radius; + float out_pixel_influence_upperbound = out_pixel_center + out_filter_radius; + + float in_pixel_influence_lowerbound = (out_pixel_influence_lowerbound + out_shift) * inv_scale; + float in_pixel_influence_upperbound = (out_pixel_influence_upperbound + out_shift) * inv_scale; + + first = (int)(STBIR_FLOORF(in_pixel_influence_lowerbound + 0.5f)); + last = (int)(STBIR_FLOORF(in_pixel_influence_upperbound - 0.5f)); + if ( last < first ) last = first; // point sample mode can span a value *right* at 0.5, and cause these to cross + + if ( edge == STBIR_EDGE_WRAP ) + { + if ( first < -input_size ) + first = -input_size; + if ( last >= (input_size*2)) + last = (input_size*2) - 1; + } + + *first_pixel = first; + *last_pixel = last; +} + +static void stbir__calculate_coefficients_for_gather_upsample( float out_filter_radius, stbir__kernel_callback * kernel, stbir__scale_info * scale_info, int num_contributors, stbir__contributors* contributors, float* coefficient_group, int coefficient_width, stbir_edge edge, void * user_data ) +{ + int n, end; + float inv_scale = scale_info->inv_scale; + float out_shift = scale_info->pixel_shift; + int input_size = scale_info->input_full_size; + int numerator = scale_info->scale_numerator; + int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < num_contributors ) ); + + // Looping through out pixels + end = num_contributors; if ( polyphase ) end = numerator; + for (n = 0; n < end; n++) + { + int i; + int last_non_zero; + float out_pixel_center = (float)n + 0.5f; + float in_center_of_out = (out_pixel_center + out_shift) * inv_scale; + + int in_first_pixel, in_last_pixel; + + stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, out_pixel_center, out_filter_radius, inv_scale, out_shift, input_size, edge ); + + // make sure we never generate a range larger than our precalculated coeff width + // this only happens in point sample mode, but it's a good safe thing to do anyway + if ( ( in_last_pixel - in_first_pixel + 1 ) > coefficient_width ) + in_last_pixel = in_first_pixel + coefficient_width - 1; + + last_non_zero = -1; + for (i = 0; i <= in_last_pixel - in_first_pixel; i++) + { + float in_pixel_center = (float)(i + in_first_pixel) + 0.5f; + float coeff = kernel(in_center_of_out - in_pixel_center, inv_scale, user_data); + + // kill denormals + if ( ( ( coeff < stbir__small_float ) && ( coeff > -stbir__small_float ) ) ) + { + if ( i == 0 ) // if we're at the front, just eat zero contributors + { + STBIR_ASSERT ( ( in_last_pixel - in_first_pixel ) != 0 ); // there should be at least one contrib + ++in_first_pixel; + i--; + continue; + } + coeff = 0; // make sure is fully zero (should keep denormals away) + } + else + last_non_zero = i; + + coefficient_group[i] = coeff; + } + + in_last_pixel = last_non_zero+in_first_pixel; // kills trailing zeros + contributors->n0 = in_first_pixel; + contributors->n1 = in_last_pixel; + + STBIR_ASSERT(contributors->n1 >= contributors->n0); + + ++contributors; + coefficient_group += coefficient_width; + } +} + +static void stbir__insert_coeff( stbir__contributors * contribs, float * coeffs, int new_pixel, float new_coeff, int max_width ) +{ + if ( new_pixel <= contribs->n1 ) // before the end + { + if ( new_pixel < contribs->n0 ) // before the front? + { + if ( ( contribs->n1 - new_pixel + 1 ) <= max_width ) + { + int j, o = contribs->n0 - new_pixel; + for ( j = contribs->n1 - contribs->n0 ; j <= 0 ; j-- ) + coeffs[ j + o ] = coeffs[ j ]; + for ( j = 1 ; j < o ; j-- ) + coeffs[ j ] = coeffs[ 0 ]; + coeffs[ 0 ] = new_coeff; + contribs->n0 = new_pixel; + } + } + else + { + coeffs[ new_pixel - contribs->n0 ] += new_coeff; + } + } + else + { + if ( ( new_pixel - contribs->n0 + 1 ) <= max_width ) + { + int j, e = new_pixel - contribs->n0; + for( j = ( contribs->n1 - contribs->n0 ) + 1 ; j < e ; j++ ) // clear in-betweens coeffs if there are any + coeffs[j] = 0; + + coeffs[ e ] = new_coeff; + contribs->n1 = new_pixel; + } + } +} + +static void stbir__calculate_out_pixel_range( int * first_pixel, int * last_pixel, float in_pixel_center, float in_pixels_radius, float scale, float out_shift, int out_size ) +{ + float in_pixel_influence_lowerbound = in_pixel_center - in_pixels_radius; + float in_pixel_influence_upperbound = in_pixel_center + in_pixels_radius; + float out_pixel_influence_lowerbound = in_pixel_influence_lowerbound * scale - out_shift; + float out_pixel_influence_upperbound = in_pixel_influence_upperbound * scale - out_shift; + int out_first_pixel = (int)(STBIR_FLOORF(out_pixel_influence_lowerbound + 0.5f)); + int out_last_pixel = (int)(STBIR_FLOORF(out_pixel_influence_upperbound - 0.5f)); + + if ( out_first_pixel < 0 ) + out_first_pixel = 0; + if ( out_last_pixel >= out_size ) + out_last_pixel = out_size - 1; + *first_pixel = out_first_pixel; + *last_pixel = out_last_pixel; +} + +static void stbir__calculate_coefficients_for_gather_downsample( int start, int end, float in_pixels_radius, stbir__kernel_callback * kernel, stbir__scale_info * scale_info, int coefficient_width, int num_contributors, stbir__contributors * contributors, float * coefficient_group, void * user_data ) +{ + int in_pixel; + int i; + int first_out_inited = -1; + float scale = scale_info->scale; + float out_shift = scale_info->pixel_shift; + int out_size = scale_info->output_sub_size; + int numerator = scale_info->scale_numerator; + int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < out_size ) ); + + STBIR__UNUSED(num_contributors); + + // Loop through the input pixels + for (in_pixel = start; in_pixel < end; in_pixel++) + { + float in_pixel_center = (float)in_pixel + 0.5f; + float out_center_of_in = in_pixel_center * scale - out_shift; + int out_first_pixel, out_last_pixel; + + stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, in_pixel_center, in_pixels_radius, scale, out_shift, out_size ); + + if ( out_first_pixel > out_last_pixel ) + continue; + + // clamp or exit if we are using polyphase filtering, and the limit is up + if ( polyphase ) + { + // when polyphase, you only have to do coeffs up to the numerator count + if ( out_first_pixel == numerator ) + break; + + // don't do any extra work, clamp last pixel at numerator too + if ( out_last_pixel >= numerator ) + out_last_pixel = numerator - 1; + } + + for (i = 0; i <= out_last_pixel - out_first_pixel; i++) + { + float out_pixel_center = (float)(i + out_first_pixel) + 0.5f; + float x = out_pixel_center - out_center_of_in; + float coeff = kernel(x, scale, user_data) * scale; + + // kill the coeff if it's too small (avoid denormals) + if ( ( ( coeff < stbir__small_float ) && ( coeff > -stbir__small_float ) ) ) + coeff = 0.0f; + + { + int out = i + out_first_pixel; + float * coeffs = coefficient_group + out * coefficient_width; + stbir__contributors * contribs = contributors + out; + + // is this the first time this output pixel has been seen? Init it. + if ( out > first_out_inited ) + { + STBIR_ASSERT( out == ( first_out_inited + 1 ) ); // ensure we have only advanced one at time + first_out_inited = out; + contribs->n0 = in_pixel; + contribs->n1 = in_pixel; + coeffs[0] = coeff; + } + else + { + // insert on end (always in order) + if ( coeffs[0] == 0.0f ) // if the first coefficent is zero, then zap it for this coeffs + { + STBIR_ASSERT( ( in_pixel - contribs->n0 ) == 1 ); // ensure that when we zap, we're at the 2nd pos + contribs->n0 = in_pixel; + } + contribs->n1 = in_pixel; + STBIR_ASSERT( ( in_pixel - contribs->n0 ) < coefficient_width ); + coeffs[in_pixel - contribs->n0] = coeff; + } + } + } + } +} + +#ifdef STBIR_RENORMALIZE_IN_FLOAT +#define STBIR_RENORM_TYPE float +#else +#define STBIR_RENORM_TYPE double +#endif + +static void stbir__cleanup_gathered_coefficients( stbir_edge edge, stbir__filter_extent_info* filter_info, stbir__scale_info * scale_info, int num_contributors, stbir__contributors* contributors, float * coefficient_group, int coefficient_width ) +{ + int input_size = scale_info->input_full_size; + int input_last_n1 = input_size - 1; + int n, end; + int lowest = 0x7fffffff; + int highest = -0x7fffffff; + int widest = -1; + int numerator = scale_info->scale_numerator; + int denominator = scale_info->scale_denominator; + int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < num_contributors ) ); + float * coeffs; + stbir__contributors * contribs; + + // weight all the coeffs for each sample + coeffs = coefficient_group; + contribs = contributors; + end = num_contributors; if ( polyphase ) end = numerator; + for (n = 0; n < end; n++) + { + int i; + STBIR_RENORM_TYPE filter_scale, total_filter = 0; + int e; + + // add all contribs + e = contribs->n1 - contribs->n0; + for( i = 0 ; i <= e ; i++ ) + { + total_filter += (STBIR_RENORM_TYPE) coeffs[i]; + STBIR_ASSERT( ( coeffs[i] >= -2.0f ) && ( coeffs[i] <= 2.0f ) ); // check for wonky weights + } + + // rescale + if ( ( total_filter < stbir__small_float ) && ( total_filter > -stbir__small_float ) ) + { + // all coeffs are extremely small, just zero it + contribs->n1 = contribs->n0; + coeffs[0] = 0.0f; + } + else + { + // if the total isn't 1.0, rescale everything + if ( ( total_filter < (1.0f-stbir__small_float) ) || ( total_filter > (1.0f+stbir__small_float) ) ) + { + filter_scale = ((STBIR_RENORM_TYPE)1.0) / total_filter; + + // scale them all + for (i = 0; i <= e; i++) + coeffs[i] = (float) ( coeffs[i] * filter_scale ); + } + } + ++contribs; + coeffs += coefficient_width; + } + + // if we have a rational for the scale, we can exploit the polyphaseness to not calculate + // most of the coefficients, so we copy them here + if ( polyphase ) + { + stbir__contributors * prev_contribs = contributors; + stbir__contributors * cur_contribs = contributors + numerator; + + for( n = numerator ; n < num_contributors ; n++ ) + { + cur_contribs->n0 = prev_contribs->n0 + denominator; + cur_contribs->n1 = prev_contribs->n1 + denominator; + ++cur_contribs; + ++prev_contribs; + } + stbir_overlapping_memcpy( coefficient_group + numerator * coefficient_width, coefficient_group, ( num_contributors - numerator ) * coefficient_width * sizeof( coeffs[ 0 ] ) ); + } + + coeffs = coefficient_group; + contribs = contributors; + + for (n = 0; n < num_contributors; n++) + { + int i; + + // in zero edge mode, just remove out of bounds contribs completely (since their weights are accounted for now) + if ( edge == STBIR_EDGE_ZERO ) + { + // shrink the right side if necessary + if ( contribs->n1 > input_last_n1 ) + contribs->n1 = input_last_n1; + + // shrink the left side + if ( contribs->n0 < 0 ) + { + int j, left, skips = 0; + + skips = -contribs->n0; + contribs->n0 = 0; + + // now move down the weights + left = contribs->n1 - contribs->n0 + 1; + if ( left > 0 ) + { + for( j = 0 ; j < left ; j++ ) + coeffs[ j ] = coeffs[ j + skips ]; + } + } + } + else if ( ( edge == STBIR_EDGE_CLAMP ) || ( edge == STBIR_EDGE_REFLECT ) ) + { + // for clamp and reflect, calculate the true inbounds position (based on edge type) and just add that to the existing weight + + // right hand side first + if ( contribs->n1 > input_last_n1 ) + { + int start = contribs->n0; + int endi = contribs->n1; + contribs->n1 = input_last_n1; + for( i = input_size; i <= endi; i++ ) + stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( i, input_size ), coeffs[i-start], coefficient_width ); + } + + // now check left hand edge + if ( contribs->n0 < 0 ) + { + int save_n0; + float save_n0_coeff; + float * c = coeffs - ( contribs->n0 + 1 ); + + // reinsert the coeffs with it reflected or clamped (insert accumulates, if the coeffs exist) + for( i = -1 ; i > contribs->n0 ; i-- ) + stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( i, input_size ), *c--, coefficient_width ); + save_n0 = contribs->n0; + save_n0_coeff = c[0]; // save it, since we didn't do the final one (i==n0), because there might be too many coeffs to hold (before we resize)! + + // now slide all the coeffs down (since we have accumulated them in the positive contribs) and reset the first contrib + contribs->n0 = 0; + for(i = 0 ; i <= contribs->n1 ; i++ ) + coeffs[i] = coeffs[i-save_n0]; + + // now that we have shrunk down the contribs, we insert the first one safely + stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( save_n0, input_size ), save_n0_coeff, coefficient_width ); + } + } + + if ( contribs->n0 <= contribs->n1 ) + { + int diff = contribs->n1 - contribs->n0 + 1; + while ( diff && ( coeffs[ diff-1 ] == 0.0f ) ) + --diff; + + contribs->n1 = contribs->n0 + diff - 1; + + if ( contribs->n0 <= contribs->n1 ) + { + if ( contribs->n0 < lowest ) + lowest = contribs->n0; + if ( contribs->n1 > highest ) + highest = contribs->n1; + if ( diff > widest ) + widest = diff; + } + + // re-zero out unused coefficients (if any) + for( i = diff ; i < coefficient_width ; i++ ) + coeffs[i] = 0.0f; + } + + ++contribs; + coeffs += coefficient_width; + } + filter_info->lowest = lowest; + filter_info->highest = highest; + filter_info->widest = widest; +} + +#undef STBIR_RENORM_TYPE + +static int stbir__pack_coefficients( int num_contributors, stbir__contributors* contributors, float * coefficents, int coefficient_width, int widest, int row0, int row1 ) +{ + #define STBIR_MOVE_1( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint32*)(dest))[0] = ((stbir_uint32*)(src))[0]; } + #define STBIR_MOVE_2( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint64*)(dest))[0] = ((stbir_uint64*)(src))[0]; } + #ifdef STBIR_SIMD + #define STBIR_MOVE_4( dest, src ) { stbir__simdf t; STBIR_NO_UNROLL(dest); stbir__simdf_load( t, src ); stbir__simdf_store( dest, t ); } + #else + #define STBIR_MOVE_4( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint64*)(dest))[0] = ((stbir_uint64*)(src))[0]; ((stbir_uint64*)(dest))[1] = ((stbir_uint64*)(src))[1]; } + #endif + + int row_end = row1 + 1; + STBIR__UNUSED( row0 ); // only used in an assert + + if ( coefficient_width != widest ) + { + float * pc = coefficents; + float * coeffs = coefficents; + float * pc_end = coefficents + num_contributors * widest; + switch( widest ) + { + case 1: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_1( pc, coeffs ); + ++pc; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 2: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_2( pc, coeffs ); + pc += 2; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 3: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_2( pc, coeffs ); + STBIR_MOVE_1( pc+2, coeffs+2 ); + pc += 3; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 4: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + pc += 4; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 5: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + STBIR_MOVE_1( pc+4, coeffs+4 ); + pc += 5; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 6: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + STBIR_MOVE_2( pc+4, coeffs+4 ); + pc += 6; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 7: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + STBIR_MOVE_2( pc+4, coeffs+4 ); + STBIR_MOVE_1( pc+6, coeffs+6 ); + pc += 7; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 8: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + STBIR_MOVE_4( pc+4, coeffs+4 ); + pc += 8; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 9: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + STBIR_MOVE_4( pc+4, coeffs+4 ); + STBIR_MOVE_1( pc+8, coeffs+8 ); + pc += 9; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 10: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + STBIR_MOVE_4( pc+4, coeffs+4 ); + STBIR_MOVE_2( pc+8, coeffs+8 ); + pc += 10; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 11: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + STBIR_MOVE_4( pc+4, coeffs+4 ); + STBIR_MOVE_2( pc+8, coeffs+8 ); + STBIR_MOVE_1( pc+10, coeffs+10 ); + pc += 11; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + case 12: + STBIR_NO_UNROLL_LOOP_START + do { + STBIR_MOVE_4( pc, coeffs ); + STBIR_MOVE_4( pc+4, coeffs+4 ); + STBIR_MOVE_4( pc+8, coeffs+8 ); + pc += 12; + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + default: + STBIR_NO_UNROLL_LOOP_START + do { + float * copy_end = pc + widest - 4; + float * c = coeffs; + do { + STBIR_NO_UNROLL( pc ); + STBIR_MOVE_4( pc, c ); + pc += 4; + c += 4; + } while ( pc <= copy_end ); + copy_end += 4; + STBIR_NO_UNROLL_LOOP_START + while ( pc < copy_end ) + { + STBIR_MOVE_1( pc, c ); + ++pc; ++c; + } + coeffs += coefficient_width; + } while ( pc < pc_end ); + break; + } + } + + // some horizontal routines read one float off the end (which is then masked off), so put in a sentinal so we don't read an snan or denormal + coefficents[ widest * num_contributors ] = 8888.0f; + + // the minimum we might read for unrolled filters widths is 12. So, we need to + // make sure we never read outside the decode buffer, by possibly moving + // the sample area back into the scanline, and putting zeros weights first. + // we start on the right edge and check until we're well past the possible + // clip area (2*widest). + { + stbir__contributors * contribs = contributors + num_contributors - 1; + float * coeffs = coefficents + widest * ( num_contributors - 1 ); + + // go until no chance of clipping (this is usually less than 8 lops) + while ( ( contribs >= contributors ) && ( ( contribs->n0 + widest*2 ) >= row_end ) ) + { + // might we clip?? + if ( ( contribs->n0 + widest ) > row_end ) + { + int stop_range = widest; + + // if range is larger than 12, it will be handled by generic loops that can terminate on the exact length + // of this contrib n1, instead of a fixed widest amount - so calculate this + if ( widest > 12 ) + { + int mod; + + // how far will be read in the n_coeff loop (which depends on the widest count mod4); + mod = widest & 3; + stop_range = ( ( ( contribs->n1 - contribs->n0 + 1 ) - mod + 3 ) & ~3 ) + mod; + + // the n_coeff loops do a minimum amount of coeffs, so factor that in! + if ( stop_range < ( 8 + mod ) ) stop_range = 8 + mod; + } + + // now see if we still clip with the refined range + if ( ( contribs->n0 + stop_range ) > row_end ) + { + int new_n0 = row_end - stop_range; + int num = contribs->n1 - contribs->n0 + 1; + int backup = contribs->n0 - new_n0; + float * from_co = coeffs + num - 1; + float * to_co = from_co + backup; + + STBIR_ASSERT( ( new_n0 >= row0 ) && ( new_n0 < contribs->n0 ) ); + + // move the coeffs over + while( num ) + { + *to_co-- = *from_co--; + --num; + } + // zero new positions + while ( to_co >= coeffs ) + *to_co-- = 0; + // set new start point + contribs->n0 = new_n0; + if ( widest > 12 ) + { + int mod; + + // how far will be read in the n_coeff loop (which depends on the widest count mod4); + mod = widest & 3; + stop_range = ( ( ( contribs->n1 - contribs->n0 + 1 ) - mod + 3 ) & ~3 ) + mod; + + // the n_coeff loops do a minimum amount of coeffs, so factor that in! + if ( stop_range < ( 8 + mod ) ) stop_range = 8 + mod; + } + } + } + --contribs; + coeffs -= widest; + } + } + + return widest; + #undef STBIR_MOVE_1 + #undef STBIR_MOVE_2 + #undef STBIR_MOVE_4 +} + +static void stbir__calculate_filters( stbir__sampler * samp, stbir__sampler * other_axis_for_pivot, void * user_data STBIR_ONLY_PROFILE_BUILD_GET_INFO ) +{ + int n; + float scale = samp->scale_info.scale; + stbir__kernel_callback * kernel = samp->filter_kernel; + stbir__support_callback * support = samp->filter_support; + float inv_scale = samp->scale_info.inv_scale; + int input_full_size = samp->scale_info.input_full_size; + int gather_num_contributors = samp->num_contributors; + stbir__contributors* gather_contributors = samp->contributors; + float * gather_coeffs = samp->coefficients; + int gather_coefficient_width = samp->coefficient_width; + + switch ( samp->is_gather ) + { + case 1: // gather upsample + { + float out_pixels_radius = support(inv_scale,user_data) * scale; + + stbir__calculate_coefficients_for_gather_upsample( out_pixels_radius, kernel, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width, samp->edge, user_data ); + + STBIR_PROFILE_BUILD_START( cleanup ); + stbir__cleanup_gathered_coefficients( samp->edge, &samp->extent_info, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width ); + STBIR_PROFILE_BUILD_END( cleanup ); + } + break; + + case 0: // scatter downsample (only on vertical) + case 2: // gather downsample + { + float in_pixels_radius = support(scale,user_data) * inv_scale; + int filter_pixel_margin = samp->filter_pixel_margin; + int input_end = input_full_size + filter_pixel_margin; + + // if this is a scatter, we do a downsample gather to get the coeffs, and then pivot after + if ( !samp->is_gather ) + { + // check if we are using the same gather downsample on the horizontal as this vertical, + // if so, then we don't have to generate them, we can just pivot from the horizontal. + if ( other_axis_for_pivot ) + { + gather_contributors = other_axis_for_pivot->contributors; + gather_coeffs = other_axis_for_pivot->coefficients; + gather_coefficient_width = other_axis_for_pivot->coefficient_width; + gather_num_contributors = other_axis_for_pivot->num_contributors; + samp->extent_info.lowest = other_axis_for_pivot->extent_info.lowest; + samp->extent_info.highest = other_axis_for_pivot->extent_info.highest; + samp->extent_info.widest = other_axis_for_pivot->extent_info.widest; + goto jump_right_to_pivot; + } + + gather_contributors = samp->gather_prescatter_contributors; + gather_coeffs = samp->gather_prescatter_coefficients; + gather_coefficient_width = samp->gather_prescatter_coefficient_width; + gather_num_contributors = samp->gather_prescatter_num_contributors; + } + + stbir__calculate_coefficients_for_gather_downsample( -filter_pixel_margin, input_end, in_pixels_radius, kernel, &samp->scale_info, gather_coefficient_width, gather_num_contributors, gather_contributors, gather_coeffs, user_data ); + + STBIR_PROFILE_BUILD_START( cleanup ); + stbir__cleanup_gathered_coefficients( samp->edge, &samp->extent_info, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width ); + STBIR_PROFILE_BUILD_END( cleanup ); + + if ( !samp->is_gather ) + { + // if this is a scatter (vertical only), then we need to pivot the coeffs + stbir__contributors * scatter_contributors; + int highest_set; + + jump_right_to_pivot: + + STBIR_PROFILE_BUILD_START( pivot ); + + highest_set = (-filter_pixel_margin) - 1; + for (n = 0; n < gather_num_contributors; n++) + { + int k; + int gn0 = gather_contributors->n0, gn1 = gather_contributors->n1; + int scatter_coefficient_width = samp->coefficient_width; + float * scatter_coeffs = samp->coefficients + ( gn0 + filter_pixel_margin ) * scatter_coefficient_width; + float * g_coeffs = gather_coeffs; + scatter_contributors = samp->contributors + ( gn0 + filter_pixel_margin ); + + for (k = gn0 ; k <= gn1 ; k++ ) + { + float gc = *g_coeffs++; + + // skip zero and denormals - must skip zeros to avoid adding coeffs beyond scatter_coefficient_width + // (which happens when pivoting from horizontal, which might have dummy zeros) + if ( ( ( gc >= stbir__small_float ) || ( gc <= -stbir__small_float ) ) ) + { + if ( ( k > highest_set ) || ( scatter_contributors->n0 > scatter_contributors->n1 ) ) + { + { + // if we are skipping over several contributors, we need to clear the skipped ones + stbir__contributors * clear_contributors = samp->contributors + ( highest_set + filter_pixel_margin + 1); + while ( clear_contributors < scatter_contributors ) + { + clear_contributors->n0 = 0; + clear_contributors->n1 = -1; + ++clear_contributors; + } + } + scatter_contributors->n0 = n; + scatter_contributors->n1 = n; + scatter_coeffs[0] = gc; + highest_set = k; + } + else + { + stbir__insert_coeff( scatter_contributors, scatter_coeffs, n, gc, scatter_coefficient_width ); + } + STBIR_ASSERT( ( scatter_contributors->n1 - scatter_contributors->n0 + 1 ) <= scatter_coefficient_width ); + } + ++scatter_contributors; + scatter_coeffs += scatter_coefficient_width; + } + + ++gather_contributors; + gather_coeffs += gather_coefficient_width; + } + + // now clear any unset contribs + { + stbir__contributors * clear_contributors = samp->contributors + ( highest_set + filter_pixel_margin + 1); + stbir__contributors * end_contributors = samp->contributors + samp->num_contributors; + while ( clear_contributors < end_contributors ) + { + clear_contributors->n0 = 0; + clear_contributors->n1 = -1; + ++clear_contributors; + } + } + + STBIR_PROFILE_BUILD_END( pivot ); + } + } + break; + } +} + + +//======================================================================================================== +// scanline decoders and encoders + +#define stbir__coder_min_num 1 +#define STB_IMAGE_RESIZE_DO_CODERS +#include STBIR__HEADER_FILENAME + +#define stbir__decode_suffix BGRA +#define stbir__decode_swizzle +#define stbir__decode_order0 2 +#define stbir__decode_order1 1 +#define stbir__decode_order2 0 +#define stbir__decode_order3 3 +#define stbir__encode_order0 2 +#define stbir__encode_order1 1 +#define stbir__encode_order2 0 +#define stbir__encode_order3 3 +#define stbir__coder_min_num 4 +#define STB_IMAGE_RESIZE_DO_CODERS +#include STBIR__HEADER_FILENAME + +#define stbir__decode_suffix ARGB +#define stbir__decode_swizzle +#define stbir__decode_order0 1 +#define stbir__decode_order1 2 +#define stbir__decode_order2 3 +#define stbir__decode_order3 0 +#define stbir__encode_order0 3 +#define stbir__encode_order1 0 +#define stbir__encode_order2 1 +#define stbir__encode_order3 2 +#define stbir__coder_min_num 4 +#define STB_IMAGE_RESIZE_DO_CODERS +#include STBIR__HEADER_FILENAME + +#define stbir__decode_suffix ABGR +#define stbir__decode_swizzle +#define stbir__decode_order0 3 +#define stbir__decode_order1 2 +#define stbir__decode_order2 1 +#define stbir__decode_order3 0 +#define stbir__encode_order0 3 +#define stbir__encode_order1 2 +#define stbir__encode_order2 1 +#define stbir__encode_order3 0 +#define stbir__coder_min_num 4 +#define STB_IMAGE_RESIZE_DO_CODERS +#include STBIR__HEADER_FILENAME + +#define stbir__decode_suffix AR +#define stbir__decode_swizzle +#define stbir__decode_order0 1 +#define stbir__decode_order1 0 +#define stbir__decode_order2 3 +#define stbir__decode_order3 2 +#define stbir__encode_order0 1 +#define stbir__encode_order1 0 +#define stbir__encode_order2 3 +#define stbir__encode_order3 2 +#define stbir__coder_min_num 2 +#define STB_IMAGE_RESIZE_DO_CODERS +#include STBIR__HEADER_FILENAME + + +// fancy alpha means we expand to keep both premultipied and non-premultiplied color channels +static void stbir__fancy_alpha_weight_4ch( float * out_buffer, int width_times_channels ) +{ + float STBIR_STREAMOUT_PTR(*) out = out_buffer; + float const * end_decode = out_buffer + ( width_times_channels / 4 ) * 7; // decode buffer aligned to end of out_buffer + float STBIR_STREAMOUT_PTR(*) decode = (float*)end_decode - width_times_channels; + + // fancy alpha is stored internally as R G B A Rpm Gpm Bpm + + #ifdef STBIR_SIMD + + #ifdef STBIR_SIMD8 + decode += 16; + STBIR_NO_UNROLL_LOOP_START + while ( decode <= end_decode ) + { + stbir__simdf8 d0,d1,a0,a1,p0,p1; + STBIR_NO_UNROLL(decode); + stbir__simdf8_load( d0, decode-16 ); + stbir__simdf8_load( d1, decode-16+8 ); + stbir__simdf8_0123to33333333( a0, d0 ); + stbir__simdf8_0123to33333333( a1, d1 ); + stbir__simdf8_mult( p0, a0, d0 ); + stbir__simdf8_mult( p1, a1, d1 ); + stbir__simdf8_bot4s( a0, d0, p0 ); + stbir__simdf8_bot4s( a1, d1, p1 ); + stbir__simdf8_top4s( d0, d0, p0 ); + stbir__simdf8_top4s( d1, d1, p1 ); + stbir__simdf8_store ( out, a0 ); + stbir__simdf8_store ( out+7, d0 ); + stbir__simdf8_store ( out+14, a1 ); + stbir__simdf8_store ( out+21, d1 ); + decode += 16; + out += 28; + } + decode -= 16; + #else + decode += 8; + STBIR_NO_UNROLL_LOOP_START + while ( decode <= end_decode ) + { + stbir__simdf d0,a0,d1,a1,p0,p1; + STBIR_NO_UNROLL(decode); + stbir__simdf_load( d0, decode-8 ); + stbir__simdf_load( d1, decode-8+4 ); + stbir__simdf_0123to3333( a0, d0 ); + stbir__simdf_0123to3333( a1, d1 ); + stbir__simdf_mult( p0, a0, d0 ); + stbir__simdf_mult( p1, a1, d1 ); + stbir__simdf_store ( out, d0 ); + stbir__simdf_store ( out+4, p0 ); + stbir__simdf_store ( out+7, d1 ); + stbir__simdf_store ( out+7+4, p1 ); + decode += 8; + out += 14; + } + decode -= 8; + #endif + + // might be one last odd pixel + #ifdef STBIR_SIMD8 + STBIR_NO_UNROLL_LOOP_START + while ( decode < end_decode ) + #else + if ( decode < end_decode ) + #endif + { + stbir__simdf d,a,p; + STBIR_NO_UNROLL(decode); + stbir__simdf_load( d, decode ); + stbir__simdf_0123to3333( a, d ); + stbir__simdf_mult( p, a, d ); + stbir__simdf_store ( out, d ); + stbir__simdf_store ( out+4, p ); + decode += 4; + out += 7; + } + + #else + + while( decode < end_decode ) + { + float r = decode[0], g = decode[1], b = decode[2], alpha = decode[3]; + out[0] = r; + out[1] = g; + out[2] = b; + out[3] = alpha; + out[4] = r * alpha; + out[5] = g * alpha; + out[6] = b * alpha; + out += 7; + decode += 4; + } + + #endif +} + +static void stbir__fancy_alpha_weight_2ch( float * out_buffer, int width_times_channels ) +{ + float STBIR_STREAMOUT_PTR(*) out = out_buffer; + float const * end_decode = out_buffer + ( width_times_channels / 2 ) * 3; + float STBIR_STREAMOUT_PTR(*) decode = (float*)end_decode - width_times_channels; + + // for fancy alpha, turns into: [X A Xpm][X A Xpm],etc + + #ifdef STBIR_SIMD + + decode += 8; + if ( decode <= end_decode ) + { + STBIR_NO_UNROLL_LOOP_START + do { + #ifdef STBIR_SIMD8 + stbir__simdf8 d0,a0,p0; + STBIR_NO_UNROLL(decode); + stbir__simdf8_load( d0, decode-8 ); + stbir__simdf8_0123to11331133( p0, d0 ); + stbir__simdf8_0123to00220022( a0, d0 ); + stbir__simdf8_mult( p0, p0, a0 ); + + stbir__simdf_store2( out, stbir__if_simdf8_cast_to_simdf4( d0 ) ); + stbir__simdf_store( out+2, stbir__if_simdf8_cast_to_simdf4( p0 ) ); + stbir__simdf_store2h( out+3, stbir__if_simdf8_cast_to_simdf4( d0 ) ); + + stbir__simdf_store2( out+6, stbir__simdf8_gettop4( d0 ) ); + stbir__simdf_store( out+8, stbir__simdf8_gettop4( p0 ) ); + stbir__simdf_store2h( out+9, stbir__simdf8_gettop4( d0 ) ); + #else + stbir__simdf d0,a0,d1,a1,p0,p1; + STBIR_NO_UNROLL(decode); + stbir__simdf_load( d0, decode-8 ); + stbir__simdf_load( d1, decode-8+4 ); + stbir__simdf_0123to1133( p0, d0 ); + stbir__simdf_0123to1133( p1, d1 ); + stbir__simdf_0123to0022( a0, d0 ); + stbir__simdf_0123to0022( a1, d1 ); + stbir__simdf_mult( p0, p0, a0 ); + stbir__simdf_mult( p1, p1, a1 ); + + stbir__simdf_store2( out, d0 ); + stbir__simdf_store( out+2, p0 ); + stbir__simdf_store2h( out+3, d0 ); + + stbir__simdf_store2( out+6, d1 ); + stbir__simdf_store( out+8, p1 ); + stbir__simdf_store2h( out+9, d1 ); + #endif + decode += 8; + out += 12; + } while ( decode <= end_decode ); + } + decode -= 8; + #endif + + STBIR_SIMD_NO_UNROLL_LOOP_START + while( decode < end_decode ) + { + float x = decode[0], y = decode[1]; + STBIR_SIMD_NO_UNROLL(decode); + out[0] = x; + out[1] = y; + out[2] = x * y; + out += 3; + decode += 2; + } +} + +static void stbir__fancy_alpha_unweight_4ch( float * encode_buffer, int width_times_channels ) +{ + float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer; + float STBIR_SIMD_STREAMOUT_PTR(*) input = encode_buffer; + float const * end_output = encode_buffer + width_times_channels; + + // fancy RGBA is stored internally as R G B A Rpm Gpm Bpm + + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float alpha = input[3]; +#ifdef STBIR_SIMD + stbir__simdf i,ia; + STBIR_SIMD_NO_UNROLL(encode); + if ( alpha < stbir__small_float ) + { + stbir__simdf_load( i, input ); + stbir__simdf_store( encode, i ); + } + else + { + stbir__simdf_load1frep4( ia, 1.0f / alpha ); + stbir__simdf_load( i, input+4 ); + stbir__simdf_mult( i, i, ia ); + stbir__simdf_store( encode, i ); + encode[3] = alpha; + } +#else + if ( alpha < stbir__small_float ) + { + encode[0] = input[0]; + encode[1] = input[1]; + encode[2] = input[2]; + } + else + { + float ialpha = 1.0f / alpha; + encode[0] = input[4] * ialpha; + encode[1] = input[5] * ialpha; + encode[2] = input[6] * ialpha; + } + encode[3] = alpha; +#endif + + input += 7; + encode += 4; + } while ( encode < end_output ); +} + +// format: [X A Xpm][X A Xpm] etc +static void stbir__fancy_alpha_unweight_2ch( float * encode_buffer, int width_times_channels ) +{ + float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer; + float STBIR_SIMD_STREAMOUT_PTR(*) input = encode_buffer; + float const * end_output = encode_buffer + width_times_channels; + + do { + float alpha = input[1]; + encode[0] = input[0]; + if ( alpha >= stbir__small_float ) + encode[0] = input[2] / alpha; + encode[1] = alpha; + + input += 3; + encode += 2; + } while ( encode < end_output ); +} + +static void stbir__simple_alpha_weight_4ch( float * decode_buffer, int width_times_channels ) +{ + float STBIR_STREAMOUT_PTR(*) decode = decode_buffer; + float const * end_decode = decode_buffer + width_times_channels; + + #ifdef STBIR_SIMD + { + decode += 2 * stbir__simdfX_float_count; + STBIR_NO_UNROLL_LOOP_START + while ( decode <= end_decode ) + { + stbir__simdfX d0,a0,d1,a1; + STBIR_NO_UNROLL(decode); + stbir__simdfX_load( d0, decode-2*stbir__simdfX_float_count ); + stbir__simdfX_load( d1, decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count ); + stbir__simdfX_aaa1( a0, d0, STBIR_onesX ); + stbir__simdfX_aaa1( a1, d1, STBIR_onesX ); + stbir__simdfX_mult( d0, d0, a0 ); + stbir__simdfX_mult( d1, d1, a1 ); + stbir__simdfX_store ( decode-2*stbir__simdfX_float_count, d0 ); + stbir__simdfX_store ( decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count, d1 ); + decode += 2 * stbir__simdfX_float_count; + } + decode -= 2 * stbir__simdfX_float_count; + + // few last pixels remnants + #ifdef STBIR_SIMD8 + STBIR_NO_UNROLL_LOOP_START + while ( decode < end_decode ) + #else + if ( decode < end_decode ) + #endif + { + stbir__simdf d,a; + stbir__simdf_load( d, decode ); + stbir__simdf_aaa1( a, d, STBIR__CONSTF(STBIR_ones) ); + stbir__simdf_mult( d, d, a ); + stbir__simdf_store ( decode, d ); + decode += 4; + } + } + + #else + + while( decode < end_decode ) + { + float alpha = decode[3]; + decode[0] *= alpha; + decode[1] *= alpha; + decode[2] *= alpha; + decode += 4; + } + + #endif +} + +static void stbir__simple_alpha_weight_2ch( float * decode_buffer, int width_times_channels ) +{ + float STBIR_STREAMOUT_PTR(*) decode = decode_buffer; + float const * end_decode = decode_buffer + width_times_channels; + + #ifdef STBIR_SIMD + decode += 2 * stbir__simdfX_float_count; + STBIR_NO_UNROLL_LOOP_START + while ( decode <= end_decode ) + { + stbir__simdfX d0,a0,d1,a1; + STBIR_NO_UNROLL(decode); + stbir__simdfX_load( d0, decode-2*stbir__simdfX_float_count ); + stbir__simdfX_load( d1, decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count ); + stbir__simdfX_a1a1( a0, d0, STBIR_onesX ); + stbir__simdfX_a1a1( a1, d1, STBIR_onesX ); + stbir__simdfX_mult( d0, d0, a0 ); + stbir__simdfX_mult( d1, d1, a1 ); + stbir__simdfX_store ( decode-2*stbir__simdfX_float_count, d0 ); + stbir__simdfX_store ( decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count, d1 ); + decode += 2 * stbir__simdfX_float_count; + } + decode -= 2 * stbir__simdfX_float_count; + #endif + + STBIR_SIMD_NO_UNROLL_LOOP_START + while( decode < end_decode ) + { + float alpha = decode[1]; + STBIR_SIMD_NO_UNROLL(decode); + decode[0] *= alpha; + decode += 2; + } +} + +static void stbir__simple_alpha_unweight_4ch( float * encode_buffer, int width_times_channels ) +{ + float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer; + float const * end_output = encode_buffer + width_times_channels; + + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float alpha = encode[3]; + +#ifdef STBIR_SIMD + stbir__simdf i,ia; + STBIR_SIMD_NO_UNROLL(encode); + if ( alpha >= stbir__small_float ) + { + stbir__simdf_load1frep4( ia, 1.0f / alpha ); + stbir__simdf_load( i, encode ); + stbir__simdf_mult( i, i, ia ); + stbir__simdf_store( encode, i ); + encode[3] = alpha; + } +#else + if ( alpha >= stbir__small_float ) + { + float ialpha = 1.0f / alpha; + encode[0] *= ialpha; + encode[1] *= ialpha; + encode[2] *= ialpha; + } +#endif + encode += 4; + } while ( encode < end_output ); +} + +static void stbir__simple_alpha_unweight_2ch( float * encode_buffer, int width_times_channels ) +{ + float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer; + float const * end_output = encode_buffer + width_times_channels; + + do { + float alpha = encode[1]; + if ( alpha >= stbir__small_float ) + encode[0] /= alpha; + encode += 2; + } while ( encode < end_output ); +} + + +// only used in RGB->BGR or BGR->RGB +static void stbir__simple_flip_3ch( float * decode_buffer, int width_times_channels ) +{ + float STBIR_STREAMOUT_PTR(*) decode = decode_buffer; + float const * end_decode = decode_buffer + width_times_channels; + +#ifdef STBIR_SIMD + #ifdef stbir__simdf_swiz2 // do we have two argument swizzles? + end_decode -= 12; + STBIR_NO_UNROLL_LOOP_START + while( decode <= end_decode ) + { + // on arm64 8 instructions, no overlapping stores + stbir__simdf a,b,c,na,nb; + STBIR_SIMD_NO_UNROLL(decode); + stbir__simdf_load( a, decode ); + stbir__simdf_load( b, decode+4 ); + stbir__simdf_load( c, decode+8 ); + + na = stbir__simdf_swiz2( a, b, 2, 1, 0, 5 ); + b = stbir__simdf_swiz2( a, b, 4, 3, 6, 7 ); + nb = stbir__simdf_swiz2( b, c, 0, 1, 4, 3 ); + c = stbir__simdf_swiz2( b, c, 2, 7, 6, 5 ); + + stbir__simdf_store( decode, na ); + stbir__simdf_store( decode+4, nb ); + stbir__simdf_store( decode+8, c ); + decode += 12; + } + end_decode += 12; + #else + end_decode -= 24; + STBIR_NO_UNROLL_LOOP_START + while( decode <= end_decode ) + { + // 26 instructions on x64 + stbir__simdf a,b,c,d,e,f,g; + float i21, i23; + STBIR_SIMD_NO_UNROLL(decode); + stbir__simdf_load( a, decode ); + stbir__simdf_load( b, decode+3 ); + stbir__simdf_load( c, decode+6 ); + stbir__simdf_load( d, decode+9 ); + stbir__simdf_load( e, decode+12 ); + stbir__simdf_load( f, decode+15 ); + stbir__simdf_load( g, decode+18 ); + + a = stbir__simdf_swiz( a, 2, 1, 0, 3 ); + b = stbir__simdf_swiz( b, 2, 1, 0, 3 ); + c = stbir__simdf_swiz( c, 2, 1, 0, 3 ); + d = stbir__simdf_swiz( d, 2, 1, 0, 3 ); + e = stbir__simdf_swiz( e, 2, 1, 0, 3 ); + f = stbir__simdf_swiz( f, 2, 1, 0, 3 ); + g = stbir__simdf_swiz( g, 2, 1, 0, 3 ); + + // stores overlap, need to be in order, + stbir__simdf_store( decode, a ); + i21 = decode[21]; + stbir__simdf_store( decode+3, b ); + i23 = decode[23]; + stbir__simdf_store( decode+6, c ); + stbir__simdf_store( decode+9, d ); + stbir__simdf_store( decode+12, e ); + stbir__simdf_store( decode+15, f ); + stbir__simdf_store( decode+18, g ); + decode[21] = i23; + decode[23] = i21; + decode += 24; + } + end_decode += 24; + #endif +#else + end_decode -= 12; + STBIR_NO_UNROLL_LOOP_START + while( decode <= end_decode ) + { + // 16 instructions + float t0,t1,t2,t3; + STBIR_NO_UNROLL(decode); + t0 = decode[0]; t1 = decode[3]; t2 = decode[6]; t3 = decode[9]; + decode[0] = decode[2]; decode[3] = decode[5]; decode[6] = decode[8]; decode[9] = decode[11]; + decode[2] = t0; decode[5] = t1; decode[8] = t2; decode[11] = t3; + decode += 12; + } + end_decode += 12; +#endif + + STBIR_NO_UNROLL_LOOP_START + while( decode < end_decode ) + { + float t = decode[0]; + STBIR_NO_UNROLL(decode); + decode[0] = decode[2]; + decode[2] = t; + decode += 3; + } +} + + + +static void stbir__decode_scanline(stbir__info const * stbir_info, int n, float * output_buffer STBIR_ONLY_PROFILE_GET_SPLIT_INFO ) +{ + int channels = stbir_info->channels; + int effective_channels = stbir_info->effective_channels; + int input_sample_in_bytes = stbir__type_size[stbir_info->input_type] * channels; + stbir_edge edge_horizontal = stbir_info->horizontal.edge; + stbir_edge edge_vertical = stbir_info->vertical.edge; + int row = stbir__edge_wrap(edge_vertical, n, stbir_info->vertical.scale_info.input_full_size); + const void* input_plane_data = ( (char *) stbir_info->input_data ) + (size_t)row * (size_t) stbir_info->input_stride_bytes; + stbir__span const * spans = stbir_info->scanline_extents.spans; + float* full_decode_buffer = output_buffer - stbir_info->scanline_extents.conservative.n0 * effective_channels; + + // if we are on edge_zero, and we get in here with an out of bounds n, then the calculate filters has failed + STBIR_ASSERT( !(edge_vertical == STBIR_EDGE_ZERO && (n < 0 || n >= stbir_info->vertical.scale_info.input_full_size)) ); + + do + { + float * decode_buffer; + void const * input_data; + float * end_decode; + int width_times_channels; + int width; + + if ( spans->n1 < spans->n0 ) + break; + + width = spans->n1 + 1 - spans->n0; + decode_buffer = full_decode_buffer + spans->n0 * effective_channels; + end_decode = full_decode_buffer + ( spans->n1 + 1 ) * effective_channels; + width_times_channels = width * channels; + + // read directly out of input plane by default + input_data = ( (char*)input_plane_data ) + spans->pixel_offset_for_input * input_sample_in_bytes; + + // if we have an input callback, call it to get the input data + if ( stbir_info->in_pixels_cb ) + { + // call the callback with a temp buffer (that they can choose to use or not). the temp is just right aligned memory in the decode_buffer itself + input_data = stbir_info->in_pixels_cb( ( (char*) end_decode ) - ( width * input_sample_in_bytes ), input_plane_data, width, spans->pixel_offset_for_input, row, stbir_info->user_data ); + } + + STBIR_PROFILE_START( decode ); + // convert the pixels info the float decode_buffer, (we index from end_decode, so that when channelsdecode_pixels( (float*)end_decode - width_times_channels, width_times_channels, input_data ); + STBIR_PROFILE_END( decode ); + + if (stbir_info->alpha_weight) + { + STBIR_PROFILE_START( alpha ); + stbir_info->alpha_weight( decode_buffer, width_times_channels ); + STBIR_PROFILE_END( alpha ); + } + + ++spans; + } while ( spans <= ( &stbir_info->scanline_extents.spans[1] ) ); + + // handle the edge_wrap filter (all other types are handled back out at the calculate_filter stage) + // basically the idea here is that if we have the whole scanline in memory, we don't redecode the + // wrapped edge pixels, and instead just memcpy them from the scanline into the edge positions + if ( ( edge_horizontal == STBIR_EDGE_WRAP ) && ( stbir_info->scanline_extents.edge_sizes[0] | stbir_info->scanline_extents.edge_sizes[1] ) ) + { + // this code only runs if we're in edge_wrap, and we're doing the entire scanline + int e, start_x[2]; + int input_full_size = stbir_info->horizontal.scale_info.input_full_size; + + start_x[0] = -stbir_info->scanline_extents.edge_sizes[0]; // left edge start x + start_x[1] = input_full_size; // right edge + + for( e = 0; e < 2 ; e++ ) + { + // do each margin + int margin = stbir_info->scanline_extents.edge_sizes[e]; + if ( margin ) + { + int x = start_x[e]; + float * marg = full_decode_buffer + x * effective_channels; + float const * src = full_decode_buffer + stbir__edge_wrap(edge_horizontal, x, input_full_size) * effective_channels; + STBIR_MEMCPY( marg, src, margin * effective_channels * sizeof(float) ); + } + } + } +} + + +//================= +// Do 1 channel horizontal routines + +#ifdef STBIR_SIMD + +#define stbir__1_coeff_only() \ + stbir__simdf tot,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1( c, hc ); \ + stbir__simdf_mult1_mem( tot, c, decode ); + +#define stbir__2_coeff_only() \ + stbir__simdf tot,c,d; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load2z( c, hc ); \ + stbir__simdf_load2( d, decode ); \ + stbir__simdf_mult( tot, c, d ); \ + stbir__simdf_0123to1230( c, tot ); \ + stbir__simdf_add1( tot, tot, c ); + +#define stbir__3_coeff_only() \ + stbir__simdf tot,c,t; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( c, hc ); \ + stbir__simdf_mult_mem( tot, c, decode ); \ + stbir__simdf_0123to1230( c, tot ); \ + stbir__simdf_0123to2301( t, tot ); \ + stbir__simdf_add1( tot, tot, c ); \ + stbir__simdf_add1( tot, tot, t ); + +#define stbir__store_output_tiny() \ + stbir__simdf_store1( output, tot ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 1; + +#define stbir__4_coeff_start() \ + stbir__simdf tot,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( c, hc ); \ + stbir__simdf_mult_mem( tot, c, decode ); \ + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( c, hc + (ofs) ); \ + stbir__simdf_madd_mem( tot, tot, c, decode+(ofs) ); + +#define stbir__1_coeff_remnant( ofs ) \ + { stbir__simdf d; \ + stbir__simdf_load1z( c, hc + (ofs) ); \ + stbir__simdf_load1( d, decode + (ofs) ); \ + stbir__simdf_madd( tot, tot, d, c ); } + +#define stbir__2_coeff_remnant( ofs ) \ + { stbir__simdf d; \ + stbir__simdf_load2z( c, hc+(ofs) ); \ + stbir__simdf_load2( d, decode+(ofs) ); \ + stbir__simdf_madd( tot, tot, d, c ); } + +#define stbir__3_coeff_setup() \ + stbir__simdf mask; \ + stbir__simdf_load( mask, STBIR_mask + 3 ); + +#define stbir__3_coeff_remnant( ofs ) \ + stbir__simdf_load( c, hc+(ofs) ); \ + stbir__simdf_and( c, c, mask ); \ + stbir__simdf_madd_mem( tot, tot, c, decode+(ofs) ); + +#define stbir__store_output() \ + stbir__simdf_0123to2301( c, tot ); \ + stbir__simdf_add( tot, tot, c ); \ + stbir__simdf_0123to1230( c, tot ); \ + stbir__simdf_add1( tot, tot, c ); \ + stbir__simdf_store1( output, tot ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 1; + +#else + +#define stbir__1_coeff_only() \ + float tot; \ + tot = decode[0]*hc[0]; + +#define stbir__2_coeff_only() \ + float tot; \ + tot = decode[0] * hc[0]; \ + tot += decode[1] * hc[1]; + +#define stbir__3_coeff_only() \ + float tot; \ + tot = decode[0] * hc[0]; \ + tot += decode[1] * hc[1]; \ + tot += decode[2] * hc[2]; + +#define stbir__store_output_tiny() \ + output[0] = tot; \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 1; + +#define stbir__4_coeff_start() \ + float tot0,tot1,tot2,tot3; \ + tot0 = decode[0] * hc[0]; \ + tot1 = decode[1] * hc[1]; \ + tot2 = decode[2] * hc[2]; \ + tot3 = decode[3] * hc[3]; + +#define stbir__4_coeff_continue_from_4( ofs ) \ + tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \ + tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \ + tot2 += decode[2+(ofs)] * hc[2+(ofs)]; \ + tot3 += decode[3+(ofs)] * hc[3+(ofs)]; + +#define stbir__1_coeff_remnant( ofs ) \ + tot0 += decode[0+(ofs)] * hc[0+(ofs)]; + +#define stbir__2_coeff_remnant( ofs ) \ + tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \ + tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \ + +#define stbir__3_coeff_remnant( ofs ) \ + tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \ + tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \ + tot2 += decode[2+(ofs)] * hc[2+(ofs)]; + +#define stbir__store_output() \ + output[0] = (tot0+tot2)+(tot1+tot3); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 1; + +#endif + +#define STBIR__horizontal_channels 1 +#define STB_IMAGE_RESIZE_DO_HORIZONTALS +#include STBIR__HEADER_FILENAME + + +//================= +// Do 2 channel horizontal routines + +#ifdef STBIR_SIMD + +#define stbir__1_coeff_only() \ + stbir__simdf tot,c,d; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1z( c, hc ); \ + stbir__simdf_0123to0011( c, c ); \ + stbir__simdf_load2( d, decode ); \ + stbir__simdf_mult( tot, d, c ); + +#define stbir__2_coeff_only() \ + stbir__simdf tot,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load2( c, hc ); \ + stbir__simdf_0123to0011( c, c ); \ + stbir__simdf_mult_mem( tot, c, decode ); + +#define stbir__3_coeff_only() \ + stbir__simdf tot,c,cs,d; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc ); \ + stbir__simdf_0123to0011( c, cs ); \ + stbir__simdf_mult_mem( tot, c, decode ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_load2z( d, decode+4 ); \ + stbir__simdf_madd( tot, tot, d, c ); + +#define stbir__store_output_tiny() \ + stbir__simdf_0123to2301( c, tot ); \ + stbir__simdf_add( tot, tot, c ); \ + stbir__simdf_store2( output, tot ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 2; + +#ifdef STBIR_SIMD8 + +#define stbir__4_coeff_start() \ + stbir__simdf8 tot0,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc ); \ + stbir__simdf8_0123to00112233( c, cs ); \ + stbir__simdf8_mult_mem( tot0, c, decode ); + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) ); \ + stbir__simdf8_0123to00112233( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); + +#define stbir__1_coeff_remnant( ofs ) \ + { stbir__simdf t,d; \ + stbir__simdf_load1z( t, hc + (ofs) ); \ + stbir__simdf_load2( d, decode + (ofs) * 2 ); \ + stbir__simdf_0123to0011( t, t ); \ + stbir__simdf_mult( t, t, d ); \ + stbir__simdf8_add4( tot0, tot0, t ); } + +#define stbir__2_coeff_remnant( ofs ) \ + { stbir__simdf t; \ + stbir__simdf_load2( t, hc + (ofs) ); \ + stbir__simdf_0123to0011( t, t ); \ + stbir__simdf_mult_mem( t, t, decode+(ofs)*2 ); \ + stbir__simdf8_add4( tot0, tot0, t ); } + +#define stbir__3_coeff_remnant( ofs ) \ + { stbir__simdf8 d; \ + stbir__simdf8_load4b( cs, hc + (ofs) ); \ + stbir__simdf8_0123to00112233( c, cs ); \ + stbir__simdf8_load6z( d, decode+(ofs)*2 ); \ + stbir__simdf8_madd( tot0, tot0, c, d ); } + +#define stbir__store_output() \ + { stbir__simdf t,d; \ + stbir__simdf8_add4halves( t, stbir__if_simdf8_cast_to_simdf4(tot0), tot0 ); \ + stbir__simdf_0123to2301( d, t ); \ + stbir__simdf_add( t, t, d ); \ + stbir__simdf_store2( output, t ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 2; } + +#else + +#define stbir__4_coeff_start() \ + stbir__simdf tot0,tot1,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc ); \ + stbir__simdf_0123to0011( c, cs ); \ + stbir__simdf_mult_mem( tot0, c, decode ); \ + stbir__simdf_0123to2233( c, cs ); \ + stbir__simdf_mult_mem( tot1, c, decode+4 ); + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc + (ofs) ); \ + stbir__simdf_0123to0011( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); \ + stbir__simdf_0123to2233( c, cs ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*2+4 ); + +#define stbir__1_coeff_remnant( ofs ) \ + { stbir__simdf d; \ + stbir__simdf_load1z( cs, hc + (ofs) ); \ + stbir__simdf_0123to0011( c, cs ); \ + stbir__simdf_load2( d, decode + (ofs) * 2 ); \ + stbir__simdf_madd( tot0, tot0, d, c ); } + +#define stbir__2_coeff_remnant( ofs ) \ + stbir__simdf_load2( cs, hc + (ofs) ); \ + stbir__simdf_0123to0011( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); + +#define stbir__3_coeff_remnant( ofs ) \ + { stbir__simdf d; \ + stbir__simdf_load( cs, hc + (ofs) ); \ + stbir__simdf_0123to0011( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_load2z( d, decode + (ofs) * 2 + 4 ); \ + stbir__simdf_madd( tot1, tot1, d, c ); } + +#define stbir__store_output() \ + stbir__simdf_add( tot0, tot0, tot1 ); \ + stbir__simdf_0123to2301( c, tot0 ); \ + stbir__simdf_add( tot0, tot0, c ); \ + stbir__simdf_store2( output, tot0 ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 2; + +#endif + +#else + +#define stbir__1_coeff_only() \ + float tota,totb,c; \ + c = hc[0]; \ + tota = decode[0]*c; \ + totb = decode[1]*c; + +#define stbir__2_coeff_only() \ + float tota,totb,c; \ + c = hc[0]; \ + tota = decode[0]*c; \ + totb = decode[1]*c; \ + c = hc[1]; \ + tota += decode[2]*c; \ + totb += decode[3]*c; + +// this weird order of add matches the simd +#define stbir__3_coeff_only() \ + float tota,totb,c; \ + c = hc[0]; \ + tota = decode[0]*c; \ + totb = decode[1]*c; \ + c = hc[2]; \ + tota += decode[4]*c; \ + totb += decode[5]*c; \ + c = hc[1]; \ + tota += decode[2]*c; \ + totb += decode[3]*c; + +#define stbir__store_output_tiny() \ + output[0] = tota; \ + output[1] = totb; \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 2; + +#define stbir__4_coeff_start() \ + float tota0,tota1,tota2,tota3,totb0,totb1,totb2,totb3,c; \ + c = hc[0]; \ + tota0 = decode[0]*c; \ + totb0 = decode[1]*c; \ + c = hc[1]; \ + tota1 = decode[2]*c; \ + totb1 = decode[3]*c; \ + c = hc[2]; \ + tota2 = decode[4]*c; \ + totb2 = decode[5]*c; \ + c = hc[3]; \ + tota3 = decode[6]*c; \ + totb3 = decode[7]*c; + +#define stbir__4_coeff_continue_from_4( ofs ) \ + c = hc[0+(ofs)]; \ + tota0 += decode[0+(ofs)*2]*c; \ + totb0 += decode[1+(ofs)*2]*c; \ + c = hc[1+(ofs)]; \ + tota1 += decode[2+(ofs)*2]*c; \ + totb1 += decode[3+(ofs)*2]*c; \ + c = hc[2+(ofs)]; \ + tota2 += decode[4+(ofs)*2]*c; \ + totb2 += decode[5+(ofs)*2]*c; \ + c = hc[3+(ofs)]; \ + tota3 += decode[6+(ofs)*2]*c; \ + totb3 += decode[7+(ofs)*2]*c; + +#define stbir__1_coeff_remnant( ofs ) \ + c = hc[0+(ofs)]; \ + tota0 += decode[0+(ofs)*2] * c; \ + totb0 += decode[1+(ofs)*2] * c; + +#define stbir__2_coeff_remnant( ofs ) \ + c = hc[0+(ofs)]; \ + tota0 += decode[0+(ofs)*2] * c; \ + totb0 += decode[1+(ofs)*2] * c; \ + c = hc[1+(ofs)]; \ + tota1 += decode[2+(ofs)*2] * c; \ + totb1 += decode[3+(ofs)*2] * c; + +#define stbir__3_coeff_remnant( ofs ) \ + c = hc[0+(ofs)]; \ + tota0 += decode[0+(ofs)*2] * c; \ + totb0 += decode[1+(ofs)*2] * c; \ + c = hc[1+(ofs)]; \ + tota1 += decode[2+(ofs)*2] * c; \ + totb1 += decode[3+(ofs)*2] * c; \ + c = hc[2+(ofs)]; \ + tota2 += decode[4+(ofs)*2] * c; \ + totb2 += decode[5+(ofs)*2] * c; + +#define stbir__store_output() \ + output[0] = (tota0+tota2)+(tota1+tota3); \ + output[1] = (totb0+totb2)+(totb1+totb3); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 2; + +#endif + +#define STBIR__horizontal_channels 2 +#define STB_IMAGE_RESIZE_DO_HORIZONTALS +#include STBIR__HEADER_FILENAME + + +//================= +// Do 3 channel horizontal routines + +#ifdef STBIR_SIMD + +#define stbir__1_coeff_only() \ + stbir__simdf tot,c,d; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1z( c, hc ); \ + stbir__simdf_0123to0001( c, c ); \ + stbir__simdf_load( d, decode ); \ + stbir__simdf_mult( tot, d, c ); + +#define stbir__2_coeff_only() \ + stbir__simdf tot,c,cs,d; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load2( cs, hc ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_load( d, decode ); \ + stbir__simdf_mult( tot, d, c ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_load( d, decode+3 ); \ + stbir__simdf_madd( tot, tot, d, c ); + +#define stbir__3_coeff_only() \ + stbir__simdf tot,c,d,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_load( d, decode ); \ + stbir__simdf_mult( tot, d, c ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_load( d, decode+3 ); \ + stbir__simdf_madd( tot, tot, d, c ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_load( d, decode+6 ); \ + stbir__simdf_madd( tot, tot, d, c ); + +#define stbir__store_output_tiny() \ + stbir__simdf_store2( output, tot ); \ + stbir__simdf_0123to2301( tot, tot ); \ + stbir__simdf_store1( output+2, tot ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 3; + +#ifdef STBIR_SIMD8 + +// we're loading from the XXXYYY decode by -1 to get the XXXYYY into different halves of the AVX reg fyi +#define stbir__4_coeff_start() \ + stbir__simdf8 tot0,tot1,c,cs; stbir__simdf t; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc ); \ + stbir__simdf8_0123to00001111( c, cs ); \ + stbir__simdf8_mult_mem( tot0, c, decode - 1 ); \ + stbir__simdf8_0123to22223333( c, cs ); \ + stbir__simdf8_mult_mem( tot1, c, decode+6 - 1 ); + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) ); \ + stbir__simdf8_0123to00001111( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 ); \ + stbir__simdf8_0123to22223333( c, cs ); \ + stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*3 + 6 - 1 ); + +#define stbir__1_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1rep4( t, hc + (ofs) ); \ + stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*3 - 1 ); + +#define stbir__2_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) - 2 ); \ + stbir__simdf8_0123to22223333( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 ); + + #define stbir__3_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) ); \ + stbir__simdf8_0123to00001111( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 ); \ + stbir__simdf8_0123to2222( t, cs ); \ + stbir__simdf8_madd_mem4( tot1, tot1, t, decode+(ofs)*3 + 6 - 1 ); + +#define stbir__store_output() \ + stbir__simdf8_add( tot0, tot0, tot1 ); \ + stbir__simdf_0123to1230( t, stbir__if_simdf8_cast_to_simdf4( tot0 ) ); \ + stbir__simdf8_add4halves( t, t, tot0 ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 3; \ + if ( output < output_end ) \ + { \ + stbir__simdf_store( output-3, t ); \ + continue; \ + } \ + { stbir__simdf tt; stbir__simdf_0123to2301( tt, t ); \ + stbir__simdf_store2( output-3, t ); \ + stbir__simdf_store1( output+2-3, tt ); } \ + break; + + +#else + +#define stbir__4_coeff_start() \ + stbir__simdf tot0,tot1,tot2,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc ); \ + stbir__simdf_0123to0001( c, cs ); \ + stbir__simdf_mult_mem( tot0, c, decode ); \ + stbir__simdf_0123to1122( c, cs ); \ + stbir__simdf_mult_mem( tot1, c, decode+4 ); \ + stbir__simdf_0123to2333( c, cs ); \ + stbir__simdf_mult_mem( tot2, c, decode+8 ); + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc + (ofs) ); \ + stbir__simdf_0123to0001( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \ + stbir__simdf_0123to1122( c, cs ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*3+4 ); \ + stbir__simdf_0123to2333( c, cs ); \ + stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*3+8 ); + +#define stbir__1_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1z( c, hc + (ofs) ); \ + stbir__simdf_0123to0001( c, c ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); + +#define stbir__2_coeff_remnant( ofs ) \ + { stbir__simdf d; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load2z( cs, hc + (ofs) ); \ + stbir__simdf_0123to0001( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \ + stbir__simdf_0123to1122( c, cs ); \ + stbir__simdf_load2z( d, decode+(ofs)*3+4 ); \ + stbir__simdf_madd( tot1, tot1, c, d ); } + +#define stbir__3_coeff_remnant( ofs ) \ + { stbir__simdf d; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc + (ofs) ); \ + stbir__simdf_0123to0001( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \ + stbir__simdf_0123to1122( c, cs ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*3+4 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_load1z( d, decode+(ofs)*3+8 ); \ + stbir__simdf_madd( tot2, tot2, c, d ); } + +#define stbir__store_output() \ + stbir__simdf_0123ABCDto3ABx( c, tot0, tot1 ); \ + stbir__simdf_0123ABCDto23Ax( cs, tot1, tot2 ); \ + stbir__simdf_0123to1230( tot2, tot2 ); \ + stbir__simdf_add( tot0, tot0, cs ); \ + stbir__simdf_add( c, c, tot2 ); \ + stbir__simdf_add( tot0, tot0, c ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 3; \ + if ( output < output_end ) \ + { \ + stbir__simdf_store( output-3, tot0 ); \ + continue; \ + } \ + stbir__simdf_0123to2301( tot1, tot0 ); \ + stbir__simdf_store2( output-3, tot0 ); \ + stbir__simdf_store1( output+2-3, tot1 ); \ + break; + +#endif + +#else + +#define stbir__1_coeff_only() \ + float tot0, tot1, tot2, c; \ + c = hc[0]; \ + tot0 = decode[0]*c; \ + tot1 = decode[1]*c; \ + tot2 = decode[2]*c; + +#define stbir__2_coeff_only() \ + float tot0, tot1, tot2, c; \ + c = hc[0]; \ + tot0 = decode[0]*c; \ + tot1 = decode[1]*c; \ + tot2 = decode[2]*c; \ + c = hc[1]; \ + tot0 += decode[3]*c; \ + tot1 += decode[4]*c; \ + tot2 += decode[5]*c; + +#define stbir__3_coeff_only() \ + float tot0, tot1, tot2, c; \ + c = hc[0]; \ + tot0 = decode[0]*c; \ + tot1 = decode[1]*c; \ + tot2 = decode[2]*c; \ + c = hc[1]; \ + tot0 += decode[3]*c; \ + tot1 += decode[4]*c; \ + tot2 += decode[5]*c; \ + c = hc[2]; \ + tot0 += decode[6]*c; \ + tot1 += decode[7]*c; \ + tot2 += decode[8]*c; + +#define stbir__store_output_tiny() \ + output[0] = tot0; \ + output[1] = tot1; \ + output[2] = tot2; \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 3; + +#define stbir__4_coeff_start() \ + float tota0,tota1,tota2,totb0,totb1,totb2,totc0,totc1,totc2,totd0,totd1,totd2,c; \ + c = hc[0]; \ + tota0 = decode[0]*c; \ + tota1 = decode[1]*c; \ + tota2 = decode[2]*c; \ + c = hc[1]; \ + totb0 = decode[3]*c; \ + totb1 = decode[4]*c; \ + totb2 = decode[5]*c; \ + c = hc[2]; \ + totc0 = decode[6]*c; \ + totc1 = decode[7]*c; \ + totc2 = decode[8]*c; \ + c = hc[3]; \ + totd0 = decode[9]*c; \ + totd1 = decode[10]*c; \ + totd2 = decode[11]*c; + +#define stbir__4_coeff_continue_from_4( ofs ) \ + c = hc[0+(ofs)]; \ + tota0 += decode[0+(ofs)*3]*c; \ + tota1 += decode[1+(ofs)*3]*c; \ + tota2 += decode[2+(ofs)*3]*c; \ + c = hc[1+(ofs)]; \ + totb0 += decode[3+(ofs)*3]*c; \ + totb1 += decode[4+(ofs)*3]*c; \ + totb2 += decode[5+(ofs)*3]*c; \ + c = hc[2+(ofs)]; \ + totc0 += decode[6+(ofs)*3]*c; \ + totc1 += decode[7+(ofs)*3]*c; \ + totc2 += decode[8+(ofs)*3]*c; \ + c = hc[3+(ofs)]; \ + totd0 += decode[9+(ofs)*3]*c; \ + totd1 += decode[10+(ofs)*3]*c; \ + totd2 += decode[11+(ofs)*3]*c; + +#define stbir__1_coeff_remnant( ofs ) \ + c = hc[0+(ofs)]; \ + tota0 += decode[0+(ofs)*3]*c; \ + tota1 += decode[1+(ofs)*3]*c; \ + tota2 += decode[2+(ofs)*3]*c; + +#define stbir__2_coeff_remnant( ofs ) \ + c = hc[0+(ofs)]; \ + tota0 += decode[0+(ofs)*3]*c; \ + tota1 += decode[1+(ofs)*3]*c; \ + tota2 += decode[2+(ofs)*3]*c; \ + c = hc[1+(ofs)]; \ + totb0 += decode[3+(ofs)*3]*c; \ + totb1 += decode[4+(ofs)*3]*c; \ + totb2 += decode[5+(ofs)*3]*c; \ + +#define stbir__3_coeff_remnant( ofs ) \ + c = hc[0+(ofs)]; \ + tota0 += decode[0+(ofs)*3]*c; \ + tota1 += decode[1+(ofs)*3]*c; \ + tota2 += decode[2+(ofs)*3]*c; \ + c = hc[1+(ofs)]; \ + totb0 += decode[3+(ofs)*3]*c; \ + totb1 += decode[4+(ofs)*3]*c; \ + totb2 += decode[5+(ofs)*3]*c; \ + c = hc[2+(ofs)]; \ + totc0 += decode[6+(ofs)*3]*c; \ + totc1 += decode[7+(ofs)*3]*c; \ + totc2 += decode[8+(ofs)*3]*c; + +#define stbir__store_output() \ + output[0] = (tota0+totc0)+(totb0+totd0); \ + output[1] = (tota1+totc1)+(totb1+totd1); \ + output[2] = (tota2+totc2)+(totb2+totd2); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 3; + +#endif + +#define STBIR__horizontal_channels 3 +#define STB_IMAGE_RESIZE_DO_HORIZONTALS +#include STBIR__HEADER_FILENAME + +//================= +// Do 4 channel horizontal routines + +#ifdef STBIR_SIMD + +#define stbir__1_coeff_only() \ + stbir__simdf tot,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1( c, hc ); \ + stbir__simdf_0123to0000( c, c ); \ + stbir__simdf_mult_mem( tot, c, decode ); + +#define stbir__2_coeff_only() \ + stbir__simdf tot,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load2( cs, hc ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_mult_mem( tot, c, decode ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot, tot, c, decode+4 ); + +#define stbir__3_coeff_only() \ + stbir__simdf tot,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_mult_mem( tot, c, decode ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot, tot, c, decode+4 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_madd_mem( tot, tot, c, decode+8 ); + +#define stbir__store_output_tiny() \ + stbir__simdf_store( output, tot ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 4; + +#ifdef STBIR_SIMD8 + +#define stbir__4_coeff_start() \ + stbir__simdf8 tot0,c,cs; stbir__simdf t; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc ); \ + stbir__simdf8_0123to00001111( c, cs ); \ + stbir__simdf8_mult_mem( tot0, c, decode ); \ + stbir__simdf8_0123to22223333( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+8 ); + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) ); \ + stbir__simdf8_0123to00001111( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ + stbir__simdf8_0123to22223333( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 ); + +#define stbir__1_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1rep4( t, hc + (ofs) ); \ + stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*4 ); + +#define stbir__2_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) - 2 ); \ + stbir__simdf8_0123to22223333( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); + + #define stbir__3_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) ); \ + stbir__simdf8_0123to00001111( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ + stbir__simdf8_0123to2222( t, cs ); \ + stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*4+8 ); + +#define stbir__store_output() \ + stbir__simdf8_add4halves( t, stbir__if_simdf8_cast_to_simdf4(tot0), tot0 ); \ + stbir__simdf_store( output, t ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 4; + +#else + +#define stbir__4_coeff_start() \ + stbir__simdf tot0,tot1,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_mult_mem( tot0, c, decode ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_mult_mem( tot1, c, decode+4 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+8 ); \ + stbir__simdf_0123to3333( c, cs ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+12 ); + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc + (ofs) ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 ); \ + stbir__simdf_0123to3333( c, cs ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+12 ); + +#define stbir__1_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1( c, hc + (ofs) ); \ + stbir__simdf_0123to0000( c, c ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); + +#define stbir__2_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load2( cs, hc + (ofs) ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 ); + +#define stbir__3_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc + (ofs) ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 ); + +#define stbir__store_output() \ + stbir__simdf_add( tot0, tot0, tot1 ); \ + stbir__simdf_store( output, tot0 ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 4; + +#endif + +#else + +#define stbir__1_coeff_only() \ + float p0,p1,p2,p3,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0]; \ + p0 = decode[0] * c; \ + p1 = decode[1] * c; \ + p2 = decode[2] * c; \ + p3 = decode[3] * c; + +#define stbir__2_coeff_only() \ + float p0,p1,p2,p3,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0]; \ + p0 = decode[0] * c; \ + p1 = decode[1] * c; \ + p2 = decode[2] * c; \ + p3 = decode[3] * c; \ + c = hc[1]; \ + p0 += decode[4] * c; \ + p1 += decode[5] * c; \ + p2 += decode[6] * c; \ + p3 += decode[7] * c; + +#define stbir__3_coeff_only() \ + float p0,p1,p2,p3,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0]; \ + p0 = decode[0] * c; \ + p1 = decode[1] * c; \ + p2 = decode[2] * c; \ + p3 = decode[3] * c; \ + c = hc[1]; \ + p0 += decode[4] * c; \ + p1 += decode[5] * c; \ + p2 += decode[6] * c; \ + p3 += decode[7] * c; \ + c = hc[2]; \ + p0 += decode[8] * c; \ + p1 += decode[9] * c; \ + p2 += decode[10] * c; \ + p3 += decode[11] * c; + +#define stbir__store_output_tiny() \ + output[0] = p0; \ + output[1] = p1; \ + output[2] = p2; \ + output[3] = p3; \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 4; + +#define stbir__4_coeff_start() \ + float x0,x1,x2,x3,y0,y1,y2,y3,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0]; \ + x0 = decode[0] * c; \ + x1 = decode[1] * c; \ + x2 = decode[2] * c; \ + x3 = decode[3] * c; \ + c = hc[1]; \ + y0 = decode[4] * c; \ + y1 = decode[5] * c; \ + y2 = decode[6] * c; \ + y3 = decode[7] * c; \ + c = hc[2]; \ + x0 += decode[8] * c; \ + x1 += decode[9] * c; \ + x2 += decode[10] * c; \ + x3 += decode[11] * c; \ + c = hc[3]; \ + y0 += decode[12] * c; \ + y1 += decode[13] * c; \ + y2 += decode[14] * c; \ + y3 += decode[15] * c; + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0+(ofs)]; \ + x0 += decode[0+(ofs)*4] * c; \ + x1 += decode[1+(ofs)*4] * c; \ + x2 += decode[2+(ofs)*4] * c; \ + x3 += decode[3+(ofs)*4] * c; \ + c = hc[1+(ofs)]; \ + y0 += decode[4+(ofs)*4] * c; \ + y1 += decode[5+(ofs)*4] * c; \ + y2 += decode[6+(ofs)*4] * c; \ + y3 += decode[7+(ofs)*4] * c; \ + c = hc[2+(ofs)]; \ + x0 += decode[8+(ofs)*4] * c; \ + x1 += decode[9+(ofs)*4] * c; \ + x2 += decode[10+(ofs)*4] * c; \ + x3 += decode[11+(ofs)*4] * c; \ + c = hc[3+(ofs)]; \ + y0 += decode[12+(ofs)*4] * c; \ + y1 += decode[13+(ofs)*4] * c; \ + y2 += decode[14+(ofs)*4] * c; \ + y3 += decode[15+(ofs)*4] * c; + +#define stbir__1_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0+(ofs)]; \ + x0 += decode[0+(ofs)*4] * c; \ + x1 += decode[1+(ofs)*4] * c; \ + x2 += decode[2+(ofs)*4] * c; \ + x3 += decode[3+(ofs)*4] * c; + +#define stbir__2_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0+(ofs)]; \ + x0 += decode[0+(ofs)*4] * c; \ + x1 += decode[1+(ofs)*4] * c; \ + x2 += decode[2+(ofs)*4] * c; \ + x3 += decode[3+(ofs)*4] * c; \ + c = hc[1+(ofs)]; \ + y0 += decode[4+(ofs)*4] * c; \ + y1 += decode[5+(ofs)*4] * c; \ + y2 += decode[6+(ofs)*4] * c; \ + y3 += decode[7+(ofs)*4] * c; + +#define stbir__3_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0+(ofs)]; \ + x0 += decode[0+(ofs)*4] * c; \ + x1 += decode[1+(ofs)*4] * c; \ + x2 += decode[2+(ofs)*4] * c; \ + x3 += decode[3+(ofs)*4] * c; \ + c = hc[1+(ofs)]; \ + y0 += decode[4+(ofs)*4] * c; \ + y1 += decode[5+(ofs)*4] * c; \ + y2 += decode[6+(ofs)*4] * c; \ + y3 += decode[7+(ofs)*4] * c; \ + c = hc[2+(ofs)]; \ + x0 += decode[8+(ofs)*4] * c; \ + x1 += decode[9+(ofs)*4] * c; \ + x2 += decode[10+(ofs)*4] * c; \ + x3 += decode[11+(ofs)*4] * c; + +#define stbir__store_output() \ + output[0] = x0 + y0; \ + output[1] = x1 + y1; \ + output[2] = x2 + y2; \ + output[3] = x3 + y3; \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 4; + +#endif + +#define STBIR__horizontal_channels 4 +#define STB_IMAGE_RESIZE_DO_HORIZONTALS +#include STBIR__HEADER_FILENAME + + + +//================= +// Do 7 channel horizontal routines + +#ifdef STBIR_SIMD + +#define stbir__1_coeff_only() \ + stbir__simdf tot0,tot1,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1( c, hc ); \ + stbir__simdf_0123to0000( c, c ); \ + stbir__simdf_mult_mem( tot0, c, decode ); \ + stbir__simdf_mult_mem( tot1, c, decode+3 ); + +#define stbir__2_coeff_only() \ + stbir__simdf tot0,tot1,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load2( cs, hc ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_mult_mem( tot0, c, decode ); \ + stbir__simdf_mult_mem( tot1, c, decode+3 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+7 ); \ + stbir__simdf_madd_mem( tot1, tot1, c,decode+10 ); + +#define stbir__3_coeff_only() \ + stbir__simdf tot0,tot1,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_mult_mem( tot0, c, decode ); \ + stbir__simdf_mult_mem( tot1, c, decode+3 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+7 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+10 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+14 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+17 ); + +#define stbir__store_output_tiny() \ + stbir__simdf_store( output+3, tot1 ); \ + stbir__simdf_store( output, tot0 ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 7; + +#ifdef STBIR_SIMD8 + +#define stbir__4_coeff_start() \ + stbir__simdf8 tot0,tot1,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc ); \ + stbir__simdf8_0123to00000000( c, cs ); \ + stbir__simdf8_mult_mem( tot0, c, decode ); \ + stbir__simdf8_0123to11111111( c, cs ); \ + stbir__simdf8_mult_mem( tot1, c, decode+7 ); \ + stbir__simdf8_0123to22222222( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+14 ); \ + stbir__simdf8_0123to33333333( c, cs ); \ + stbir__simdf8_madd_mem( tot1, tot1, c, decode+21 ); + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) ); \ + stbir__simdf8_0123to00000000( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ + stbir__simdf8_0123to11111111( c, cs ); \ + stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 ); \ + stbir__simdf8_0123to22222222( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \ + stbir__simdf8_0123to33333333( c, cs ); \ + stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+21 ); + +#define stbir__1_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load1b( c, hc + (ofs) ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); + +#define stbir__2_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load1b( c, hc + (ofs) ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ + stbir__simdf8_load1b( c, hc + (ofs)+1 ); \ + stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 ); + +#define stbir__3_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf8_load4b( cs, hc + (ofs) ); \ + stbir__simdf8_0123to00000000( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ + stbir__simdf8_0123to11111111( c, cs ); \ + stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 ); \ + stbir__simdf8_0123to22222222( c, cs ); \ + stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); + +#define stbir__store_output() \ + stbir__simdf8_add( tot0, tot0, tot1 ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 7; \ + if ( output < output_end ) \ + { \ + stbir__simdf8_store( output-7, tot0 ); \ + continue; \ + } \ + stbir__simdf_store( output-7+3, stbir__simdf_swiz(stbir__simdf8_gettop4(tot0),0,0,1,2) ); \ + stbir__simdf_store( output-7, stbir__if_simdf8_cast_to_simdf4(tot0) ); \ + break; + +#else + +#define stbir__4_coeff_start() \ + stbir__simdf tot0,tot1,tot2,tot3,c,cs; \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_mult_mem( tot0, c, decode ); \ + stbir__simdf_mult_mem( tot1, c, decode+3 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_mult_mem( tot2, c, decode+7 ); \ + stbir__simdf_mult_mem( tot3, c, decode+10 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+14 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+17 ); \ + stbir__simdf_0123to3333( c, cs ); \ + stbir__simdf_madd_mem( tot2, tot2, c, decode+21 ); \ + stbir__simdf_madd_mem( tot3, tot3, c, decode+24 ); + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc + (ofs) ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \ + stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+17 ); \ + stbir__simdf_0123to3333( c, cs ); \ + stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+21 ); \ + stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+24 ); + +#define stbir__1_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load1( c, hc + (ofs) ); \ + stbir__simdf_0123to0000( c, c ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \ + +#define stbir__2_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load2( cs, hc + (ofs) ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \ + stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 ); + +#define stbir__3_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + stbir__simdf_load( cs, hc + (ofs) ); \ + stbir__simdf_0123to0000( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \ + stbir__simdf_0123to1111( c, cs ); \ + stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \ + stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 ); \ + stbir__simdf_0123to2222( c, cs ); \ + stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \ + stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+17 ); + +#define stbir__store_output() \ + stbir__simdf_add( tot0, tot0, tot2 ); \ + stbir__simdf_add( tot1, tot1, tot3 ); \ + stbir__simdf_store( output+3, tot1 ); \ + stbir__simdf_store( output, tot0 ); \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 7; + +#endif + +#else + +#define stbir__1_coeff_only() \ + float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \ + c = hc[0]; \ + tot0 = decode[0]*c; \ + tot1 = decode[1]*c; \ + tot2 = decode[2]*c; \ + tot3 = decode[3]*c; \ + tot4 = decode[4]*c; \ + tot5 = decode[5]*c; \ + tot6 = decode[6]*c; + +#define stbir__2_coeff_only() \ + float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \ + c = hc[0]; \ + tot0 = decode[0]*c; \ + tot1 = decode[1]*c; \ + tot2 = decode[2]*c; \ + tot3 = decode[3]*c; \ + tot4 = decode[4]*c; \ + tot5 = decode[5]*c; \ + tot6 = decode[6]*c; \ + c = hc[1]; \ + tot0 += decode[7]*c; \ + tot1 += decode[8]*c; \ + tot2 += decode[9]*c; \ + tot3 += decode[10]*c; \ + tot4 += decode[11]*c; \ + tot5 += decode[12]*c; \ + tot6 += decode[13]*c; \ + +#define stbir__3_coeff_only() \ + float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \ + c = hc[0]; \ + tot0 = decode[0]*c; \ + tot1 = decode[1]*c; \ + tot2 = decode[2]*c; \ + tot3 = decode[3]*c; \ + tot4 = decode[4]*c; \ + tot5 = decode[5]*c; \ + tot6 = decode[6]*c; \ + c = hc[1]; \ + tot0 += decode[7]*c; \ + tot1 += decode[8]*c; \ + tot2 += decode[9]*c; \ + tot3 += decode[10]*c; \ + tot4 += decode[11]*c; \ + tot5 += decode[12]*c; \ + tot6 += decode[13]*c; \ + c = hc[2]; \ + tot0 += decode[14]*c; \ + tot1 += decode[15]*c; \ + tot2 += decode[16]*c; \ + tot3 += decode[17]*c; \ + tot4 += decode[18]*c; \ + tot5 += decode[19]*c; \ + tot6 += decode[20]*c; \ + +#define stbir__store_output_tiny() \ + output[0] = tot0; \ + output[1] = tot1; \ + output[2] = tot2; \ + output[3] = tot3; \ + output[4] = tot4; \ + output[5] = tot5; \ + output[6] = tot6; \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 7; + +#define stbir__4_coeff_start() \ + float x0,x1,x2,x3,x4,x5,x6,y0,y1,y2,y3,y4,y5,y6,c; \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0]; \ + x0 = decode[0] * c; \ + x1 = decode[1] * c; \ + x2 = decode[2] * c; \ + x3 = decode[3] * c; \ + x4 = decode[4] * c; \ + x5 = decode[5] * c; \ + x6 = decode[6] * c; \ + c = hc[1]; \ + y0 = decode[7] * c; \ + y1 = decode[8] * c; \ + y2 = decode[9] * c; \ + y3 = decode[10] * c; \ + y4 = decode[11] * c; \ + y5 = decode[12] * c; \ + y6 = decode[13] * c; \ + c = hc[2]; \ + x0 += decode[14] * c; \ + x1 += decode[15] * c; \ + x2 += decode[16] * c; \ + x3 += decode[17] * c; \ + x4 += decode[18] * c; \ + x5 += decode[19] * c; \ + x6 += decode[20] * c; \ + c = hc[3]; \ + y0 += decode[21] * c; \ + y1 += decode[22] * c; \ + y2 += decode[23] * c; \ + y3 += decode[24] * c; \ + y4 += decode[25] * c; \ + y5 += decode[26] * c; \ + y6 += decode[27] * c; + +#define stbir__4_coeff_continue_from_4( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0+(ofs)]; \ + x0 += decode[0+(ofs)*7] * c; \ + x1 += decode[1+(ofs)*7] * c; \ + x2 += decode[2+(ofs)*7] * c; \ + x3 += decode[3+(ofs)*7] * c; \ + x4 += decode[4+(ofs)*7] * c; \ + x5 += decode[5+(ofs)*7] * c; \ + x6 += decode[6+(ofs)*7] * c; \ + c = hc[1+(ofs)]; \ + y0 += decode[7+(ofs)*7] * c; \ + y1 += decode[8+(ofs)*7] * c; \ + y2 += decode[9+(ofs)*7] * c; \ + y3 += decode[10+(ofs)*7] * c; \ + y4 += decode[11+(ofs)*7] * c; \ + y5 += decode[12+(ofs)*7] * c; \ + y6 += decode[13+(ofs)*7] * c; \ + c = hc[2+(ofs)]; \ + x0 += decode[14+(ofs)*7] * c; \ + x1 += decode[15+(ofs)*7] * c; \ + x2 += decode[16+(ofs)*7] * c; \ + x3 += decode[17+(ofs)*7] * c; \ + x4 += decode[18+(ofs)*7] * c; \ + x5 += decode[19+(ofs)*7] * c; \ + x6 += decode[20+(ofs)*7] * c; \ + c = hc[3+(ofs)]; \ + y0 += decode[21+(ofs)*7] * c; \ + y1 += decode[22+(ofs)*7] * c; \ + y2 += decode[23+(ofs)*7] * c; \ + y3 += decode[24+(ofs)*7] * c; \ + y4 += decode[25+(ofs)*7] * c; \ + y5 += decode[26+(ofs)*7] * c; \ + y6 += decode[27+(ofs)*7] * c; + +#define stbir__1_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0+(ofs)]; \ + x0 += decode[0+(ofs)*7] * c; \ + x1 += decode[1+(ofs)*7] * c; \ + x2 += decode[2+(ofs)*7] * c; \ + x3 += decode[3+(ofs)*7] * c; \ + x4 += decode[4+(ofs)*7] * c; \ + x5 += decode[5+(ofs)*7] * c; \ + x6 += decode[6+(ofs)*7] * c; \ + +#define stbir__2_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0+(ofs)]; \ + x0 += decode[0+(ofs)*7] * c; \ + x1 += decode[1+(ofs)*7] * c; \ + x2 += decode[2+(ofs)*7] * c; \ + x3 += decode[3+(ofs)*7] * c; \ + x4 += decode[4+(ofs)*7] * c; \ + x5 += decode[5+(ofs)*7] * c; \ + x6 += decode[6+(ofs)*7] * c; \ + c = hc[1+(ofs)]; \ + y0 += decode[7+(ofs)*7] * c; \ + y1 += decode[8+(ofs)*7] * c; \ + y2 += decode[9+(ofs)*7] * c; \ + y3 += decode[10+(ofs)*7] * c; \ + y4 += decode[11+(ofs)*7] * c; \ + y5 += decode[12+(ofs)*7] * c; \ + y6 += decode[13+(ofs)*7] * c; \ + +#define stbir__3_coeff_remnant( ofs ) \ + STBIR_SIMD_NO_UNROLL(decode); \ + c = hc[0+(ofs)]; \ + x0 += decode[0+(ofs)*7] * c; \ + x1 += decode[1+(ofs)*7] * c; \ + x2 += decode[2+(ofs)*7] * c; \ + x3 += decode[3+(ofs)*7] * c; \ + x4 += decode[4+(ofs)*7] * c; \ + x5 += decode[5+(ofs)*7] * c; \ + x6 += decode[6+(ofs)*7] * c; \ + c = hc[1+(ofs)]; \ + y0 += decode[7+(ofs)*7] * c; \ + y1 += decode[8+(ofs)*7] * c; \ + y2 += decode[9+(ofs)*7] * c; \ + y3 += decode[10+(ofs)*7] * c; \ + y4 += decode[11+(ofs)*7] * c; \ + y5 += decode[12+(ofs)*7] * c; \ + y6 += decode[13+(ofs)*7] * c; \ + c = hc[2+(ofs)]; \ + x0 += decode[14+(ofs)*7] * c; \ + x1 += decode[15+(ofs)*7] * c; \ + x2 += decode[16+(ofs)*7] * c; \ + x3 += decode[17+(ofs)*7] * c; \ + x4 += decode[18+(ofs)*7] * c; \ + x5 += decode[19+(ofs)*7] * c; \ + x6 += decode[20+(ofs)*7] * c; \ + +#define stbir__store_output() \ + output[0] = x0 + y0; \ + output[1] = x1 + y1; \ + output[2] = x2 + y2; \ + output[3] = x3 + y3; \ + output[4] = x4 + y4; \ + output[5] = x5 + y5; \ + output[6] = x6 + y6; \ + horizontal_coefficients += coefficient_width; \ + ++horizontal_contributors; \ + output += 7; + +#endif + +#define STBIR__horizontal_channels 7 +#define STB_IMAGE_RESIZE_DO_HORIZONTALS +#include STBIR__HEADER_FILENAME + + +// include all of the vertical resamplers (both scatter and gather versions) + +#define STBIR__vertical_channels 1 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 1 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 2 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 2 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 3 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 3 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 4 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 4 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 5 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 5 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 6 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 6 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 7 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 7 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 8 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#include STBIR__HEADER_FILENAME + +#define STBIR__vertical_channels 8 +#define STB_IMAGE_RESIZE_DO_VERTICALS +#define STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#include STBIR__HEADER_FILENAME + +typedef void STBIR_VERTICAL_GATHERFUNC( float * output, float const * coeffs, float const ** inputs, float const * input0_end ); + +static STBIR_VERTICAL_GATHERFUNC * stbir__vertical_gathers[ 8 ] = +{ + stbir__vertical_gather_with_1_coeffs,stbir__vertical_gather_with_2_coeffs,stbir__vertical_gather_with_3_coeffs,stbir__vertical_gather_with_4_coeffs,stbir__vertical_gather_with_5_coeffs,stbir__vertical_gather_with_6_coeffs,stbir__vertical_gather_with_7_coeffs,stbir__vertical_gather_with_8_coeffs +}; + +static STBIR_VERTICAL_GATHERFUNC * stbir__vertical_gathers_continues[ 8 ] = +{ + stbir__vertical_gather_with_1_coeffs_cont,stbir__vertical_gather_with_2_coeffs_cont,stbir__vertical_gather_with_3_coeffs_cont,stbir__vertical_gather_with_4_coeffs_cont,stbir__vertical_gather_with_5_coeffs_cont,stbir__vertical_gather_with_6_coeffs_cont,stbir__vertical_gather_with_7_coeffs_cont,stbir__vertical_gather_with_8_coeffs_cont +}; + +typedef void STBIR_VERTICAL_SCATTERFUNC( float ** outputs, float const * coeffs, float const * input, float const * input_end ); + +static STBIR_VERTICAL_SCATTERFUNC * stbir__vertical_scatter_sets[ 8 ] = +{ + stbir__vertical_scatter_with_1_coeffs,stbir__vertical_scatter_with_2_coeffs,stbir__vertical_scatter_with_3_coeffs,stbir__vertical_scatter_with_4_coeffs,stbir__vertical_scatter_with_5_coeffs,stbir__vertical_scatter_with_6_coeffs,stbir__vertical_scatter_with_7_coeffs,stbir__vertical_scatter_with_8_coeffs +}; + +static STBIR_VERTICAL_SCATTERFUNC * stbir__vertical_scatter_blends[ 8 ] = +{ + stbir__vertical_scatter_with_1_coeffs_cont,stbir__vertical_scatter_with_2_coeffs_cont,stbir__vertical_scatter_with_3_coeffs_cont,stbir__vertical_scatter_with_4_coeffs_cont,stbir__vertical_scatter_with_5_coeffs_cont,stbir__vertical_scatter_with_6_coeffs_cont,stbir__vertical_scatter_with_7_coeffs_cont,stbir__vertical_scatter_with_8_coeffs_cont +}; + + +static void stbir__encode_scanline( stbir__info const * stbir_info, void *output_buffer_data, float * encode_buffer, int row STBIR_ONLY_PROFILE_GET_SPLIT_INFO ) +{ + int num_pixels = stbir_info->horizontal.scale_info.output_sub_size; + int channels = stbir_info->channels; + int width_times_channels = num_pixels * channels; + void * output_buffer; + + // un-alpha weight if we need to + if ( stbir_info->alpha_unweight ) + { + STBIR_PROFILE_START( unalpha ); + stbir_info->alpha_unweight( encode_buffer, width_times_channels ); + STBIR_PROFILE_END( unalpha ); + } + + // write directly into output by default + output_buffer = output_buffer_data; + + // if we have an output callback, we first convert the decode buffer in place (and then hand that to the callback) + if ( stbir_info->out_pixels_cb ) + output_buffer = encode_buffer; + + STBIR_PROFILE_START( encode ); + // convert into the output buffer + stbir_info->encode_pixels( output_buffer, width_times_channels, encode_buffer ); + STBIR_PROFILE_END( encode ); + + // if we have an output callback, call it to send the data + if ( stbir_info->out_pixels_cb ) + stbir_info->out_pixels_cb( output_buffer, num_pixels, row, stbir_info->user_data ); +} + + +// Get the ring buffer pointer for an index +static float* stbir__get_ring_buffer_entry(stbir__info const * stbir_info, stbir__per_split_info const * split_info, int index ) +{ + STBIR_ASSERT( index < stbir_info->ring_buffer_num_entries ); + + #ifdef STBIR__SEPARATE_ALLOCATIONS + return split_info->ring_buffers[ index ]; + #else + return (float*) ( ( (char*) split_info->ring_buffer ) + ( index * stbir_info->ring_buffer_length_bytes ) ); + #endif +} + +// Get the specified scan line from the ring buffer +static float* stbir__get_ring_buffer_scanline(stbir__info const * stbir_info, stbir__per_split_info const * split_info, int get_scanline) +{ + int ring_buffer_index = (split_info->ring_buffer_begin_index + (get_scanline - split_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries; + return stbir__get_ring_buffer_entry( stbir_info, split_info, ring_buffer_index ); +} + +static void stbir__resample_horizontal_gather(stbir__info const * stbir_info, float* output_buffer, float const * input_buffer STBIR_ONLY_PROFILE_GET_SPLIT_INFO ) +{ + float const * decode_buffer = input_buffer - ( stbir_info->scanline_extents.conservative.n0 * stbir_info->effective_channels ); + + STBIR_PROFILE_START( horizontal ); + if ( ( stbir_info->horizontal.filter_enum == STBIR_FILTER_POINT_SAMPLE ) && ( stbir_info->horizontal.scale_info.scale == 1.0f ) ) + STBIR_MEMCPY( output_buffer, input_buffer, stbir_info->horizontal.scale_info.output_sub_size * sizeof( float ) * stbir_info->effective_channels ); + else + stbir_info->horizontal_gather_channels( output_buffer, stbir_info->horizontal.scale_info.output_sub_size, decode_buffer, stbir_info->horizontal.contributors, stbir_info->horizontal.coefficients, stbir_info->horizontal.coefficient_width ); + STBIR_PROFILE_END( horizontal ); +} + +static void stbir__resample_vertical_gather(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n, int contrib_n0, int contrib_n1, float const * vertical_coefficients ) +{ + float* encode_buffer = split_info->vertical_buffer; + float* decode_buffer = split_info->decode_buffer; + int vertical_first = stbir_info->vertical_first; + int width = (vertical_first) ? ( stbir_info->scanline_extents.conservative.n1-stbir_info->scanline_extents.conservative.n0+1 ) : stbir_info->horizontal.scale_info.output_sub_size; + int width_times_channels = stbir_info->effective_channels * width; + + STBIR_ASSERT( stbir_info->vertical.is_gather ); + + // loop over the contributing scanlines and scale into the buffer + STBIR_PROFILE_START( vertical ); + { + int k = 0, total = contrib_n1 - contrib_n0 + 1; + STBIR_ASSERT( total > 0 ); + do { + float const * inputs[8]; + int i, cnt = total; if ( cnt > 8 ) cnt = 8; + for( i = 0 ; i < cnt ; i++ ) + inputs[ i ] = stbir__get_ring_buffer_scanline(stbir_info, split_info, k+i+contrib_n0 ); + + // call the N scanlines at a time function (up to 8 scanlines of blending at once) + ((k==0)?stbir__vertical_gathers:stbir__vertical_gathers_continues)[cnt-1]( (vertical_first) ? decode_buffer : encode_buffer, vertical_coefficients + k, inputs, inputs[0] + width_times_channels ); + k += cnt; + total -= cnt; + } while ( total ); + } + STBIR_PROFILE_END( vertical ); + + if ( vertical_first ) + { + // Now resample the gathered vertical data in the horizontal axis into the encode buffer + stbir__resample_horizontal_gather(stbir_info, encode_buffer, decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + } + + stbir__encode_scanline( stbir_info, ( (char *) stbir_info->output_data ) + ((size_t)n * (size_t)stbir_info->output_stride_bytes), + encode_buffer, n STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); +} + +static void stbir__decode_and_resample_for_vertical_gather_loop(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n) +{ + int ring_buffer_index; + float* ring_buffer; + + // Decode the nth scanline from the source image into the decode buffer. + stbir__decode_scanline( stbir_info, n, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + + // update new end scanline + split_info->ring_buffer_last_scanline = n; + + // get ring buffer + ring_buffer_index = (split_info->ring_buffer_begin_index + (split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries; + ring_buffer = stbir__get_ring_buffer_entry(stbir_info, split_info, ring_buffer_index); + + // Now resample it into the ring buffer. + stbir__resample_horizontal_gather( stbir_info, ring_buffer, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + + // Now it's sitting in the ring buffer ready to be used as source for the vertical sampling. +} + +static void stbir__vertical_gather_loop( stbir__info const * stbir_info, stbir__per_split_info* split_info, int split_count ) +{ + int y, start_output_y, end_output_y; + stbir__contributors* vertical_contributors = stbir_info->vertical.contributors; + float const * vertical_coefficients = stbir_info->vertical.coefficients; + + STBIR_ASSERT( stbir_info->vertical.is_gather ); + + start_output_y = split_info->start_output_y; + end_output_y = split_info[split_count-1].end_output_y; + + vertical_contributors += start_output_y; + vertical_coefficients += start_output_y * stbir_info->vertical.coefficient_width; + + // initialize the ring buffer for gathering + split_info->ring_buffer_begin_index = 0; + split_info->ring_buffer_first_scanline = vertical_contributors->n0; + split_info->ring_buffer_last_scanline = split_info->ring_buffer_first_scanline - 1; // means "empty" + + for (y = start_output_y; y < end_output_y; y++) + { + int in_first_scanline, in_last_scanline; + + in_first_scanline = vertical_contributors->n0; + in_last_scanline = vertical_contributors->n1; + + // make sure the indexing hasn't broken + STBIR_ASSERT( in_first_scanline >= split_info->ring_buffer_first_scanline ); + + // Load in new scanlines + while (in_last_scanline > split_info->ring_buffer_last_scanline) + { + STBIR_ASSERT( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) <= stbir_info->ring_buffer_num_entries ); + + // make sure there was room in the ring buffer when we add new scanlines + if ( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) == stbir_info->ring_buffer_num_entries ) + { + split_info->ring_buffer_first_scanline++; + split_info->ring_buffer_begin_index++; + } + + if ( stbir_info->vertical_first ) + { + float * ring_buffer = stbir__get_ring_buffer_scanline( stbir_info, split_info, ++split_info->ring_buffer_last_scanline ); + // Decode the nth scanline from the source image into the decode buffer. + stbir__decode_scanline( stbir_info, split_info->ring_buffer_last_scanline, ring_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + } + else + { + stbir__decode_and_resample_for_vertical_gather_loop(stbir_info, split_info, split_info->ring_buffer_last_scanline + 1); + } + } + + // Now all buffers should be ready to write a row of vertical sampling, so do it. + stbir__resample_vertical_gather(stbir_info, split_info, y, in_first_scanline, in_last_scanline, vertical_coefficients ); + + ++vertical_contributors; + vertical_coefficients += stbir_info->vertical.coefficient_width; + } +} + +#define STBIR__FLOAT_EMPTY_MARKER 3.0e+38F +#define STBIR__FLOAT_BUFFER_IS_EMPTY(ptr) ((ptr)[0]==STBIR__FLOAT_EMPTY_MARKER) + +static void stbir__encode_first_scanline_from_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info) +{ + // evict a scanline out into the output buffer + float* ring_buffer_entry = stbir__get_ring_buffer_entry(stbir_info, split_info, split_info->ring_buffer_begin_index ); + + // dump the scanline out + stbir__encode_scanline( stbir_info, ( (char *)stbir_info->output_data ) + ( (size_t)split_info->ring_buffer_first_scanline * (size_t)stbir_info->output_stride_bytes ), ring_buffer_entry, split_info->ring_buffer_first_scanline STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + + // mark it as empty + ring_buffer_entry[ 0 ] = STBIR__FLOAT_EMPTY_MARKER; + + // advance the first scanline + split_info->ring_buffer_first_scanline++; + if ( ++split_info->ring_buffer_begin_index == stbir_info->ring_buffer_num_entries ) + split_info->ring_buffer_begin_index = 0; +} + +static void stbir__horizontal_resample_and_encode_first_scanline_from_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info) +{ + // evict a scanline out into the output buffer + + float* ring_buffer_entry = stbir__get_ring_buffer_entry(stbir_info, split_info, split_info->ring_buffer_begin_index ); + + // Now resample it into the buffer. + stbir__resample_horizontal_gather( stbir_info, split_info->vertical_buffer, ring_buffer_entry STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + + // dump the scanline out + stbir__encode_scanline( stbir_info, ( (char *)stbir_info->output_data ) + ( (size_t)split_info->ring_buffer_first_scanline * (size_t)stbir_info->output_stride_bytes ), split_info->vertical_buffer, split_info->ring_buffer_first_scanline STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + + // mark it as empty + ring_buffer_entry[ 0 ] = STBIR__FLOAT_EMPTY_MARKER; + + // advance the first scanline + split_info->ring_buffer_first_scanline++; + if ( ++split_info->ring_buffer_begin_index == stbir_info->ring_buffer_num_entries ) + split_info->ring_buffer_begin_index = 0; +} + +static void stbir__resample_vertical_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n0, int n1, float const * vertical_coefficients, float const * vertical_buffer, float const * vertical_buffer_end ) +{ + STBIR_ASSERT( !stbir_info->vertical.is_gather ); + + STBIR_PROFILE_START( vertical ); + { + int k = 0, total = n1 - n0 + 1; + STBIR_ASSERT( total > 0 ); + do { + float * outputs[8]; + int i, n = total; if ( n > 8 ) n = 8; + for( i = 0 ; i < n ; i++ ) + { + outputs[ i ] = stbir__get_ring_buffer_scanline(stbir_info, split_info, k+i+n0 ); + if ( ( i ) && ( STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[i] ) != STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[0] ) ) ) // make sure runs are of the same type + { + n = i; + break; + } + } + // call the scatter to N scanlines at a time function (up to 8 scanlines of scattering at once) + ((STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[0] ))?stbir__vertical_scatter_sets:stbir__vertical_scatter_blends)[n-1]( outputs, vertical_coefficients + k, vertical_buffer, vertical_buffer_end ); + k += n; + total -= n; + } while ( total ); + } + + STBIR_PROFILE_END( vertical ); +} + +typedef void stbir__handle_scanline_for_scatter_func(stbir__info const * stbir_info, stbir__per_split_info* split_info); + +static void stbir__vertical_scatter_loop( stbir__info const * stbir_info, stbir__per_split_info* split_info, int split_count ) +{ + int y, start_output_y, end_output_y, start_input_y, end_input_y; + stbir__contributors* vertical_contributors = stbir_info->vertical.contributors; + float const * vertical_coefficients = stbir_info->vertical.coefficients; + stbir__handle_scanline_for_scatter_func * handle_scanline_for_scatter; + void * scanline_scatter_buffer; + void * scanline_scatter_buffer_end; + int on_first_input_y, last_input_y; + + STBIR_ASSERT( !stbir_info->vertical.is_gather ); + + start_output_y = split_info->start_output_y; + end_output_y = split_info[split_count-1].end_output_y; // may do multiple split counts + + start_input_y = split_info->start_input_y; + end_input_y = split_info[split_count-1].end_input_y; + + // adjust for starting offset start_input_y + y = start_input_y + stbir_info->vertical.filter_pixel_margin; + vertical_contributors += y ; + vertical_coefficients += stbir_info->vertical.coefficient_width * y; + + if ( stbir_info->vertical_first ) + { + handle_scanline_for_scatter = stbir__horizontal_resample_and_encode_first_scanline_from_scatter; + scanline_scatter_buffer = split_info->decode_buffer; + scanline_scatter_buffer_end = ( (char*) scanline_scatter_buffer ) + sizeof( float ) * stbir_info->effective_channels * (stbir_info->scanline_extents.conservative.n1-stbir_info->scanline_extents.conservative.n0+1); + } + else + { + handle_scanline_for_scatter = stbir__encode_first_scanline_from_scatter; + scanline_scatter_buffer = split_info->vertical_buffer; + scanline_scatter_buffer_end = ( (char*) scanline_scatter_buffer ) + sizeof( float ) * stbir_info->effective_channels * stbir_info->horizontal.scale_info.output_sub_size; + } + + // initialize the ring buffer for scattering + split_info->ring_buffer_first_scanline = start_output_y; + split_info->ring_buffer_last_scanline = -1; + split_info->ring_buffer_begin_index = -1; + + // mark all the buffers as empty to start + for( y = 0 ; y < stbir_info->ring_buffer_num_entries ; y++ ) + stbir__get_ring_buffer_entry( stbir_info, split_info, y )[0] = STBIR__FLOAT_EMPTY_MARKER; // only used on scatter + + // do the loop in input space + on_first_input_y = 1; last_input_y = start_input_y; + for (y = start_input_y ; y < end_input_y; y++) + { + int out_first_scanline, out_last_scanline; + + out_first_scanline = vertical_contributors->n0; + out_last_scanline = vertical_contributors->n1; + + STBIR_ASSERT(out_last_scanline - out_first_scanline + 1 <= stbir_info->ring_buffer_num_entries); + + if ( ( out_last_scanline >= out_first_scanline ) && ( ( ( out_first_scanline >= start_output_y ) && ( out_first_scanline < end_output_y ) ) || ( ( out_last_scanline >= start_output_y ) && ( out_last_scanline < end_output_y ) ) ) ) + { + float const * vc = vertical_coefficients; + + // keep track of the range actually seen for the next resize + last_input_y = y; + if ( ( on_first_input_y ) && ( y > start_input_y ) ) + split_info->start_input_y = y; + on_first_input_y = 0; + + // clip the region + if ( out_first_scanline < start_output_y ) + { + vc += start_output_y - out_first_scanline; + out_first_scanline = start_output_y; + } + + if ( out_last_scanline >= end_output_y ) + out_last_scanline = end_output_y - 1; + + // if very first scanline, init the index + if (split_info->ring_buffer_begin_index < 0) + split_info->ring_buffer_begin_index = out_first_scanline - start_output_y; + + STBIR_ASSERT( split_info->ring_buffer_begin_index <= out_first_scanline ); + + // Decode the nth scanline from the source image into the decode buffer. + stbir__decode_scanline( stbir_info, y, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + + // When horizontal first, we resample horizontally into the vertical buffer before we scatter it out + if ( !stbir_info->vertical_first ) + stbir__resample_horizontal_gather( stbir_info, split_info->vertical_buffer, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); + + // Now it's sitting in the buffer ready to be distributed into the ring buffers. + + // evict from the ringbuffer, if we need are full + if ( ( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) == stbir_info->ring_buffer_num_entries ) && + ( out_last_scanline > split_info->ring_buffer_last_scanline ) ) + handle_scanline_for_scatter( stbir_info, split_info ); + + // Now the horizontal buffer is ready to write to all ring buffer rows, so do it. + stbir__resample_vertical_scatter(stbir_info, split_info, out_first_scanline, out_last_scanline, vc, (float*)scanline_scatter_buffer, (float*)scanline_scatter_buffer_end ); + + // update the end of the buffer + if ( out_last_scanline > split_info->ring_buffer_last_scanline ) + split_info->ring_buffer_last_scanline = out_last_scanline; + } + ++vertical_contributors; + vertical_coefficients += stbir_info->vertical.coefficient_width; + } + + // now evict the scanlines that are left over in the ring buffer + while ( split_info->ring_buffer_first_scanline < end_output_y ) + handle_scanline_for_scatter(stbir_info, split_info); + + // update the end_input_y if we do multiple resizes with the same data + ++last_input_y; + for( y = 0 ; y < split_count; y++ ) + if ( split_info[y].end_input_y > last_input_y ) + split_info[y].end_input_y = last_input_y; +} + + +static stbir__kernel_callback * stbir__builtin_kernels[] = { 0, stbir__filter_trapezoid, stbir__filter_triangle, stbir__filter_cubic, stbir__filter_catmullrom, stbir__filter_mitchell, stbir__filter_point }; +static stbir__support_callback * stbir__builtin_supports[] = { 0, stbir__support_trapezoid, stbir__support_one, stbir__support_two, stbir__support_two, stbir__support_two, stbir__support_zeropoint5 }; + +static void stbir__set_sampler(stbir__sampler * samp, stbir_filter filter, stbir__kernel_callback * kernel, stbir__support_callback * support, stbir_edge edge, stbir__scale_info * scale_info, int always_gather, void * user_data ) +{ + // set filter + if (filter == 0) + { + filter = STBIR_DEFAULT_FILTER_DOWNSAMPLE; // default to downsample + if (scale_info->scale >= ( 1.0f - stbir__small_float ) ) + { + if ( (scale_info->scale <= ( 1.0f + stbir__small_float ) ) && ( STBIR_CEILF(scale_info->pixel_shift) == scale_info->pixel_shift ) ) + filter = STBIR_FILTER_POINT_SAMPLE; + else + filter = STBIR_DEFAULT_FILTER_UPSAMPLE; + } + } + samp->filter_enum = filter; + + STBIR_ASSERT(samp->filter_enum != 0); + STBIR_ASSERT((unsigned)samp->filter_enum < STBIR_FILTER_OTHER); + samp->filter_kernel = stbir__builtin_kernels[ filter ]; + samp->filter_support = stbir__builtin_supports[ filter ]; + + if ( kernel && support ) + { + samp->filter_kernel = kernel; + samp->filter_support = support; + samp->filter_enum = STBIR_FILTER_OTHER; + } + + samp->edge = edge; + samp->filter_pixel_width = stbir__get_filter_pixel_width (samp->filter_support, scale_info->scale, user_data ); + // Gather is always better, but in extreme downsamples, you have to most or all of the data in memory + // For horizontal, we always have all the pixels, so we always use gather here (always_gather==1). + // For vertical, we use gather if scaling up (which means we will have samp->filter_pixel_width + // scanlines in memory at once). + samp->is_gather = 0; + if ( scale_info->scale >= ( 1.0f - stbir__small_float ) ) + samp->is_gather = 1; + else if ( ( always_gather ) || ( samp->filter_pixel_width <= STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT ) ) + samp->is_gather = 2; + + // pre calculate stuff based on the above + samp->coefficient_width = stbir__get_coefficient_width(samp, samp->is_gather, user_data); + + // filter_pixel_width is the conservative size in pixels of input that affect an output pixel. + // In rare cases (only with 2 pix to 1 pix with the default filters), it's possible that the + // filter will extend before or after the scanline beyond just one extra entire copy of the + // scanline (we would hit the edge twice). We don't let you do that, so we clamp the total + // width to 3x the total of input pixel (once for the scanline, once for the left side + // overhang, and once for the right side). We only do this for edge mode, since the other + // modes can just re-edge clamp back in again. + if ( edge == STBIR_EDGE_WRAP ) + if ( samp->filter_pixel_width > ( scale_info->input_full_size * 3 ) ) + samp->filter_pixel_width = scale_info->input_full_size * 3; + + // This is how much to expand buffers to account for filters seeking outside + // the image boundaries. + samp->filter_pixel_margin = samp->filter_pixel_width / 2; + + // filter_pixel_margin is the amount that this filter can overhang on just one side of either + // end of the scanline (left or the right). Since we only allow you to overhang 1 scanline's + // worth of pixels, we clamp this one side of overhang to the input scanline size. Again, + // this clamping only happens in rare cases with the default filters (2 pix to 1 pix). + if ( edge == STBIR_EDGE_WRAP ) + if ( samp->filter_pixel_margin > scale_info->input_full_size ) + samp->filter_pixel_margin = scale_info->input_full_size; + + samp->num_contributors = stbir__get_contributors(samp, samp->is_gather); + + samp->contributors_size = samp->num_contributors * sizeof(stbir__contributors); + samp->coefficients_size = samp->num_contributors * samp->coefficient_width * sizeof(float) + sizeof(float); // extra sizeof(float) is padding + + samp->gather_prescatter_contributors = 0; + samp->gather_prescatter_coefficients = 0; + if ( samp->is_gather == 0 ) + { + samp->gather_prescatter_coefficient_width = samp->filter_pixel_width; + samp->gather_prescatter_num_contributors = stbir__get_contributors(samp, 2); + samp->gather_prescatter_contributors_size = samp->gather_prescatter_num_contributors * sizeof(stbir__contributors); + samp->gather_prescatter_coefficients_size = samp->gather_prescatter_num_contributors * samp->gather_prescatter_coefficient_width * sizeof(float); + } +} + +static void stbir__get_conservative_extents( stbir__sampler * samp, stbir__contributors * range, void * user_data ) +{ + float scale = samp->scale_info.scale; + float out_shift = samp->scale_info.pixel_shift; + stbir__support_callback * support = samp->filter_support; + int input_full_size = samp->scale_info.input_full_size; + stbir_edge edge = samp->edge; + float inv_scale = samp->scale_info.inv_scale; + + STBIR_ASSERT( samp->is_gather != 0 ); + + if ( samp->is_gather == 1 ) + { + int in_first_pixel, in_last_pixel; + float out_filter_radius = support(inv_scale, user_data) * scale; + + stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, 0.5, out_filter_radius, inv_scale, out_shift, input_full_size, edge ); + range->n0 = in_first_pixel; + stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, ( (float)(samp->scale_info.output_sub_size-1) ) + 0.5f, out_filter_radius, inv_scale, out_shift, input_full_size, edge ); + range->n1 = in_last_pixel; + } + else if ( samp->is_gather == 2 ) // downsample gather, refine + { + float in_pixels_radius = support(scale, user_data) * inv_scale; + int filter_pixel_margin = samp->filter_pixel_margin; + int output_sub_size = samp->scale_info.output_sub_size; + int input_end; + int n; + int in_first_pixel, in_last_pixel; + + // get a conservative area of the input range + stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, 0, 0, inv_scale, out_shift, input_full_size, edge ); + range->n0 = in_first_pixel; + stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, (float)output_sub_size, 0, inv_scale, out_shift, input_full_size, edge ); + range->n1 = in_last_pixel; + + // now go through the margin to the start of area to find bottom + n = range->n0 + 1; + input_end = -filter_pixel_margin; + while( n >= input_end ) + { + int out_first_pixel, out_last_pixel; + stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, ((float)n)+0.5f, in_pixels_radius, scale, out_shift, output_sub_size ); + if ( out_first_pixel > out_last_pixel ) + break; + + if ( ( out_first_pixel < output_sub_size ) || ( out_last_pixel >= 0 ) ) + range->n0 = n; + --n; + } + + // now go through the end of the area through the margin to find top + n = range->n1 - 1; + input_end = n + 1 + filter_pixel_margin; + while( n <= input_end ) + { + int out_first_pixel, out_last_pixel; + stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, ((float)n)+0.5f, in_pixels_radius, scale, out_shift, output_sub_size ); + if ( out_first_pixel > out_last_pixel ) + break; + if ( ( out_first_pixel < output_sub_size ) || ( out_last_pixel >= 0 ) ) + range->n1 = n; + ++n; + } + } + + if ( samp->edge == STBIR_EDGE_WRAP ) + { + // if we are wrapping, and we are very close to the image size (so the edges might merge), just use the scanline up to the edge + if ( ( range->n0 > 0 ) && ( range->n1 >= input_full_size ) ) + { + int marg = range->n1 - input_full_size + 1; + if ( ( marg + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= range->n0 ) + range->n0 = 0; + } + if ( ( range->n0 < 0 ) && ( range->n1 < (input_full_size-1) ) ) + { + int marg = -range->n0; + if ( ( input_full_size - marg - STBIR__MERGE_RUNS_PIXEL_THRESHOLD - 1 ) <= range->n1 ) + range->n1 = input_full_size - 1; + } + } + else + { + // for non-edge-wrap modes, we never read over the edge, so clamp + if ( range->n0 < 0 ) + range->n0 = 0; + if ( range->n1 >= input_full_size ) + range->n1 = input_full_size - 1; + } +} + +static void stbir__get_split_info( stbir__per_split_info* split_info, int splits, int output_height, int vertical_pixel_margin, int input_full_height ) +{ + int i, cur; + int left = output_height; + + cur = 0; + for( i = 0 ; i < splits ; i++ ) + { + int each; + split_info[i].start_output_y = cur; + each = left / ( splits - i ); + split_info[i].end_output_y = cur + each; + cur += each; + left -= each; + + // scatter range (updated to minimum as you run it) + split_info[i].start_input_y = -vertical_pixel_margin; + split_info[i].end_input_y = input_full_height + vertical_pixel_margin; + } +} + +static void stbir__free_internal_mem( stbir__info *info ) +{ + #define STBIR__FREE_AND_CLEAR( ptr ) { if ( ptr ) { void * p = (ptr); (ptr) = 0; STBIR_FREE( p, info->user_data); } } + + if ( info ) + { + #ifndef STBIR__SEPARATE_ALLOCATIONS + STBIR__FREE_AND_CLEAR( info->alloced_mem ); + #else + int i,j; + + if ( ( info->vertical.gather_prescatter_contributors ) && ( (void*)info->vertical.gather_prescatter_contributors != (void*)info->split_info[0].decode_buffer ) ) + { + STBIR__FREE_AND_CLEAR( info->vertical.gather_prescatter_coefficients ); + STBIR__FREE_AND_CLEAR( info->vertical.gather_prescatter_contributors ); + } + for( i = 0 ; i < info->splits ; i++ ) + { + for( j = 0 ; j < info->alloc_ring_buffer_num_entries ; j++ ) + { + #ifdef STBIR_SIMD8 + if ( info->effective_channels == 3 ) + --info->split_info[i].ring_buffers[j]; // avx in 3 channel mode needs one float at the start of the buffer + #endif + STBIR__FREE_AND_CLEAR( info->split_info[i].ring_buffers[j] ); + } + + #ifdef STBIR_SIMD8 + if ( info->effective_channels == 3 ) + --info->split_info[i].decode_buffer; // avx in 3 channel mode needs one float at the start of the buffer + #endif + STBIR__FREE_AND_CLEAR( info->split_info[i].decode_buffer ); + STBIR__FREE_AND_CLEAR( info->split_info[i].ring_buffers ); + STBIR__FREE_AND_CLEAR( info->split_info[i].vertical_buffer ); + } + STBIR__FREE_AND_CLEAR( info->split_info ); + if ( info->vertical.coefficients != info->horizontal.coefficients ) + { + STBIR__FREE_AND_CLEAR( info->vertical.coefficients ); + STBIR__FREE_AND_CLEAR( info->vertical.contributors ); + } + STBIR__FREE_AND_CLEAR( info->horizontal.coefficients ); + STBIR__FREE_AND_CLEAR( info->horizontal.contributors ); + STBIR__FREE_AND_CLEAR( info->alloced_mem ); + STBIR_FREE( info, info->user_data ); + #endif + } + + #undef STBIR__FREE_AND_CLEAR +} + +static int stbir__get_max_split( int splits, int height ) +{ + int i; + int max = 0; + + for( i = 0 ; i < splits ; i++ ) + { + int each = height / ( splits - i ); + if ( each > max ) + max = each; + height -= each; + } + return max; +} + +static stbir__horizontal_gather_channels_func ** stbir__horizontal_gather_n_coeffs_funcs[8] = +{ + 0, stbir__horizontal_gather_1_channels_with_n_coeffs_funcs, stbir__horizontal_gather_2_channels_with_n_coeffs_funcs, stbir__horizontal_gather_3_channels_with_n_coeffs_funcs, stbir__horizontal_gather_4_channels_with_n_coeffs_funcs, 0,0, stbir__horizontal_gather_7_channels_with_n_coeffs_funcs +}; + +static stbir__horizontal_gather_channels_func ** stbir__horizontal_gather_channels_funcs[8] = +{ + 0, stbir__horizontal_gather_1_channels_funcs, stbir__horizontal_gather_2_channels_funcs, stbir__horizontal_gather_3_channels_funcs, stbir__horizontal_gather_4_channels_funcs, 0,0, stbir__horizontal_gather_7_channels_funcs +}; + +// there are six resize classifications: 0 == vertical scatter, 1 == vertical gather < 1x scale, 2 == vertical gather 1x-2x scale, 4 == vertical gather < 3x scale, 4 == vertical gather > 3x scale, 5 == <=4 pixel height, 6 == <=4 pixel wide column +#define STBIR_RESIZE_CLASSIFICATIONS 8 + +static float stbir__compute_weights[5][STBIR_RESIZE_CLASSIFICATIONS][4]= // 5 = 0=1chan, 1=2chan, 2=3chan, 3=4chan, 4=7chan +{ + { + { 1.00000f, 1.00000f, 0.31250f, 1.00000f }, + { 0.56250f, 0.59375f, 0.00000f, 0.96875f }, + { 1.00000f, 0.06250f, 0.00000f, 1.00000f }, + { 0.00000f, 0.09375f, 1.00000f, 1.00000f }, + { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, + { 0.03125f, 0.12500f, 1.00000f, 1.00000f }, + { 0.06250f, 0.12500f, 0.00000f, 1.00000f }, + { 0.00000f, 1.00000f, 0.00000f, 0.03125f }, + }, { + { 0.00000f, 0.84375f, 0.00000f, 0.03125f }, + { 0.09375f, 0.93750f, 0.00000f, 0.78125f }, + { 0.87500f, 0.21875f, 0.00000f, 0.96875f }, + { 0.09375f, 0.09375f, 1.00000f, 1.00000f }, + { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, + { 0.03125f, 0.12500f, 1.00000f, 1.00000f }, + { 0.06250f, 0.12500f, 0.00000f, 1.00000f }, + { 0.00000f, 1.00000f, 0.00000f, 0.53125f }, + }, { + { 0.00000f, 0.53125f, 0.00000f, 0.03125f }, + { 0.06250f, 0.96875f, 0.00000f, 0.53125f }, + { 0.87500f, 0.18750f, 0.00000f, 0.93750f }, + { 0.00000f, 0.09375f, 1.00000f, 1.00000f }, + { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, + { 0.03125f, 0.12500f, 1.00000f, 1.00000f }, + { 0.06250f, 0.12500f, 0.00000f, 1.00000f }, + { 0.00000f, 1.00000f, 0.00000f, 0.56250f }, + }, { + { 0.00000f, 0.50000f, 0.00000f, 0.71875f }, + { 0.06250f, 0.84375f, 0.00000f, 0.87500f }, + { 1.00000f, 0.50000f, 0.50000f, 0.96875f }, + { 1.00000f, 0.09375f, 0.31250f, 0.50000f }, + { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, + { 1.00000f, 0.03125f, 0.03125f, 0.53125f }, + { 0.18750f, 0.12500f, 0.00000f, 1.00000f }, + { 0.00000f, 1.00000f, 0.03125f, 0.18750f }, + }, { + { 0.00000f, 0.59375f, 0.00000f, 0.96875f }, + { 0.06250f, 0.81250f, 0.06250f, 0.59375f }, + { 0.75000f, 0.43750f, 0.12500f, 0.96875f }, + { 0.87500f, 0.06250f, 0.18750f, 0.43750f }, + { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, + { 0.15625f, 0.12500f, 1.00000f, 1.00000f }, + { 0.06250f, 0.12500f, 0.00000f, 1.00000f }, + { 0.00000f, 1.00000f, 0.03125f, 0.34375f }, + } +}; + +// structure that allow us to query and override info for training the costs +typedef struct STBIR__V_FIRST_INFO +{ + double v_cost, h_cost; + int control_v_first; // 0 = no control, 1 = force hori, 2 = force vert + int v_first; + int v_resize_classification; + int is_gather; +} STBIR__V_FIRST_INFO; + +#ifdef STBIR__V_FIRST_INFO_BUFFER +static STBIR__V_FIRST_INFO STBIR__V_FIRST_INFO_BUFFER = {0}; +#define STBIR__V_FIRST_INFO_POINTER &STBIR__V_FIRST_INFO_BUFFER +#else +#define STBIR__V_FIRST_INFO_POINTER 0 +#endif + +// Figure out whether to scale along the horizontal or vertical first. +// This only *super* important when you are scaling by a massively +// different amount in the vertical vs the horizontal (for example, if +// you are scaling by 2x in the width, and 0.5x in the height, then you +// want to do the vertical scale first, because it's around 3x faster +// in that order. +// +// In more normal circumstances, this makes a 20-40% differences, so +// it's good to get right, but not critical. The normal way that you +// decide which direction goes first is just figuring out which +// direction does more multiplies. But with modern CPUs with their +// fancy caches and SIMD and high IPC abilities, so there's just a lot +// more that goes into it. +// +// My handwavy sort of solution is to have an app that does a whole +// bunch of timing for both vertical and horizontal first modes, +// and then another app that can read lots of these timing files +// and try to search for the best weights to use. Dotimings.c +// is the app that does a bunch of timings, and vf_train.c is the +// app that solves for the best weights (and shows how well it +// does currently). + +static int stbir__should_do_vertical_first( float weights_table[STBIR_RESIZE_CLASSIFICATIONS][4], int horizontal_filter_pixel_width, float horizontal_scale, int horizontal_output_size, int vertical_filter_pixel_width, float vertical_scale, int vertical_output_size, int is_gather, STBIR__V_FIRST_INFO * info ) +{ + double v_cost, h_cost; + float * weights; + int vertical_first; + int v_classification; + + // categorize the resize into buckets + if ( ( vertical_output_size <= 4 ) || ( horizontal_output_size <= 4 ) ) + v_classification = ( vertical_output_size < horizontal_output_size ) ? 6 : 7; + else if ( vertical_scale <= 1.0f ) + v_classification = ( is_gather ) ? 1 : 0; + else if ( vertical_scale <= 2.0f) + v_classification = 2; + else if ( vertical_scale <= 3.0f) + v_classification = 3; + else if ( vertical_scale <= 4.0f) + v_classification = 5; + else + v_classification = 6; + + // use the right weights + weights = weights_table[ v_classification ]; + + // this is the costs when you don't take into account modern CPUs with high ipc and simd and caches - wish we had a better estimate + h_cost = (float)horizontal_filter_pixel_width * weights[0] + horizontal_scale * (float)vertical_filter_pixel_width * weights[1]; + v_cost = (float)vertical_filter_pixel_width * weights[2] + vertical_scale * (float)horizontal_filter_pixel_width * weights[3]; + + // use computation estimate to decide vertical first or not + vertical_first = ( v_cost <= h_cost ) ? 1 : 0; + + // save these, if requested + if ( info ) + { + info->h_cost = h_cost; + info->v_cost = v_cost; + info->v_resize_classification = v_classification; + info->v_first = vertical_first; + info->is_gather = is_gather; + } + + // and this allows us to override everything for testing (see dotiming.c) + if ( ( info ) && ( info->control_v_first ) ) + vertical_first = ( info->control_v_first == 2 ) ? 1 : 0; + + return vertical_first; +} + +// layout lookups - must match stbir_internal_pixel_layout +static unsigned char stbir__pixel_channels[] = { + 1,2,3,3,4, // 1ch, 2ch, rgb, bgr, 4ch + 4,4,4,4,2,2, // RGBA,BGRA,ARGB,ABGR,RA,AR + 4,4,4,4,2,2, // RGBA_PM,BGRA_PM,ARGB_PM,ABGR_PM,RA_PM,AR_PM +}; + +// the internal pixel layout enums are in a different order, so we can easily do range comparisons of types +// the public pixel layout is ordered in a way that if you cast num_channels (1-4) to the enum, you get something sensible +static stbir_internal_pixel_layout stbir__pixel_layout_convert_public_to_internal[] = { + STBIRI_BGR, STBIRI_1CHANNEL, STBIRI_2CHANNEL, STBIRI_RGB, STBIRI_RGBA, + STBIRI_4CHANNEL, STBIRI_BGRA, STBIRI_ARGB, STBIRI_ABGR, STBIRI_RA, STBIRI_AR, + STBIRI_RGBA_PM, STBIRI_BGRA_PM, STBIRI_ARGB_PM, STBIRI_ABGR_PM, STBIRI_RA_PM, STBIRI_AR_PM, +}; + +static stbir__info * stbir__alloc_internal_mem_and_build_samplers( stbir__sampler * horizontal, stbir__sampler * vertical, stbir__contributors * conservative, stbir_pixel_layout input_pixel_layout_public, stbir_pixel_layout output_pixel_layout_public, int splits, int new_x, int new_y, int fast_alpha, void * user_data STBIR_ONLY_PROFILE_BUILD_GET_INFO ) +{ + static char stbir_channel_count_index[8]={ 9,0,1,2, 3,9,9,4 }; + + stbir__info * info = 0; + void * alloced = 0; + size_t alloced_total = 0; + int vertical_first; + int decode_buffer_size, ring_buffer_length_bytes, ring_buffer_size, vertical_buffer_size, alloc_ring_buffer_num_entries; + + int alpha_weighting_type = 0; // 0=none, 1=simple, 2=fancy + int conservative_split_output_size = stbir__get_max_split( splits, vertical->scale_info.output_sub_size ); + stbir_internal_pixel_layout input_pixel_layout = stbir__pixel_layout_convert_public_to_internal[ input_pixel_layout_public ]; + stbir_internal_pixel_layout output_pixel_layout = stbir__pixel_layout_convert_public_to_internal[ output_pixel_layout_public ]; + int channels = stbir__pixel_channels[ input_pixel_layout ]; + int effective_channels = channels; + + // first figure out what type of alpha weighting to use (if any) + if ( ( horizontal->filter_enum != STBIR_FILTER_POINT_SAMPLE ) || ( vertical->filter_enum != STBIR_FILTER_POINT_SAMPLE ) ) // no alpha weighting on point sampling + { + if ( ( input_pixel_layout >= STBIRI_RGBA ) && ( input_pixel_layout <= STBIRI_AR ) && ( output_pixel_layout >= STBIRI_RGBA ) && ( output_pixel_layout <= STBIRI_AR ) ) + { + if ( fast_alpha ) + { + alpha_weighting_type = 4; + } + else + { + static int fancy_alpha_effective_cnts[6] = { 7, 7, 7, 7, 3, 3 }; + alpha_weighting_type = 2; + effective_channels = fancy_alpha_effective_cnts[ input_pixel_layout - STBIRI_RGBA ]; + } + } + else if ( ( input_pixel_layout >= STBIRI_RGBA_PM ) && ( input_pixel_layout <= STBIRI_AR_PM ) && ( output_pixel_layout >= STBIRI_RGBA ) && ( output_pixel_layout <= STBIRI_AR ) ) + { + // input premult, output non-premult + alpha_weighting_type = 3; + } + else if ( ( input_pixel_layout >= STBIRI_RGBA ) && ( input_pixel_layout <= STBIRI_AR ) && ( output_pixel_layout >= STBIRI_RGBA_PM ) && ( output_pixel_layout <= STBIRI_AR_PM ) ) + { + // input non-premult, output premult + alpha_weighting_type = 1; + } + } + + // channel in and out count must match currently + if ( channels != stbir__pixel_channels[ output_pixel_layout ] ) + return 0; + + // get vertical first + vertical_first = stbir__should_do_vertical_first( stbir__compute_weights[ (int)stbir_channel_count_index[ effective_channels ] ], horizontal->filter_pixel_width, horizontal->scale_info.scale, horizontal->scale_info.output_sub_size, vertical->filter_pixel_width, vertical->scale_info.scale, vertical->scale_info.output_sub_size, vertical->is_gather, STBIR__V_FIRST_INFO_POINTER ); + + // sometimes read one float off in some of the unrolled loops (with a weight of zero coeff, so it doesn't have an effect) + decode_buffer_size = ( conservative->n1 - conservative->n0 + 1 ) * effective_channels * sizeof(float) + sizeof(float); // extra float for padding + +#if defined( STBIR__SEPARATE_ALLOCATIONS ) && defined(STBIR_SIMD8) + if ( effective_channels == 3 ) + decode_buffer_size += sizeof(float); // avx in 3 channel mode needs one float at the start of the buffer (only with separate allocations) +#endif + + ring_buffer_length_bytes = horizontal->scale_info.output_sub_size * effective_channels * sizeof(float) + sizeof(float); // extra float for padding + + // if we do vertical first, the ring buffer holds a whole decoded line + if ( vertical_first ) + ring_buffer_length_bytes = ( decode_buffer_size + 15 ) & ~15; + + if ( ( ring_buffer_length_bytes & 4095 ) == 0 ) ring_buffer_length_bytes += 64*3; // avoid 4k alias + + // One extra entry because floating point precision problems sometimes cause an extra to be necessary. + alloc_ring_buffer_num_entries = vertical->filter_pixel_width + 1; + + // we never need more ring buffer entries than the scanlines we're outputting when in scatter mode + if ( ( !vertical->is_gather ) && ( alloc_ring_buffer_num_entries > conservative_split_output_size ) ) + alloc_ring_buffer_num_entries = conservative_split_output_size; + + ring_buffer_size = alloc_ring_buffer_num_entries * ring_buffer_length_bytes; + + // The vertical buffer is used differently, depending on whether we are scattering + // the vertical scanlines, or gathering them. + // If scattering, it's used at the temp buffer to accumulate each output. + // If gathering, it's just the output buffer. + vertical_buffer_size = horizontal->scale_info.output_sub_size * effective_channels * sizeof(float) + sizeof(float); // extra float for padding + + // we make two passes through this loop, 1st to add everything up, 2nd to allocate and init + for(;;) + { + int i; + void * advance_mem = alloced; + int copy_horizontal = 0; + stbir__sampler * possibly_use_horizontal_for_pivot = 0; + +#ifdef STBIR__SEPARATE_ALLOCATIONS + #define STBIR__NEXT_PTR( ptr, size, ntype ) if ( alloced ) { void * p = STBIR_MALLOC( size, user_data); if ( p == 0 ) { stbir__free_internal_mem( info ); return 0; } (ptr) = (ntype*)p; } +#else + #define STBIR__NEXT_PTR( ptr, size, ntype ) advance_mem = (void*) ( ( ((size_t)advance_mem) + 15 ) & ~15 ); if ( alloced ) ptr = (ntype*)advance_mem; advance_mem = ((char*)advance_mem) + (size); +#endif + + STBIR__NEXT_PTR( info, sizeof( stbir__info ), stbir__info ); + + STBIR__NEXT_PTR( info->split_info, sizeof( stbir__per_split_info ) * splits, stbir__per_split_info ); + + if ( info ) + { + static stbir__alpha_weight_func * fancy_alpha_weights[6] = { stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_2ch, stbir__fancy_alpha_weight_2ch }; + static stbir__alpha_unweight_func * fancy_alpha_unweights[6] = { stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_2ch, stbir__fancy_alpha_unweight_2ch }; + static stbir__alpha_weight_func * simple_alpha_weights[6] = { stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_2ch, stbir__simple_alpha_weight_2ch }; + static stbir__alpha_unweight_func * simple_alpha_unweights[6] = { stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_2ch, stbir__simple_alpha_unweight_2ch }; + + // initialize info fields + info->alloced_mem = alloced; + info->alloced_total = alloced_total; + + info->channels = channels; + info->effective_channels = effective_channels; + + info->offset_x = new_x; + info->offset_y = new_y; + info->alloc_ring_buffer_num_entries = alloc_ring_buffer_num_entries; + info->ring_buffer_num_entries = 0; + info->ring_buffer_length_bytes = ring_buffer_length_bytes; + info->splits = splits; + info->vertical_first = vertical_first; + + info->input_pixel_layout_internal = input_pixel_layout; + info->output_pixel_layout_internal = output_pixel_layout; + + // setup alpha weight functions + info->alpha_weight = 0; + info->alpha_unweight = 0; + + // handle alpha weighting functions and overrides + if ( alpha_weighting_type == 2 ) + { + // high quality alpha multiplying on the way in, dividing on the way out + info->alpha_weight = fancy_alpha_weights[ input_pixel_layout - STBIRI_RGBA ]; + info->alpha_unweight = fancy_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ]; + } + else if ( alpha_weighting_type == 4 ) + { + // fast alpha multiplying on the way in, dividing on the way out + info->alpha_weight = simple_alpha_weights[ input_pixel_layout - STBIRI_RGBA ]; + info->alpha_unweight = simple_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ]; + } + else if ( alpha_weighting_type == 1 ) + { + // fast alpha on the way in, leave in premultiplied form on way out + info->alpha_weight = simple_alpha_weights[ input_pixel_layout - STBIRI_RGBA ]; + } + else if ( alpha_weighting_type == 3 ) + { + // incoming is premultiplied, fast alpha dividing on the way out - non-premultiplied output + info->alpha_unweight = simple_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ]; + } + + // handle 3-chan color flipping, using the alpha weight path + if ( ( ( input_pixel_layout == STBIRI_RGB ) && ( output_pixel_layout == STBIRI_BGR ) ) || + ( ( input_pixel_layout == STBIRI_BGR ) && ( output_pixel_layout == STBIRI_RGB ) ) ) + { + // do the flipping on the smaller of the two ends + if ( horizontal->scale_info.scale < 1.0f ) + info->alpha_unweight = stbir__simple_flip_3ch; + else + info->alpha_weight = stbir__simple_flip_3ch; + } + + } + + // get all the per-split buffers + for( i = 0 ; i < splits ; i++ ) + { + STBIR__NEXT_PTR( info->split_info[i].decode_buffer, decode_buffer_size, float ); + +#ifdef STBIR__SEPARATE_ALLOCATIONS + + #ifdef STBIR_SIMD8 + if ( ( info ) && ( effective_channels == 3 ) ) + ++info->split_info[i].decode_buffer; // avx in 3 channel mode needs one float at the start of the buffer + #endif + + STBIR__NEXT_PTR( info->split_info[i].ring_buffers, alloc_ring_buffer_num_entries * sizeof(float*), float* ); + { + int j; + for( j = 0 ; j < alloc_ring_buffer_num_entries ; j++ ) + { + STBIR__NEXT_PTR( info->split_info[i].ring_buffers[j], ring_buffer_length_bytes, float ); + #ifdef STBIR_SIMD8 + if ( ( info ) && ( effective_channels == 3 ) ) + ++info->split_info[i].ring_buffers[j]; // avx in 3 channel mode needs one float at the start of the buffer + #endif + } + } +#else + STBIR__NEXT_PTR( info->split_info[i].ring_buffer, ring_buffer_size, float ); +#endif + STBIR__NEXT_PTR( info->split_info[i].vertical_buffer, vertical_buffer_size, float ); + } + + // alloc memory for to-be-pivoted coeffs (if necessary) + if ( vertical->is_gather == 0 ) + { + int both; + int temp_mem_amt; + + // when in vertical scatter mode, we first build the coefficients in gather mode, and then pivot after, + // that means we need two buffers, so we try to use the decode buffer and ring buffer for this. if that + // is too small, we just allocate extra memory to use as this temp. + + both = vertical->gather_prescatter_contributors_size + vertical->gather_prescatter_coefficients_size; + +#ifdef STBIR__SEPARATE_ALLOCATIONS + temp_mem_amt = decode_buffer_size; + + #ifdef STBIR_SIMD8 + if ( effective_channels == 3 ) + --temp_mem_amt; // avx in 3 channel mode needs one float at the start of the buffer + #endif +#else + temp_mem_amt = ( decode_buffer_size + ring_buffer_size + vertical_buffer_size ) * splits; +#endif + if ( temp_mem_amt >= both ) + { + if ( info ) + { + vertical->gather_prescatter_contributors = (stbir__contributors*)info->split_info[0].decode_buffer; + vertical->gather_prescatter_coefficients = (float*) ( ( (char*)info->split_info[0].decode_buffer ) + vertical->gather_prescatter_contributors_size ); + } + } + else + { + // ring+decode memory is too small, so allocate temp memory + STBIR__NEXT_PTR( vertical->gather_prescatter_contributors, vertical->gather_prescatter_contributors_size, stbir__contributors ); + STBIR__NEXT_PTR( vertical->gather_prescatter_coefficients, vertical->gather_prescatter_coefficients_size, float ); + } + } + + STBIR__NEXT_PTR( horizontal->contributors, horizontal->contributors_size, stbir__contributors ); + STBIR__NEXT_PTR( horizontal->coefficients, horizontal->coefficients_size, float ); + + // are the two filters identical?? (happens a lot with mipmap generation) + if ( ( horizontal->filter_kernel == vertical->filter_kernel ) && ( horizontal->filter_support == vertical->filter_support ) && ( horizontal->edge == vertical->edge ) && ( horizontal->scale_info.output_sub_size == vertical->scale_info.output_sub_size ) ) + { + float diff_scale = horizontal->scale_info.scale - vertical->scale_info.scale; + float diff_shift = horizontal->scale_info.pixel_shift - vertical->scale_info.pixel_shift; + if ( diff_scale < 0.0f ) diff_scale = -diff_scale; + if ( diff_shift < 0.0f ) diff_shift = -diff_shift; + if ( ( diff_scale <= stbir__small_float ) && ( diff_shift <= stbir__small_float ) ) + { + if ( horizontal->is_gather == vertical->is_gather ) + { + copy_horizontal = 1; + goto no_vert_alloc; + } + // everything matches, but vertical is scatter, horizontal is gather, use horizontal coeffs for vertical pivot coeffs + possibly_use_horizontal_for_pivot = horizontal; + } + } + + STBIR__NEXT_PTR( vertical->contributors, vertical->contributors_size, stbir__contributors ); + STBIR__NEXT_PTR( vertical->coefficients, vertical->coefficients_size, float ); + + no_vert_alloc: + + if ( info ) + { + STBIR_PROFILE_BUILD_START( horizontal ); + + stbir__calculate_filters( horizontal, 0, user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO ); + + // setup the horizontal gather functions + // start with defaulting to the n_coeffs functions (specialized on channels and remnant leftover) + info->horizontal_gather_channels = stbir__horizontal_gather_n_coeffs_funcs[ effective_channels ][ horizontal->extent_info.widest & 3 ]; + // but if the number of coeffs <= 12, use another set of special cases. <=12 coeffs is any enlarging resize, or shrinking resize down to about 1/3 size + if ( horizontal->extent_info.widest <= 12 ) + info->horizontal_gather_channels = stbir__horizontal_gather_channels_funcs[ effective_channels ][ horizontal->extent_info.widest - 1 ]; + + info->scanline_extents.conservative.n0 = conservative->n0; + info->scanline_extents.conservative.n1 = conservative->n1; + + // get exact extents + stbir__get_extents( horizontal, &info->scanline_extents ); + + // pack the horizontal coeffs + horizontal->coefficient_width = stbir__pack_coefficients(horizontal->num_contributors, horizontal->contributors, horizontal->coefficients, horizontal->coefficient_width, horizontal->extent_info.widest, info->scanline_extents.conservative.n0, info->scanline_extents.conservative.n1 ); + + STBIR_MEMCPY( &info->horizontal, horizontal, sizeof( stbir__sampler ) ); + + STBIR_PROFILE_BUILD_END( horizontal ); + + if ( copy_horizontal ) + { + STBIR_MEMCPY( &info->vertical, horizontal, sizeof( stbir__sampler ) ); + } + else + { + STBIR_PROFILE_BUILD_START( vertical ); + + stbir__calculate_filters( vertical, possibly_use_horizontal_for_pivot, user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO ); + STBIR_MEMCPY( &info->vertical, vertical, sizeof( stbir__sampler ) ); + + STBIR_PROFILE_BUILD_END( vertical ); + } + + // setup the vertical split ranges + stbir__get_split_info( info->split_info, info->splits, info->vertical.scale_info.output_sub_size, info->vertical.filter_pixel_margin, info->vertical.scale_info.input_full_size ); + + // now we know precisely how many entries we need + info->ring_buffer_num_entries = info->vertical.extent_info.widest; + + // we never need more ring buffer entries than the scanlines we're outputting + if ( ( !info->vertical.is_gather ) && ( info->ring_buffer_num_entries > conservative_split_output_size ) ) + info->ring_buffer_num_entries = conservative_split_output_size; + STBIR_ASSERT( info->ring_buffer_num_entries <= info->alloc_ring_buffer_num_entries ); + + // a few of the horizontal gather functions read past the end of the decode (but mask it out), + // so put in normal values so no snans or denormals accidentally sneak in (also, in the ring + // buffer for vertical first) + for( i = 0 ; i < splits ; i++ ) + { + int t, ofs, start; + + ofs = decode_buffer_size / 4; + + #if defined( STBIR__SEPARATE_ALLOCATIONS ) && defined(STBIR_SIMD8) + if ( effective_channels == 3 ) + --ofs; // avx in 3 channel mode needs one float at the start of the buffer, so we snap back for clearing + #endif + + start = ofs - 4; + if ( start < 0 ) start = 0; + + for( t = start ; t < ofs; t++ ) + info->split_info[i].decode_buffer[ t ] = 9999.0f; + + if ( vertical_first ) + { + int j; + for( j = 0; j < info->ring_buffer_num_entries ; j++ ) + { + for( t = start ; t < ofs; t++ ) + stbir__get_ring_buffer_entry( info, info->split_info + i, j )[ t ] = 9999.0f; + } + } + } + } + + #undef STBIR__NEXT_PTR + + + // is this the first time through loop? + if ( info == 0 ) + { + alloced_total = ( 15 + (size_t)advance_mem ); + alloced = STBIR_MALLOC( alloced_total, user_data ); + if ( alloced == 0 ) + return 0; + } + else + return info; // success + } +} + +static int stbir__perform_resize( stbir__info const * info, int split_start, int split_count ) +{ + stbir__per_split_info * split_info = info->split_info + split_start; + + STBIR_PROFILE_CLEAR_EXTRAS(); + + STBIR_PROFILE_FIRST_START( looping ); + if (info->vertical.is_gather) + stbir__vertical_gather_loop( info, split_info, split_count ); + else + stbir__vertical_scatter_loop( info, split_info, split_count ); + STBIR_PROFILE_END( looping ); + + return 1; +} + +static void stbir__update_info_from_resize( stbir__info * info, STBIR_RESIZE * resize ) +{ + static stbir__decode_pixels_func * decode_simple[STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]= + { + /* 1ch-4ch */ stbir__decode_uint8_srgb, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear, + }; + + static stbir__decode_pixels_func * decode_alphas[STBIRI_AR-STBIRI_RGBA+1][STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]= + { + { /* RGBA */ stbir__decode_uint8_srgb4_linearalpha, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear }, + { /* BGRA */ stbir__decode_uint8_srgb4_linearalpha_BGRA, stbir__decode_uint8_srgb_BGRA, 0, stbir__decode_float_linear_BGRA, stbir__decode_half_float_linear_BGRA }, + { /* ARGB */ stbir__decode_uint8_srgb4_linearalpha_ARGB, stbir__decode_uint8_srgb_ARGB, 0, stbir__decode_float_linear_ARGB, stbir__decode_half_float_linear_ARGB }, + { /* ABGR */ stbir__decode_uint8_srgb4_linearalpha_ABGR, stbir__decode_uint8_srgb_ABGR, 0, stbir__decode_float_linear_ABGR, stbir__decode_half_float_linear_ABGR }, + { /* RA */ stbir__decode_uint8_srgb2_linearalpha, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear }, + { /* AR */ stbir__decode_uint8_srgb2_linearalpha_AR, stbir__decode_uint8_srgb_AR, 0, stbir__decode_float_linear_AR, stbir__decode_half_float_linear_AR }, + }; + + static stbir__decode_pixels_func * decode_simple_scaled_or_not[2][2]= + { + { stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear }, + }; + + static stbir__decode_pixels_func * decode_alphas_scaled_or_not[STBIRI_AR-STBIRI_RGBA+1][2][2]= + { + { /* RGBA */ { stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear } }, + { /* BGRA */ { stbir__decode_uint8_linear_scaled_BGRA, stbir__decode_uint8_linear_BGRA }, { stbir__decode_uint16_linear_scaled_BGRA, stbir__decode_uint16_linear_BGRA } }, + { /* ARGB */ { stbir__decode_uint8_linear_scaled_ARGB, stbir__decode_uint8_linear_ARGB }, { stbir__decode_uint16_linear_scaled_ARGB, stbir__decode_uint16_linear_ARGB } }, + { /* ABGR */ { stbir__decode_uint8_linear_scaled_ABGR, stbir__decode_uint8_linear_ABGR }, { stbir__decode_uint16_linear_scaled_ABGR, stbir__decode_uint16_linear_ABGR } }, + { /* RA */ { stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear } }, + { /* AR */ { stbir__decode_uint8_linear_scaled_AR, stbir__decode_uint8_linear_AR }, { stbir__decode_uint16_linear_scaled_AR, stbir__decode_uint16_linear_AR } } + }; + + static stbir__encode_pixels_func * encode_simple[STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]= + { + /* 1ch-4ch */ stbir__encode_uint8_srgb, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear, + }; + + static stbir__encode_pixels_func * encode_alphas[STBIRI_AR-STBIRI_RGBA+1][STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]= + { + { /* RGBA */ stbir__encode_uint8_srgb4_linearalpha, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear }, + { /* BGRA */ stbir__encode_uint8_srgb4_linearalpha_BGRA, stbir__encode_uint8_srgb_BGRA, 0, stbir__encode_float_linear_BGRA, stbir__encode_half_float_linear_BGRA }, + { /* ARGB */ stbir__encode_uint8_srgb4_linearalpha_ARGB, stbir__encode_uint8_srgb_ARGB, 0, stbir__encode_float_linear_ARGB, stbir__encode_half_float_linear_ARGB }, + { /* ABGR */ stbir__encode_uint8_srgb4_linearalpha_ABGR, stbir__encode_uint8_srgb_ABGR, 0, stbir__encode_float_linear_ABGR, stbir__encode_half_float_linear_ABGR }, + { /* RA */ stbir__encode_uint8_srgb2_linearalpha, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear }, + { /* AR */ stbir__encode_uint8_srgb2_linearalpha_AR, stbir__encode_uint8_srgb_AR, 0, stbir__encode_float_linear_AR, stbir__encode_half_float_linear_AR } + }; + + static stbir__encode_pixels_func * encode_simple_scaled_or_not[2][2]= + { + { stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear }, + }; + + static stbir__encode_pixels_func * encode_alphas_scaled_or_not[STBIRI_AR-STBIRI_RGBA+1][2][2]= + { + { /* RGBA */ { stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear } }, + { /* BGRA */ { stbir__encode_uint8_linear_scaled_BGRA, stbir__encode_uint8_linear_BGRA }, { stbir__encode_uint16_linear_scaled_BGRA, stbir__encode_uint16_linear_BGRA } }, + { /* ARGB */ { stbir__encode_uint8_linear_scaled_ARGB, stbir__encode_uint8_linear_ARGB }, { stbir__encode_uint16_linear_scaled_ARGB, stbir__encode_uint16_linear_ARGB } }, + { /* ABGR */ { stbir__encode_uint8_linear_scaled_ABGR, stbir__encode_uint8_linear_ABGR }, { stbir__encode_uint16_linear_scaled_ABGR, stbir__encode_uint16_linear_ABGR } }, + { /* RA */ { stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear } }, + { /* AR */ { stbir__encode_uint8_linear_scaled_AR, stbir__encode_uint8_linear_AR }, { stbir__encode_uint16_linear_scaled_AR, stbir__encode_uint16_linear_AR } } + }; + + stbir__decode_pixels_func * decode_pixels = 0; + stbir__encode_pixels_func * encode_pixels = 0; + stbir_datatype input_type, output_type; + + input_type = resize->input_data_type; + output_type = resize->output_data_type; + info->input_data = resize->input_pixels; + info->input_stride_bytes = resize->input_stride_in_bytes; + info->output_stride_bytes = resize->output_stride_in_bytes; + + // if we're completely point sampling, then we can turn off SRGB + if ( ( info->horizontal.filter_enum == STBIR_FILTER_POINT_SAMPLE ) && ( info->vertical.filter_enum == STBIR_FILTER_POINT_SAMPLE ) ) + { + if ( ( ( input_type == STBIR_TYPE_UINT8_SRGB ) || ( input_type == STBIR_TYPE_UINT8_SRGB_ALPHA ) ) && + ( ( output_type == STBIR_TYPE_UINT8_SRGB ) || ( output_type == STBIR_TYPE_UINT8_SRGB_ALPHA ) ) ) + { + input_type = STBIR_TYPE_UINT8; + output_type = STBIR_TYPE_UINT8; + } + } + + // recalc the output and input strides + if ( info->input_stride_bytes == 0 ) + info->input_stride_bytes = info->channels * info->horizontal.scale_info.input_full_size * stbir__type_size[input_type]; + + if ( info->output_stride_bytes == 0 ) + info->output_stride_bytes = info->channels * info->horizontal.scale_info.output_sub_size * stbir__type_size[output_type]; + + // calc offset + info->output_data = ( (char*) resize->output_pixels ) + ( (size_t) info->offset_y * (size_t) resize->output_stride_in_bytes ) + ( info->offset_x * info->channels * stbir__type_size[output_type] ); + + info->in_pixels_cb = resize->input_cb; + info->user_data = resize->user_data; + info->out_pixels_cb = resize->output_cb; + + // setup the input format converters + if ( ( input_type == STBIR_TYPE_UINT8 ) || ( input_type == STBIR_TYPE_UINT16 ) ) + { + int non_scaled = 0; + + // check if we can run unscaled - 0-255.0/0-65535.0 instead of 0-1.0 (which is a tiny bit faster when doing linear 8->8 or 16->16) + if ( ( !info->alpha_weight ) && ( !info->alpha_unweight ) ) // don't short circuit when alpha weighting (get everything to 0-1.0 as usual) + if ( ( ( input_type == STBIR_TYPE_UINT8 ) && ( output_type == STBIR_TYPE_UINT8 ) ) || ( ( input_type == STBIR_TYPE_UINT16 ) && ( output_type == STBIR_TYPE_UINT16 ) ) ) + non_scaled = 1; + + if ( info->input_pixel_layout_internal <= STBIRI_4CHANNEL ) + decode_pixels = decode_simple_scaled_or_not[ input_type == STBIR_TYPE_UINT16 ][ non_scaled ]; + else + decode_pixels = decode_alphas_scaled_or_not[ ( info->input_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ input_type == STBIR_TYPE_UINT16 ][ non_scaled ]; + } + else + { + if ( info->input_pixel_layout_internal <= STBIRI_4CHANNEL ) + decode_pixels = decode_simple[ input_type - STBIR_TYPE_UINT8_SRGB ]; + else + decode_pixels = decode_alphas[ ( info->input_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ input_type - STBIR_TYPE_UINT8_SRGB ]; + } + + // setup the output format converters + if ( ( output_type == STBIR_TYPE_UINT8 ) || ( output_type == STBIR_TYPE_UINT16 ) ) + { + int non_scaled = 0; + + // check if we can run unscaled - 0-255.0/0-65535.0 instead of 0-1.0 (which is a tiny bit faster when doing linear 8->8 or 16->16) + if ( ( !info->alpha_weight ) && ( !info->alpha_unweight ) ) // don't short circuit when alpha weighting (get everything to 0-1.0 as usual) + if ( ( ( input_type == STBIR_TYPE_UINT8 ) && ( output_type == STBIR_TYPE_UINT8 ) ) || ( ( input_type == STBIR_TYPE_UINT16 ) && ( output_type == STBIR_TYPE_UINT16 ) ) ) + non_scaled = 1; + + if ( info->output_pixel_layout_internal <= STBIRI_4CHANNEL ) + encode_pixels = encode_simple_scaled_or_not[ output_type == STBIR_TYPE_UINT16 ][ non_scaled ]; + else + encode_pixels = encode_alphas_scaled_or_not[ ( info->output_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ output_type == STBIR_TYPE_UINT16 ][ non_scaled ]; + } + else + { + if ( info->output_pixel_layout_internal <= STBIRI_4CHANNEL ) + encode_pixels = encode_simple[ output_type - STBIR_TYPE_UINT8_SRGB ]; + else + encode_pixels = encode_alphas[ ( info->output_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ output_type - STBIR_TYPE_UINT8_SRGB ]; + } + + info->input_type = input_type; + info->output_type = output_type; + info->decode_pixels = decode_pixels; + info->encode_pixels = encode_pixels; +} + +static void stbir__clip( int * outx, int * outsubw, int outw, double * u0, double * u1 ) +{ + double per, adj; + int over; + + // do left/top edge + if ( *outx < 0 ) + { + per = ( (double)*outx ) / ( (double)*outsubw ); // is negative + adj = per * ( *u1 - *u0 ); + *u0 -= adj; // increases u0 + *outx = 0; + } + + // do right/bot edge + over = outw - ( *outx + *outsubw ); + if ( over < 0 ) + { + per = ( (double)over ) / ( (double)*outsubw ); // is negative + adj = per * ( *u1 - *u0 ); + *u1 += adj; // decrease u1 + *outsubw = outw - *outx; + } +} + +// converts a double to a rational that has less than one float bit of error (returns 0 if unable to do so) +static int stbir__double_to_rational(double f, stbir_uint32 limit, stbir_uint32 *numer, stbir_uint32 *denom, int limit_denom ) // limit_denom (1) or limit numer (0) +{ + double err; + stbir_uint64 top, bot; + stbir_uint64 numer_last = 0; + stbir_uint64 denom_last = 1; + stbir_uint64 numer_estimate = 1; + stbir_uint64 denom_estimate = 0; + + // scale to past float error range + top = (stbir_uint64)( f * (double)(1 << 25) ); + bot = 1 << 25; + + // keep refining, but usually stops in a few loops - usually 5 for bad cases + for(;;) + { + stbir_uint64 est, temp; + + // hit limit, break out and do best full range estimate + if ( ( ( limit_denom ) ? denom_estimate : numer_estimate ) >= limit ) + break; + + // is the current error less than 1 bit of a float? if so, we're done + if ( denom_estimate ) + { + err = ( (double)numer_estimate / (double)denom_estimate ) - f; + if ( err < 0.0 ) err = -err; + if ( err < ( 1.0 / (double)(1<<24) ) ) + { + // yup, found it + *numer = (stbir_uint32) numer_estimate; + *denom = (stbir_uint32) denom_estimate; + return 1; + } + } + + // no more refinement bits left? break out and do full range estimate + if ( bot == 0 ) + break; + + // gcd the estimate bits + est = top / bot; + temp = top % bot; + top = bot; + bot = temp; + + // move remainders + temp = est * denom_estimate + denom_last; + denom_last = denom_estimate; + denom_estimate = temp; + + // move remainders + temp = est * numer_estimate + numer_last; + numer_last = numer_estimate; + numer_estimate = temp; + } + + // we didn't fine anything good enough for float, use a full range estimate + if ( limit_denom ) + { + numer_estimate= (stbir_uint64)( f * (double)limit + 0.5 ); + denom_estimate = limit; + } + else + { + numer_estimate = limit; + denom_estimate = (stbir_uint64)( ( (double)limit / f ) + 0.5 ); + } + + *numer = (stbir_uint32) numer_estimate; + *denom = (stbir_uint32) denom_estimate; + + err = ( denom_estimate ) ? ( ( (double)(stbir_uint32)numer_estimate / (double)(stbir_uint32)denom_estimate ) - f ) : 1.0; + if ( err < 0.0 ) err = -err; + return ( err < ( 1.0 / (double)(1<<24) ) ) ? 1 : 0; +} + +static int stbir__calculate_region_transform( stbir__scale_info * scale_info, int output_full_range, int * output_offset, int output_sub_range, int input_full_range, double input_s0, double input_s1 ) +{ + double output_range, input_range, output_s, input_s, ratio, scale; + + input_s = input_s1 - input_s0; + + // null area + if ( ( output_full_range == 0 ) || ( input_full_range == 0 ) || + ( output_sub_range == 0 ) || ( input_s <= stbir__small_float ) ) + return 0; + + // are either of the ranges completely out of bounds? + if ( ( *output_offset >= output_full_range ) || ( ( *output_offset + output_sub_range ) <= 0 ) || ( input_s0 >= (1.0f-stbir__small_float) ) || ( input_s1 <= stbir__small_float ) ) + return 0; + + output_range = (double)output_full_range; + input_range = (double)input_full_range; + + output_s = ( (double)output_sub_range) / output_range; + + // figure out the scaling to use + ratio = output_s / input_s; + + // save scale before clipping + scale = ( output_range / input_range ) * ratio; + scale_info->scale = (float)scale; + scale_info->inv_scale = (float)( 1.0 / scale ); + + // clip output area to left/right output edges (and adjust input area) + stbir__clip( output_offset, &output_sub_range, output_full_range, &input_s0, &input_s1 ); + + // recalc input area + input_s = input_s1 - input_s0; + + // after clipping do we have zero input area? + if ( input_s <= stbir__small_float ) + return 0; + + // calculate and store the starting source offsets in output pixel space + scale_info->pixel_shift = (float) ( input_s0 * ratio * output_range ); + + scale_info->scale_is_rational = stbir__double_to_rational( scale, ( scale <= 1.0 ) ? output_full_range : input_full_range, &scale_info->scale_numerator, &scale_info->scale_denominator, ( scale >= 1.0 ) ); + + scale_info->input_full_size = input_full_range; + scale_info->output_sub_size = output_sub_range; + + return 1; +} + + +static void stbir__init_and_set_layout( STBIR_RESIZE * resize, stbir_pixel_layout pixel_layout, stbir_datatype data_type ) +{ + resize->input_cb = 0; + resize->output_cb = 0; + resize->user_data = resize; + resize->samplers = 0; + resize->called_alloc = 0; + resize->horizontal_filter = STBIR_FILTER_DEFAULT; + resize->horizontal_filter_kernel = 0; resize->horizontal_filter_support = 0; + resize->vertical_filter = STBIR_FILTER_DEFAULT; + resize->vertical_filter_kernel = 0; resize->vertical_filter_support = 0; + resize->horizontal_edge = STBIR_EDGE_CLAMP; + resize->vertical_edge = STBIR_EDGE_CLAMP; + resize->input_s0 = 0; resize->input_t0 = 0; resize->input_s1 = 1; resize->input_t1 = 1; + resize->output_subx = 0; resize->output_suby = 0; resize->output_subw = resize->output_w; resize->output_subh = resize->output_h; + resize->input_data_type = data_type; + resize->output_data_type = data_type; + resize->input_pixel_layout_public = pixel_layout; + resize->output_pixel_layout_public = pixel_layout; + resize->needs_rebuild = 1; +} + +STBIRDEF void stbir_resize_init( STBIR_RESIZE * resize, + const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes, // stride can be zero + void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, // stride can be zero + stbir_pixel_layout pixel_layout, stbir_datatype data_type ) +{ + resize->input_pixels = input_pixels; + resize->input_w = input_w; + resize->input_h = input_h; + resize->input_stride_in_bytes = input_stride_in_bytes; + resize->output_pixels = output_pixels; + resize->output_w = output_w; + resize->output_h = output_h; + resize->output_stride_in_bytes = output_stride_in_bytes; + resize->fast_alpha = 0; + + stbir__init_and_set_layout( resize, pixel_layout, data_type ); +} + +// You can update parameters any time after resize_init +STBIRDEF void stbir_set_datatypes( STBIR_RESIZE * resize, stbir_datatype input_type, stbir_datatype output_type ) // by default, datatype from resize_init +{ + resize->input_data_type = input_type; + resize->output_data_type = output_type; + if ( ( resize->samplers ) && ( !resize->needs_rebuild ) ) + stbir__update_info_from_resize( resize->samplers, resize ); +} + +STBIRDEF void stbir_set_pixel_callbacks( STBIR_RESIZE * resize, stbir_input_callback * input_cb, stbir_output_callback * output_cb ) // no callbacks by default +{ + resize->input_cb = input_cb; + resize->output_cb = output_cb; + + if ( ( resize->samplers ) && ( !resize->needs_rebuild ) ) + { + resize->samplers->in_pixels_cb = input_cb; + resize->samplers->out_pixels_cb = output_cb; + } +} + +STBIRDEF void stbir_set_user_data( STBIR_RESIZE * resize, void * user_data ) // pass back STBIR_RESIZE* by default +{ + resize->user_data = user_data; + if ( ( resize->samplers ) && ( !resize->needs_rebuild ) ) + resize->samplers->user_data = user_data; +} + +STBIRDEF void stbir_set_buffer_ptrs( STBIR_RESIZE * resize, const void * input_pixels, int input_stride_in_bytes, void * output_pixels, int output_stride_in_bytes ) +{ + resize->input_pixels = input_pixels; + resize->input_stride_in_bytes = input_stride_in_bytes; + resize->output_pixels = output_pixels; + resize->output_stride_in_bytes = output_stride_in_bytes; + if ( ( resize->samplers ) && ( !resize->needs_rebuild ) ) + stbir__update_info_from_resize( resize->samplers, resize ); +} + + +STBIRDEF int stbir_set_edgemodes( STBIR_RESIZE * resize, stbir_edge horizontal_edge, stbir_edge vertical_edge ) // CLAMP by default +{ + resize->horizontal_edge = horizontal_edge; + resize->vertical_edge = vertical_edge; + resize->needs_rebuild = 1; + return 1; +} + +STBIRDEF int stbir_set_filters( STBIR_RESIZE * resize, stbir_filter horizontal_filter, stbir_filter vertical_filter ) // STBIR_DEFAULT_FILTER_UPSAMPLE/DOWNSAMPLE by default +{ + resize->horizontal_filter = horizontal_filter; + resize->vertical_filter = vertical_filter; + resize->needs_rebuild = 1; + return 1; +} + +STBIRDEF int stbir_set_filter_callbacks( STBIR_RESIZE * resize, stbir__kernel_callback * horizontal_filter, stbir__support_callback * horizontal_support, stbir__kernel_callback * vertical_filter, stbir__support_callback * vertical_support ) +{ + resize->horizontal_filter_kernel = horizontal_filter; resize->horizontal_filter_support = horizontal_support; + resize->vertical_filter_kernel = vertical_filter; resize->vertical_filter_support = vertical_support; + resize->needs_rebuild = 1; + return 1; +} + +STBIRDEF int stbir_set_pixel_layouts( STBIR_RESIZE * resize, stbir_pixel_layout input_pixel_layout, stbir_pixel_layout output_pixel_layout ) // sets new pixel layouts +{ + resize->input_pixel_layout_public = input_pixel_layout; + resize->output_pixel_layout_public = output_pixel_layout; + resize->needs_rebuild = 1; + return 1; +} + + +STBIRDEF int stbir_set_non_pm_alpha_speed_over_quality( STBIR_RESIZE * resize, int non_pma_alpha_speed_over_quality ) // sets alpha speed +{ + resize->fast_alpha = non_pma_alpha_speed_over_quality; + resize->needs_rebuild = 1; + return 1; +} + +STBIRDEF int stbir_set_input_subrect( STBIR_RESIZE * resize, double s0, double t0, double s1, double t1 ) // sets input region (full region by default) +{ + resize->input_s0 = s0; + resize->input_t0 = t0; + resize->input_s1 = s1; + resize->input_t1 = t1; + resize->needs_rebuild = 1; + + // are we inbounds? + if ( ( s1 < stbir__small_float ) || ( (s1-s0) < stbir__small_float ) || + ( t1 < stbir__small_float ) || ( (t1-t0) < stbir__small_float ) || + ( s0 > (1.0f-stbir__small_float) ) || + ( t0 > (1.0f-stbir__small_float) ) ) + return 0; + + return 1; +} + +STBIRDEF int stbir_set_output_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ) // sets input region (full region by default) +{ + resize->output_subx = subx; + resize->output_suby = suby; + resize->output_subw = subw; + resize->output_subh = subh; + resize->needs_rebuild = 1; + + // are we inbounds? + if ( ( subx >= resize->output_w ) || ( ( subx + subw ) <= 0 ) || ( suby >= resize->output_h ) || ( ( suby + subh ) <= 0 ) || ( subw == 0 ) || ( subh == 0 ) ) + return 0; + + return 1; +} + +STBIRDEF int stbir_set_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ) // sets both regions (full regions by default) +{ + double s0, t0, s1, t1; + + s0 = ( (double)subx ) / ( (double)resize->output_w ); + t0 = ( (double)suby ) / ( (double)resize->output_h ); + s1 = ( (double)(subx+subw) ) / ( (double)resize->output_w ); + t1 = ( (double)(suby+subh) ) / ( (double)resize->output_h ); + + resize->input_s0 = s0; + resize->input_t0 = t0; + resize->input_s1 = s1; + resize->input_t1 = t1; + resize->output_subx = subx; + resize->output_suby = suby; + resize->output_subw = subw; + resize->output_subh = subh; + resize->needs_rebuild = 1; + + // are we inbounds? + if ( ( subx >= resize->output_w ) || ( ( subx + subw ) <= 0 ) || ( suby >= resize->output_h ) || ( ( suby + subh ) <= 0 ) || ( subw == 0 ) || ( subh == 0 ) ) + return 0; + + return 1; +} + +static int stbir__perform_build( STBIR_RESIZE * resize, int splits ) +{ + stbir__contributors conservative = { 0, 0 }; + stbir__sampler horizontal, vertical; + int new_output_subx, new_output_suby; + stbir__info * out_info; + #ifdef STBIR_PROFILE + stbir__info profile_infod; // used to contain building profile info before everything is allocated + stbir__info * profile_info = &profile_infod; + #endif + + // have we already built the samplers? + if ( resize->samplers ) + return 0; + + #define STBIR_RETURN_ERROR_AND_ASSERT( exp ) STBIR_ASSERT( !(exp) ); if (exp) return 0; + STBIR_RETURN_ERROR_AND_ASSERT( (unsigned)resize->horizontal_filter >= STBIR_FILTER_OTHER) + STBIR_RETURN_ERROR_AND_ASSERT( (unsigned)resize->vertical_filter >= STBIR_FILTER_OTHER) + #undef STBIR_RETURN_ERROR_AND_ASSERT + + if ( splits <= 0 ) + return 0; + + STBIR_PROFILE_BUILD_FIRST_START( build ); + + new_output_subx = resize->output_subx; + new_output_suby = resize->output_suby; + + // do horizontal clip and scale calcs + if ( !stbir__calculate_region_transform( &horizontal.scale_info, resize->output_w, &new_output_subx, resize->output_subw, resize->input_w, resize->input_s0, resize->input_s1 ) ) + return 0; + + // do vertical clip and scale calcs + if ( !stbir__calculate_region_transform( &vertical.scale_info, resize->output_h, &new_output_suby, resize->output_subh, resize->input_h, resize->input_t0, resize->input_t1 ) ) + return 0; + + // if nothing to do, just return + if ( ( horizontal.scale_info.output_sub_size == 0 ) || ( vertical.scale_info.output_sub_size == 0 ) ) + return 0; + + stbir__set_sampler(&horizontal, resize->horizontal_filter, resize->horizontal_filter_kernel, resize->horizontal_filter_support, resize->horizontal_edge, &horizontal.scale_info, 1, resize->user_data ); + stbir__get_conservative_extents( &horizontal, &conservative, resize->user_data ); + stbir__set_sampler(&vertical, resize->vertical_filter, resize->horizontal_filter_kernel, resize->vertical_filter_support, resize->vertical_edge, &vertical.scale_info, 0, resize->user_data ); + + if ( ( vertical.scale_info.output_sub_size / splits ) < STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS ) // each split should be a minimum of 4 scanlines (handwavey choice) + { + splits = vertical.scale_info.output_sub_size / STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS; + if ( splits == 0 ) splits = 1; + } + + STBIR_PROFILE_BUILD_START( alloc ); + out_info = stbir__alloc_internal_mem_and_build_samplers( &horizontal, &vertical, &conservative, resize->input_pixel_layout_public, resize->output_pixel_layout_public, splits, new_output_subx, new_output_suby, resize->fast_alpha, resize->user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO ); + STBIR_PROFILE_BUILD_END( alloc ); + STBIR_PROFILE_BUILD_END( build ); + + if ( out_info ) + { + resize->splits = splits; + resize->samplers = out_info; + resize->needs_rebuild = 0; + #ifdef STBIR_PROFILE + STBIR_MEMCPY( &out_info->profile, &profile_infod.profile, sizeof( out_info->profile ) ); + #endif + + // update anything that can be changed without recalcing samplers + stbir__update_info_from_resize( out_info, resize ); + + return splits; + } + + return 0; +} + +void stbir_free_samplers( STBIR_RESIZE * resize ) +{ + if ( resize->samplers ) + { + stbir__free_internal_mem( resize->samplers ); + resize->samplers = 0; + resize->called_alloc = 0; + } +} + +STBIRDEF int stbir_build_samplers_with_splits( STBIR_RESIZE * resize, int splits ) +{ + if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) ) + { + if ( resize->samplers ) + stbir_free_samplers( resize ); + + resize->called_alloc = 1; + return stbir__perform_build( resize, splits ); + } + + STBIR_PROFILE_BUILD_CLEAR( resize->samplers ); + + return 1; +} + +STBIRDEF int stbir_build_samplers( STBIR_RESIZE * resize ) +{ + return stbir_build_samplers_with_splits( resize, 1 ); +} + +STBIRDEF int stbir_resize_extended( STBIR_RESIZE * resize ) +{ + int result; + + if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) ) + { + int alloc_state = resize->called_alloc; // remember allocated state + + if ( resize->samplers ) + { + stbir__free_internal_mem( resize->samplers ); + resize->samplers = 0; + } + + if ( !stbir_build_samplers( resize ) ) + return 0; + + resize->called_alloc = alloc_state; + + // if build_samplers succeeded (above), but there are no samplers set, then + // the area to stretch into was zero pixels, so don't do anything and return + // success + if ( resize->samplers == 0 ) + return 1; + } + else + { + // didn't build anything - clear it + STBIR_PROFILE_BUILD_CLEAR( resize->samplers ); + } + + // do resize + result = stbir__perform_resize( resize->samplers, 0, resize->splits ); + + // if we alloced, then free + if ( !resize->called_alloc ) + { + stbir_free_samplers( resize ); + resize->samplers = 0; + } + + return result; +} + +STBIRDEF int stbir_resize_extended_split( STBIR_RESIZE * resize, int split_start, int split_count ) +{ + STBIR_ASSERT( resize->samplers ); + + // if we're just doing the whole thing, call full + if ( ( split_start == -1 ) || ( ( split_start == 0 ) && ( split_count == resize->splits ) ) ) + return stbir_resize_extended( resize ); + + // you **must** build samplers first when using split resize + if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) ) + return 0; + + if ( ( split_start >= resize->splits ) || ( split_start < 0 ) || ( ( split_start + split_count ) > resize->splits ) || ( split_count <= 0 ) ) + return 0; + + // do resize + return stbir__perform_resize( resize->samplers, split_start, split_count ); +} + +static int stbir__check_output_stuff( void ** ret_ptr, int * ret_pitch, void * output_pixels, int type_size, int output_w, int output_h, int output_stride_in_bytes, stbir_internal_pixel_layout pixel_layout ) +{ + size_t size; + int pitch; + void * ptr; + + pitch = output_w * type_size * stbir__pixel_channels[ pixel_layout ]; + if ( pitch == 0 ) + return 0; + + if ( output_stride_in_bytes == 0 ) + output_stride_in_bytes = pitch; + + if ( output_stride_in_bytes < pitch ) + return 0; + + size = (size_t)output_stride_in_bytes * (size_t)output_h; + if ( size == 0 ) + return 0; + + *ret_ptr = 0; + *ret_pitch = output_stride_in_bytes; + + if ( output_pixels == 0 ) + { + ptr = STBIR_MALLOC( size, 0 ); + if ( ptr == 0 ) + return 0; + + *ret_ptr = ptr; + *ret_pitch = pitch; + } + + return 1; +} + + +STBIRDEF unsigned char * stbir_resize_uint8_linear( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes, + unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, + stbir_pixel_layout pixel_layout ) +{ + STBIR_RESIZE resize; + unsigned char * optr; + int opitch; + + if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( unsigned char ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) ) + return 0; + + stbir_resize_init( &resize, + input_pixels, input_w, input_h, input_stride_in_bytes, + (optr) ? optr : output_pixels, output_w, output_h, opitch, + pixel_layout, STBIR_TYPE_UINT8 ); + + if ( !stbir_resize_extended( &resize ) ) + { + if ( optr ) + STBIR_FREE( optr, 0 ); + return 0; + } + + return (optr) ? optr : output_pixels; +} + +STBIRDEF unsigned char * stbir_resize_uint8_srgb( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes, + unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, + stbir_pixel_layout pixel_layout ) +{ + STBIR_RESIZE resize; + unsigned char * optr; + int opitch; + + if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( unsigned char ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) ) + return 0; + + stbir_resize_init( &resize, + input_pixels, input_w, input_h, input_stride_in_bytes, + (optr) ? optr : output_pixels, output_w, output_h, opitch, + pixel_layout, STBIR_TYPE_UINT8_SRGB ); + + if ( !stbir_resize_extended( &resize ) ) + { + if ( optr ) + STBIR_FREE( optr, 0 ); + return 0; + } + + return (optr) ? optr : output_pixels; +} + + +STBIRDEF float * stbir_resize_float_linear( const float *input_pixels , int input_w , int input_h, int input_stride_in_bytes, + float *output_pixels, int output_w, int output_h, int output_stride_in_bytes, + stbir_pixel_layout pixel_layout ) +{ + STBIR_RESIZE resize; + float * optr; + int opitch; + + if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( float ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) ) + return 0; + + stbir_resize_init( &resize, + input_pixels, input_w, input_h, input_stride_in_bytes, + (optr) ? optr : output_pixels, output_w, output_h, opitch, + pixel_layout, STBIR_TYPE_FLOAT ); + + if ( !stbir_resize_extended( &resize ) ) + { + if ( optr ) + STBIR_FREE( optr, 0 ); + return 0; + } + + return (optr) ? optr : output_pixels; +} + + +STBIRDEF void * stbir_resize( const void *input_pixels , int input_w , int input_h, int input_stride_in_bytes, + void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, + stbir_pixel_layout pixel_layout, stbir_datatype data_type, + stbir_edge edge, stbir_filter filter ) +{ + STBIR_RESIZE resize; + float * optr; + int opitch; + + if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, stbir__type_size[data_type], output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) ) + return 0; + + stbir_resize_init( &resize, + input_pixels, input_w, input_h, input_stride_in_bytes, + (optr) ? optr : output_pixels, output_w, output_h, output_stride_in_bytes, + pixel_layout, data_type ); + + resize.horizontal_edge = edge; + resize.vertical_edge = edge; + resize.horizontal_filter = filter; + resize.vertical_filter = filter; + + if ( !stbir_resize_extended( &resize ) ) + { + if ( optr ) + STBIR_FREE( optr, 0 ); + return 0; + } + + return (optr) ? optr : output_pixels; +} + +#ifdef STBIR_PROFILE + +STBIRDEF void stbir_resize_build_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize ) +{ + static char const * bdescriptions[6] = { "Building", "Allocating", "Horizontal sampler", "Vertical sampler", "Coefficient cleanup", "Coefficient piovot" } ; + stbir__info* samp = resize->samplers; + int i; + + typedef int testa[ (STBIR__ARRAY_SIZE( bdescriptions ) == (STBIR__ARRAY_SIZE( samp->profile.array )-1) )?1:-1]; + typedef int testb[ (sizeof( samp->profile.array ) == (sizeof(samp->profile.named)) )?1:-1]; + typedef int testc[ (sizeof( info->clocks ) >= (sizeof(samp->profile.named)) )?1:-1]; + + for( i = 0 ; i < STBIR__ARRAY_SIZE( bdescriptions ) ; i++) + info->clocks[i] = samp->profile.array[i+1]; + + info->total_clocks = samp->profile.named.total; + info->descriptions = bdescriptions; + info->count = STBIR__ARRAY_SIZE( bdescriptions ); +} + +STBIRDEF void stbir_resize_split_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize, int split_start, int split_count ) +{ + static char const * descriptions[7] = { "Looping", "Vertical sampling", "Horizontal sampling", "Scanline input", "Scanline output", "Alpha weighting", "Alpha unweighting" }; + stbir__per_split_info * split_info; + int s, i; + + typedef int testa[ (STBIR__ARRAY_SIZE( descriptions ) == (STBIR__ARRAY_SIZE( split_info->profile.array )-1) )?1:-1]; + typedef int testb[ (sizeof( split_info->profile.array ) == (sizeof(split_info->profile.named)) )?1:-1]; + typedef int testc[ (sizeof( info->clocks ) >= (sizeof(split_info->profile.named)) )?1:-1]; + + if ( split_start == -1 ) + { + split_start = 0; + split_count = resize->samplers->splits; + } + + if ( ( split_start >= resize->splits ) || ( split_start < 0 ) || ( ( split_start + split_count ) > resize->splits ) || ( split_count <= 0 ) ) + { + info->total_clocks = 0; + info->descriptions = 0; + info->count = 0; + return; + } + + split_info = resize->samplers->split_info + split_start; + + // sum up the profile from all the splits + for( i = 0 ; i < STBIR__ARRAY_SIZE( descriptions ) ; i++ ) + { + stbir_uint64 sum = 0; + for( s = 0 ; s < split_count ; s++ ) + sum += split_info[s].profile.array[i+1]; + info->clocks[i] = sum; + } + + info->total_clocks = split_info->profile.named.total; + info->descriptions = descriptions; + info->count = STBIR__ARRAY_SIZE( descriptions ); +} + +STBIRDEF void stbir_resize_extended_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize ) +{ + stbir_resize_split_profile_info( info, resize, -1, 0 ); +} + +#endif // STBIR_PROFILE + +#undef STBIR_BGR +#undef STBIR_1CHANNEL +#undef STBIR_2CHANNEL +#undef STBIR_RGB +#undef STBIR_RGBA +#undef STBIR_4CHANNEL +#undef STBIR_BGRA +#undef STBIR_ARGB +#undef STBIR_ABGR +#undef STBIR_RA +#undef STBIR_AR +#undef STBIR_RGBA_PM +#undef STBIR_BGRA_PM +#undef STBIR_ARGB_PM +#undef STBIR_ABGR_PM +#undef STBIR_RA_PM +#undef STBIR_AR_PM + +#endif // STB_IMAGE_RESIZE_IMPLEMENTATION + +#else // STB_IMAGE_RESIZE_HORIZONTALS&STB_IMAGE_RESIZE_DO_VERTICALS + +// we reinclude the header file to define all the horizontal functions +// specializing each function for the number of coeffs is 20-40% faster *OVERALL* + +// by including the header file again this way, we can still debug the functions + +#define STBIR_strs_join2( start, mid, end ) start##mid##end +#define STBIR_strs_join1( start, mid, end ) STBIR_strs_join2( start, mid, end ) + +#define STBIR_strs_join24( start, mid1, mid2, end ) start##mid1##mid2##end +#define STBIR_strs_join14( start, mid1, mid2, end ) STBIR_strs_join24( start, mid1, mid2, end ) + +#ifdef STB_IMAGE_RESIZE_DO_CODERS + +#ifdef stbir__decode_suffix +#define STBIR__CODER_NAME( name ) STBIR_strs_join1( name, _, stbir__decode_suffix ) +#else +#define STBIR__CODER_NAME( name ) name +#endif + +#ifdef stbir__decode_swizzle +#define stbir__decode_simdf8_flip(reg) STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( stbir__simdf8_0123to,stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3),stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3)(reg, reg) +#define stbir__decode_simdf4_flip(reg) STBIR_strs_join1( STBIR_strs_join1( stbir__simdf_0123to,stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3)(reg, reg) +#define stbir__encode_simdf8_unflip(reg) STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( stbir__simdf8_0123to,stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3),stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3)(reg, reg) +#define stbir__encode_simdf4_unflip(reg) STBIR_strs_join1( STBIR_strs_join1( stbir__simdf_0123to,stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3)(reg, reg) +#else +#define stbir__decode_order0 0 +#define stbir__decode_order1 1 +#define stbir__decode_order2 2 +#define stbir__decode_order3 3 +#define stbir__encode_order0 0 +#define stbir__encode_order1 1 +#define stbir__encode_order2 2 +#define stbir__encode_order3 3 +#define stbir__decode_simdf8_flip(reg) +#define stbir__decode_simdf4_flip(reg) +#define stbir__encode_simdf8_unflip(reg) +#define stbir__encode_simdf4_unflip(reg) +#endif + +#ifdef STBIR_SIMD8 +#define stbir__encode_simdfX_unflip stbir__encode_simdf8_unflip +#else +#define stbir__encode_simdfX_unflip stbir__encode_simdf4_unflip +#endif + +static void STBIR__CODER_NAME( stbir__decode_uint8_linear_scaled )( float * decodep, int width_times_channels, void const * inputp ) +{ + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float * decode_end = (float*) decode + width_times_channels; + unsigned char const * input = (unsigned char const*)inputp; + + #ifdef STBIR_SIMD + unsigned char const * end_input_m16 = input + width_times_channels - 16; + if ( width_times_channels >= 16 ) + { + decode_end -= 16; + STBIR_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + #ifdef STBIR_SIMD8 + stbir__simdi i; stbir__simdi8 o0,o1; + stbir__simdf8 of0, of1; + STBIR_NO_UNROLL(decode); + stbir__simdi_load( i, input ); + stbir__simdi8_expand_u8_to_u32( o0, o1, i ); + stbir__simdi8_convert_i32_to_float( of0, o0 ); + stbir__simdi8_convert_i32_to_float( of1, o1 ); + stbir__simdf8_mult( of0, of0, STBIR_max_uint8_as_float_inverted8); + stbir__simdf8_mult( of1, of1, STBIR_max_uint8_as_float_inverted8); + stbir__decode_simdf8_flip( of0 ); + stbir__decode_simdf8_flip( of1 ); + stbir__simdf8_store( decode + 0, of0 ); + stbir__simdf8_store( decode + 8, of1 ); + #else + stbir__simdi i, o0, o1, o2, o3; + stbir__simdf of0, of1, of2, of3; + STBIR_NO_UNROLL(decode); + stbir__simdi_load( i, input ); + stbir__simdi_expand_u8_to_u32( o0,o1,o2,o3,i); + stbir__simdi_convert_i32_to_float( of0, o0 ); + stbir__simdi_convert_i32_to_float( of1, o1 ); + stbir__simdi_convert_i32_to_float( of2, o2 ); + stbir__simdi_convert_i32_to_float( of3, o3 ); + stbir__simdf_mult( of0, of0, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) ); + stbir__simdf_mult( of1, of1, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) ); + stbir__simdf_mult( of2, of2, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) ); + stbir__simdf_mult( of3, of3, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) ); + stbir__decode_simdf4_flip( of0 ); + stbir__decode_simdf4_flip( of1 ); + stbir__decode_simdf4_flip( of2 ); + stbir__decode_simdf4_flip( of3 ); + stbir__simdf_store( decode + 0, of0 ); + stbir__simdf_store( decode + 4, of1 ); + stbir__simdf_store( decode + 8, of2 ); + stbir__simdf_store( decode + 12, of3 ); + #endif + decode += 16; + input += 16; + if ( decode <= decode_end ) + continue; + if ( decode == ( decode_end + 16 ) ) + break; + decode = decode_end; // backup and do last couple + input = end_input_m16; + } + return; + } + #endif + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + decode += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( decode <= decode_end ) + { + STBIR_SIMD_NO_UNROLL(decode); + decode[0-4] = ((float)(input[stbir__decode_order0])) * stbir__max_uint8_as_float_inverted; + decode[1-4] = ((float)(input[stbir__decode_order1])) * stbir__max_uint8_as_float_inverted; + decode[2-4] = ((float)(input[stbir__decode_order2])) * stbir__max_uint8_as_float_inverted; + decode[3-4] = ((float)(input[stbir__decode_order3])) * stbir__max_uint8_as_float_inverted; + decode += 4; + input += 4; + } + decode -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( decode < decode_end ) + { + STBIR_NO_UNROLL(decode); + decode[0] = ((float)(input[stbir__decode_order0])) * stbir__max_uint8_as_float_inverted; + #if stbir__coder_min_num >= 2 + decode[1] = ((float)(input[stbir__decode_order1])) * stbir__max_uint8_as_float_inverted; + #endif + #if stbir__coder_min_num >= 3 + decode[2] = ((float)(input[stbir__decode_order2])) * stbir__max_uint8_as_float_inverted; + #endif + decode += stbir__coder_min_num; + input += stbir__coder_min_num; + } + #endif +} + +static void STBIR__CODER_NAME( stbir__encode_uint8_linear_scaled )( void * outputp, int width_times_channels, float const * encode ) +{ + unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char *) outputp; + unsigned char * end_output = ( (unsigned char *) output ) + width_times_channels; + + #ifdef STBIR_SIMD + if ( width_times_channels >= stbir__simdfX_float_count*2 ) + { + float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2; + end_output -= stbir__simdfX_float_count*2; + STBIR_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + stbir__simdfX e0, e1; + stbir__simdi i; + STBIR_SIMD_NO_UNROLL(encode); + stbir__simdfX_madd_mem( e0, STBIR_simd_point5X, STBIR_max_uint8_as_floatX, encode ); + stbir__simdfX_madd_mem( e1, STBIR_simd_point5X, STBIR_max_uint8_as_floatX, encode+stbir__simdfX_float_count ); + stbir__encode_simdfX_unflip( e0 ); + stbir__encode_simdfX_unflip( e1 ); + #ifdef STBIR_SIMD8 + stbir__simdf8_pack_to_16bytes( i, e0, e1 ); + stbir__simdi_store( output, i ); + #else + stbir__simdf_pack_to_8bytes( i, e0, e1 ); + stbir__simdi_store2( output, i ); + #endif + encode += stbir__simdfX_float_count*2; + output += stbir__simdfX_float_count*2; + if ( output <= end_output ) + continue; + if ( output == ( end_output + stbir__simdfX_float_count*2 ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m8; + } + return; + } + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + stbir__simdf e0; + stbir__simdi i0; + STBIR_NO_UNROLL(encode); + stbir__simdf_load( e0, encode ); + stbir__simdf_madd( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), e0 ); + stbir__encode_simdf4_unflip( e0 ); + stbir__simdf_pack_to_8bytes( i0, e0, e0 ); // only use first 4 + *(int*)(output-4) = stbir__simdi_to_int( i0 ); + output += 4; + encode += 4; + } + output -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + stbir__simdf e0; + STBIR_NO_UNROLL(encode); + stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order0 ); output[0] = stbir__simdf_convert_float_to_uint8( e0 ); + #if stbir__coder_min_num >= 2 + stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order1 ); output[1] = stbir__simdf_convert_float_to_uint8( e0 ); + #endif + #if stbir__coder_min_num >= 3 + stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order2 ); output[2] = stbir__simdf_convert_float_to_uint8( e0 ); + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif + + #else + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + while( output <= end_output ) + { + float f; + f = encode[stbir__encode_order0] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[0-4] = (unsigned char)f; + f = encode[stbir__encode_order1] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[1-4] = (unsigned char)f; + f = encode[stbir__encode_order2] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[2-4] = (unsigned char)f; + f = encode[stbir__encode_order3] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[3-4] = (unsigned char)f; + output += 4; + encode += 4; + } + output -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + float f; + STBIR_NO_UNROLL(encode); + f = encode[stbir__encode_order0] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[0] = (unsigned char)f; + #if stbir__coder_min_num >= 2 + f = encode[stbir__encode_order1] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[1] = (unsigned char)f; + #endif + #if stbir__coder_min_num >= 3 + f = encode[stbir__encode_order2] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[2] = (unsigned char)f; + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif + #endif +} + +static void STBIR__CODER_NAME(stbir__decode_uint8_linear)( float * decodep, int width_times_channels, void const * inputp ) +{ + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float * decode_end = (float*) decode + width_times_channels; + unsigned char const * input = (unsigned char const*)inputp; + + #ifdef STBIR_SIMD + unsigned char const * end_input_m16 = input + width_times_channels - 16; + if ( width_times_channels >= 16 ) + { + decode_end -= 16; + STBIR_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + #ifdef STBIR_SIMD8 + stbir__simdi i; stbir__simdi8 o0,o1; + stbir__simdf8 of0, of1; + STBIR_NO_UNROLL(decode); + stbir__simdi_load( i, input ); + stbir__simdi8_expand_u8_to_u32( o0, o1, i ); + stbir__simdi8_convert_i32_to_float( of0, o0 ); + stbir__simdi8_convert_i32_to_float( of1, o1 ); + stbir__decode_simdf8_flip( of0 ); + stbir__decode_simdf8_flip( of1 ); + stbir__simdf8_store( decode + 0, of0 ); + stbir__simdf8_store( decode + 8, of1 ); + #else + stbir__simdi i, o0, o1, o2, o3; + stbir__simdf of0, of1, of2, of3; + STBIR_NO_UNROLL(decode); + stbir__simdi_load( i, input ); + stbir__simdi_expand_u8_to_u32( o0,o1,o2,o3,i); + stbir__simdi_convert_i32_to_float( of0, o0 ); + stbir__simdi_convert_i32_to_float( of1, o1 ); + stbir__simdi_convert_i32_to_float( of2, o2 ); + stbir__simdi_convert_i32_to_float( of3, o3 ); + stbir__decode_simdf4_flip( of0 ); + stbir__decode_simdf4_flip( of1 ); + stbir__decode_simdf4_flip( of2 ); + stbir__decode_simdf4_flip( of3 ); + stbir__simdf_store( decode + 0, of0 ); + stbir__simdf_store( decode + 4, of1 ); + stbir__simdf_store( decode + 8, of2 ); + stbir__simdf_store( decode + 12, of3 ); +#endif + decode += 16; + input += 16; + if ( decode <= decode_end ) + continue; + if ( decode == ( decode_end + 16 ) ) + break; + decode = decode_end; // backup and do last couple + input = end_input_m16; + } + return; + } + #endif + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + decode += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( decode <= decode_end ) + { + STBIR_SIMD_NO_UNROLL(decode); + decode[0-4] = ((float)(input[stbir__decode_order0])); + decode[1-4] = ((float)(input[stbir__decode_order1])); + decode[2-4] = ((float)(input[stbir__decode_order2])); + decode[3-4] = ((float)(input[stbir__decode_order3])); + decode += 4; + input += 4; + } + decode -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( decode < decode_end ) + { + STBIR_NO_UNROLL(decode); + decode[0] = ((float)(input[stbir__decode_order0])); + #if stbir__coder_min_num >= 2 + decode[1] = ((float)(input[stbir__decode_order1])); + #endif + #if stbir__coder_min_num >= 3 + decode[2] = ((float)(input[stbir__decode_order2])); + #endif + decode += stbir__coder_min_num; + input += stbir__coder_min_num; + } + #endif +} + +static void STBIR__CODER_NAME( stbir__encode_uint8_linear )( void * outputp, int width_times_channels, float const * encode ) +{ + unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char *) outputp; + unsigned char * end_output = ( (unsigned char *) output ) + width_times_channels; + + #ifdef STBIR_SIMD + if ( width_times_channels >= stbir__simdfX_float_count*2 ) + { + float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2; + end_output -= stbir__simdfX_float_count*2; + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + stbir__simdfX e0, e1; + stbir__simdi i; + STBIR_SIMD_NO_UNROLL(encode); + stbir__simdfX_add_mem( e0, STBIR_simd_point5X, encode ); + stbir__simdfX_add_mem( e1, STBIR_simd_point5X, encode+stbir__simdfX_float_count ); + stbir__encode_simdfX_unflip( e0 ); + stbir__encode_simdfX_unflip( e1 ); + #ifdef STBIR_SIMD8 + stbir__simdf8_pack_to_16bytes( i, e0, e1 ); + stbir__simdi_store( output, i ); + #else + stbir__simdf_pack_to_8bytes( i, e0, e1 ); + stbir__simdi_store2( output, i ); + #endif + encode += stbir__simdfX_float_count*2; + output += stbir__simdfX_float_count*2; + if ( output <= end_output ) + continue; + if ( output == ( end_output + stbir__simdfX_float_count*2 ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m8; + } + return; + } + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + stbir__simdf e0; + stbir__simdi i0; + STBIR_NO_UNROLL(encode); + stbir__simdf_load( e0, encode ); + stbir__simdf_add( e0, STBIR__CONSTF(STBIR_simd_point5), e0 ); + stbir__encode_simdf4_unflip( e0 ); + stbir__simdf_pack_to_8bytes( i0, e0, e0 ); // only use first 4 + *(int*)(output-4) = stbir__simdi_to_int( i0 ); + output += 4; + encode += 4; + } + output -= 4; + #endif + + #else + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + while( output <= end_output ) + { + float f; + f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 255); output[0-4] = (unsigned char)f; + f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 255); output[1-4] = (unsigned char)f; + f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 255); output[2-4] = (unsigned char)f; + f = encode[stbir__encode_order3] + 0.5f; STBIR_CLAMP(f, 0, 255); output[3-4] = (unsigned char)f; + output += 4; + encode += 4; + } + output -= 4; + #endif + + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + float f; + STBIR_NO_UNROLL(encode); + f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 255); output[0] = (unsigned char)f; + #if stbir__coder_min_num >= 2 + f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 255); output[1] = (unsigned char)f; + #endif + #if stbir__coder_min_num >= 3 + f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 255); output[2] = (unsigned char)f; + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif +} + +static void STBIR__CODER_NAME(stbir__decode_uint8_srgb)( float * decodep, int width_times_channels, void const * inputp ) +{ + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float const * decode_end = (float*) decode + width_times_channels; + unsigned char const * input = (unsigned char const *)inputp; + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + decode += 4; + while( decode <= decode_end ) + { + decode[0-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order0 ] ]; + decode[1-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order1 ] ]; + decode[2-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order2 ] ]; + decode[3-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order3 ] ]; + decode += 4; + input += 4; + } + decode -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( decode < decode_end ) + { + STBIR_NO_UNROLL(decode); + decode[0] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order0 ] ]; + #if stbir__coder_min_num >= 2 + decode[1] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order1 ] ]; + #endif + #if stbir__coder_min_num >= 3 + decode[2] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order2 ] ]; + #endif + decode += stbir__coder_min_num; + input += stbir__coder_min_num; + } + #endif +} + +#define stbir__min_max_shift20( i, f ) \ + stbir__simdf_max( f, f, stbir_simdf_casti(STBIR__CONSTI( STBIR_almost_zero )) ); \ + stbir__simdf_min( f, f, stbir_simdf_casti(STBIR__CONSTI( STBIR_almost_one )) ); \ + stbir__simdi_32shr( i, stbir_simdi_castf( f ), 20 ); + +#define stbir__scale_and_convert( i, f ) \ + stbir__simdf_madd( f, STBIR__CONSTF( STBIR_simd_point5 ), STBIR__CONSTF( STBIR_max_uint8_as_float ), f ); \ + stbir__simdf_max( f, f, stbir__simdf_zeroP() ); \ + stbir__simdf_min( f, f, STBIR__CONSTF( STBIR_max_uint8_as_float ) ); \ + stbir__simdf_convert_float_to_i32( i, f ); + +#define stbir__linear_to_srgb_finish( i, f ) \ +{ \ + stbir__simdi temp; \ + stbir__simdi_32shr( temp, stbir_simdi_castf( f ), 12 ) ; \ + stbir__simdi_and( temp, temp, STBIR__CONSTI(STBIR_mastissa_mask) ); \ + stbir__simdi_or( temp, temp, STBIR__CONSTI(STBIR_topscale) ); \ + stbir__simdi_16madd( i, i, temp ); \ + stbir__simdi_32shr( i, i, 16 ); \ +} + +#define stbir__simdi_table_lookup2( v0,v1, table ) \ +{ \ + stbir__simdi_u32 temp0,temp1; \ + temp0.m128i_i128 = v0; \ + temp1.m128i_i128 = v1; \ + temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \ + temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \ + v0 = temp0.m128i_i128; \ + v1 = temp1.m128i_i128; \ +} + +#define stbir__simdi_table_lookup3( v0,v1,v2, table ) \ +{ \ + stbir__simdi_u32 temp0,temp1,temp2; \ + temp0.m128i_i128 = v0; \ + temp1.m128i_i128 = v1; \ + temp2.m128i_i128 = v2; \ + temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \ + temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \ + temp2.m128i_u32[0] = table[temp2.m128i_i32[0]]; temp2.m128i_u32[1] = table[temp2.m128i_i32[1]]; temp2.m128i_u32[2] = table[temp2.m128i_i32[2]]; temp2.m128i_u32[3] = table[temp2.m128i_i32[3]]; \ + v0 = temp0.m128i_i128; \ + v1 = temp1.m128i_i128; \ + v2 = temp2.m128i_i128; \ +} + +#define stbir__simdi_table_lookup4( v0,v1,v2,v3, table ) \ +{ \ + stbir__simdi_u32 temp0,temp1,temp2,temp3; \ + temp0.m128i_i128 = v0; \ + temp1.m128i_i128 = v1; \ + temp2.m128i_i128 = v2; \ + temp3.m128i_i128 = v3; \ + temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \ + temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \ + temp2.m128i_u32[0] = table[temp2.m128i_i32[0]]; temp2.m128i_u32[1] = table[temp2.m128i_i32[1]]; temp2.m128i_u32[2] = table[temp2.m128i_i32[2]]; temp2.m128i_u32[3] = table[temp2.m128i_i32[3]]; \ + temp3.m128i_u32[0] = table[temp3.m128i_i32[0]]; temp3.m128i_u32[1] = table[temp3.m128i_i32[1]]; temp3.m128i_u32[2] = table[temp3.m128i_i32[2]]; temp3.m128i_u32[3] = table[temp3.m128i_i32[3]]; \ + v0 = temp0.m128i_i128; \ + v1 = temp1.m128i_i128; \ + v2 = temp2.m128i_i128; \ + v3 = temp3.m128i_i128; \ +} + +static void STBIR__CODER_NAME( stbir__encode_uint8_srgb )( void * outputp, int width_times_channels, float const * encode ) +{ + unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp; + unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels; + + #ifdef STBIR_SIMD + + if ( width_times_channels >= 16 ) + { + float const * end_encode_m16 = encode + width_times_channels - 16; + end_output -= 16; + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + stbir__simdf f0, f1, f2, f3; + stbir__simdi i0, i1, i2, i3; + STBIR_SIMD_NO_UNROLL(encode); + + stbir__simdf_load4_transposed( f0, f1, f2, f3, encode ); + + stbir__min_max_shift20( i0, f0 ); + stbir__min_max_shift20( i1, f1 ); + stbir__min_max_shift20( i2, f2 ); + stbir__min_max_shift20( i3, f3 ); + + stbir__simdi_table_lookup4( i0, i1, i2, i3, ( fp32_to_srgb8_tab4 - (127-13)*8 ) ); + + stbir__linear_to_srgb_finish( i0, f0 ); + stbir__linear_to_srgb_finish( i1, f1 ); + stbir__linear_to_srgb_finish( i2, f2 ); + stbir__linear_to_srgb_finish( i3, f3 ); + + stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) ); + + encode += 16; + output += 16; + if ( output <= end_output ) + continue; + if ( output == ( end_output + 16 ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m16; + } + return; + } + #endif + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while ( output <= end_output ) + { + STBIR_SIMD_NO_UNROLL(encode); + + output[0-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order0] ); + output[1-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order1] ); + output[2-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order2] ); + output[3-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order3] ); + + output += 4; + encode += 4; + } + output -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + STBIR_NO_UNROLL(encode); + output[0] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order0] ); + #if stbir__coder_min_num >= 2 + output[1] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order1] ); + #endif + #if stbir__coder_min_num >= 3 + output[2] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order2] ); + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif +} + +#if ( stbir__coder_min_num == 4 ) || ( ( stbir__coder_min_num == 1 ) && ( !defined(stbir__decode_swizzle) ) ) + +static void STBIR__CODER_NAME(stbir__decode_uint8_srgb4_linearalpha)( float * decodep, int width_times_channels, void const * inputp ) +{ + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float const * decode_end = (float*) decode + width_times_channels; + unsigned char const * input = (unsigned char const *)inputp; + do { + decode[0] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0] ]; + decode[1] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order1] ]; + decode[2] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order2] ]; + decode[3] = ( (float) input[stbir__decode_order3] ) * stbir__max_uint8_as_float_inverted; + input += 4; + decode += 4; + } while( decode < decode_end ); +} + + +static void STBIR__CODER_NAME( stbir__encode_uint8_srgb4_linearalpha )( void * outputp, int width_times_channels, float const * encode ) +{ + unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp; + unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels; + + #ifdef STBIR_SIMD + + if ( width_times_channels >= 16 ) + { + float const * end_encode_m16 = encode + width_times_channels - 16; + end_output -= 16; + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + stbir__simdf f0, f1, f2, f3; + stbir__simdi i0, i1, i2, i3; + + STBIR_SIMD_NO_UNROLL(encode); + stbir__simdf_load4_transposed( f0, f1, f2, f3, encode ); + + stbir__min_max_shift20( i0, f0 ); + stbir__min_max_shift20( i1, f1 ); + stbir__min_max_shift20( i2, f2 ); + stbir__scale_and_convert( i3, f3 ); + + stbir__simdi_table_lookup3( i0, i1, i2, ( fp32_to_srgb8_tab4 - (127-13)*8 ) ); + + stbir__linear_to_srgb_finish( i0, f0 ); + stbir__linear_to_srgb_finish( i1, f1 ); + stbir__linear_to_srgb_finish( i2, f2 ); + + stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) ); + + output += 16; + encode += 16; + + if ( output <= end_output ) + continue; + if ( output == ( end_output + 16 ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m16; + } + return; + } + #endif + + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float f; + STBIR_SIMD_NO_UNROLL(encode); + + output[stbir__decode_order0] = stbir__linear_to_srgb_uchar( encode[0] ); + output[stbir__decode_order1] = stbir__linear_to_srgb_uchar( encode[1] ); + output[stbir__decode_order2] = stbir__linear_to_srgb_uchar( encode[2] ); + + f = encode[3] * stbir__max_uint8_as_float + 0.5f; + STBIR_CLAMP(f, 0, 255); + output[stbir__decode_order3] = (unsigned char) f; + + output += 4; + encode += 4; + } while( output < end_output ); +} + +#endif + +#if ( stbir__coder_min_num == 2 ) || ( ( stbir__coder_min_num == 1 ) && ( !defined(stbir__decode_swizzle) ) ) + +static void STBIR__CODER_NAME(stbir__decode_uint8_srgb2_linearalpha)( float * decodep, int width_times_channels, void const * inputp ) +{ + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float const * decode_end = (float*) decode + width_times_channels; + unsigned char const * input = (unsigned char const *)inputp; + decode += 4; + while( decode <= decode_end ) + { + decode[0-4] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0] ]; + decode[1-4] = ( (float) input[stbir__decode_order1] ) * stbir__max_uint8_as_float_inverted; + decode[2-4] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0+2] ]; + decode[3-4] = ( (float) input[stbir__decode_order1+2] ) * stbir__max_uint8_as_float_inverted; + input += 4; + decode += 4; + } + decode -= 4; + if( decode < decode_end ) + { + decode[0] = stbir__srgb_uchar_to_linear_float[ stbir__decode_order0 ]; + decode[1] = ( (float) input[stbir__decode_order1] ) * stbir__max_uint8_as_float_inverted; + } +} + +static void STBIR__CODER_NAME( stbir__encode_uint8_srgb2_linearalpha )( void * outputp, int width_times_channels, float const * encode ) +{ + unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp; + unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels; + + #ifdef STBIR_SIMD + + if ( width_times_channels >= 16 ) + { + float const * end_encode_m16 = encode + width_times_channels - 16; + end_output -= 16; + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + stbir__simdf f0, f1, f2, f3; + stbir__simdi i0, i1, i2, i3; + + STBIR_SIMD_NO_UNROLL(encode); + stbir__simdf_load4_transposed( f0, f1, f2, f3, encode ); + + stbir__min_max_shift20( i0, f0 ); + stbir__scale_and_convert( i1, f1 ); + stbir__min_max_shift20( i2, f2 ); + stbir__scale_and_convert( i3, f3 ); + + stbir__simdi_table_lookup2( i0, i2, ( fp32_to_srgb8_tab4 - (127-13)*8 ) ); + + stbir__linear_to_srgb_finish( i0, f0 ); + stbir__linear_to_srgb_finish( i2, f2 ); + + stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) ); + + output += 16; + encode += 16; + if ( output <= end_output ) + continue; + if ( output == ( end_output + 16 ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m16; + } + return; + } + #endif + + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float f; + STBIR_SIMD_NO_UNROLL(encode); + + output[stbir__decode_order0] = stbir__linear_to_srgb_uchar( encode[0] ); + + f = encode[1] * stbir__max_uint8_as_float + 0.5f; + STBIR_CLAMP(f, 0, 255); + output[stbir__decode_order1] = (unsigned char) f; + + output += 2; + encode += 2; + } while( output < end_output ); +} + +#endif + +static void STBIR__CODER_NAME(stbir__decode_uint16_linear_scaled)( float * decodep, int width_times_channels, void const * inputp ) +{ + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float * decode_end = (float*) decode + width_times_channels; + unsigned short const * input = (unsigned short const *)inputp; + + #ifdef STBIR_SIMD + unsigned short const * end_input_m8 = input + width_times_channels - 8; + if ( width_times_channels >= 8 ) + { + decode_end -= 8; + STBIR_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + #ifdef STBIR_SIMD8 + stbir__simdi i; stbir__simdi8 o; + stbir__simdf8 of; + STBIR_NO_UNROLL(decode); + stbir__simdi_load( i, input ); + stbir__simdi8_expand_u16_to_u32( o, i ); + stbir__simdi8_convert_i32_to_float( of, o ); + stbir__simdf8_mult( of, of, STBIR_max_uint16_as_float_inverted8); + stbir__decode_simdf8_flip( of ); + stbir__simdf8_store( decode + 0, of ); + #else + stbir__simdi i, o0, o1; + stbir__simdf of0, of1; + STBIR_NO_UNROLL(decode); + stbir__simdi_load( i, input ); + stbir__simdi_expand_u16_to_u32( o0,o1,i ); + stbir__simdi_convert_i32_to_float( of0, o0 ); + stbir__simdi_convert_i32_to_float( of1, o1 ); + stbir__simdf_mult( of0, of0, STBIR__CONSTF(STBIR_max_uint16_as_float_inverted) ); + stbir__simdf_mult( of1, of1, STBIR__CONSTF(STBIR_max_uint16_as_float_inverted)); + stbir__decode_simdf4_flip( of0 ); + stbir__decode_simdf4_flip( of1 ); + stbir__simdf_store( decode + 0, of0 ); + stbir__simdf_store( decode + 4, of1 ); + #endif + decode += 8; + input += 8; + if ( decode <= decode_end ) + continue; + if ( decode == ( decode_end + 8 ) ) + break; + decode = decode_end; // backup and do last couple + input = end_input_m8; + } + return; + } + #endif + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + decode += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( decode <= decode_end ) + { + STBIR_SIMD_NO_UNROLL(decode); + decode[0-4] = ((float)(input[stbir__decode_order0])) * stbir__max_uint16_as_float_inverted; + decode[1-4] = ((float)(input[stbir__decode_order1])) * stbir__max_uint16_as_float_inverted; + decode[2-4] = ((float)(input[stbir__decode_order2])) * stbir__max_uint16_as_float_inverted; + decode[3-4] = ((float)(input[stbir__decode_order3])) * stbir__max_uint16_as_float_inverted; + decode += 4; + input += 4; + } + decode -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( decode < decode_end ) + { + STBIR_NO_UNROLL(decode); + decode[0] = ((float)(input[stbir__decode_order0])) * stbir__max_uint16_as_float_inverted; + #if stbir__coder_min_num >= 2 + decode[1] = ((float)(input[stbir__decode_order1])) * stbir__max_uint16_as_float_inverted; + #endif + #if stbir__coder_min_num >= 3 + decode[2] = ((float)(input[stbir__decode_order2])) * stbir__max_uint16_as_float_inverted; + #endif + decode += stbir__coder_min_num; + input += stbir__coder_min_num; + } + #endif +} + + +static void STBIR__CODER_NAME(stbir__encode_uint16_linear_scaled)( void * outputp, int width_times_channels, float const * encode ) +{ + unsigned short STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned short*) outputp; + unsigned short * end_output = ( (unsigned short*) output ) + width_times_channels; + + #ifdef STBIR_SIMD + { + if ( width_times_channels >= stbir__simdfX_float_count*2 ) + { + float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2; + end_output -= stbir__simdfX_float_count*2; + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + stbir__simdfX e0, e1; + stbir__simdiX i; + STBIR_SIMD_NO_UNROLL(encode); + stbir__simdfX_madd_mem( e0, STBIR_simd_point5X, STBIR_max_uint16_as_floatX, encode ); + stbir__simdfX_madd_mem( e1, STBIR_simd_point5X, STBIR_max_uint16_as_floatX, encode+stbir__simdfX_float_count ); + stbir__encode_simdfX_unflip( e0 ); + stbir__encode_simdfX_unflip( e1 ); + stbir__simdfX_pack_to_words( i, e0, e1 ); + stbir__simdiX_store( output, i ); + encode += stbir__simdfX_float_count*2; + output += stbir__simdfX_float_count*2; + if ( output <= end_output ) + continue; + if ( output == ( end_output + stbir__simdfX_float_count*2 ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m8; + } + return; + } + } + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + stbir__simdf e; + stbir__simdi i; + STBIR_NO_UNROLL(encode); + stbir__simdf_load( e, encode ); + stbir__simdf_madd( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), e ); + stbir__encode_simdf4_unflip( e ); + stbir__simdf_pack_to_8words( i, e, e ); // only use first 4 + stbir__simdi_store2( output-4, i ); + output += 4; + encode += 4; + } + output -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + stbir__simdf e; + STBIR_NO_UNROLL(encode); + stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order0 ); output[0] = stbir__simdf_convert_float_to_short( e ); + #if stbir__coder_min_num >= 2 + stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order1 ); output[1] = stbir__simdf_convert_float_to_short( e ); + #endif + #if stbir__coder_min_num >= 3 + stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order2 ); output[2] = stbir__simdf_convert_float_to_short( e ); + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif + + #else + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + float f; + STBIR_SIMD_NO_UNROLL(encode); + f = encode[stbir__encode_order0] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0-4] = (unsigned short)f; + f = encode[stbir__encode_order1] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1-4] = (unsigned short)f; + f = encode[stbir__encode_order2] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2-4] = (unsigned short)f; + f = encode[stbir__encode_order3] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[3-4] = (unsigned short)f; + output += 4; + encode += 4; + } + output -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + float f; + STBIR_NO_UNROLL(encode); + f = encode[stbir__encode_order0] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0] = (unsigned short)f; + #if stbir__coder_min_num >= 2 + f = encode[stbir__encode_order1] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1] = (unsigned short)f; + #endif + #if stbir__coder_min_num >= 3 + f = encode[stbir__encode_order2] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2] = (unsigned short)f; + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif + #endif +} + +static void STBIR__CODER_NAME(stbir__decode_uint16_linear)( float * decodep, int width_times_channels, void const * inputp ) +{ + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float * decode_end = (float*) decode + width_times_channels; + unsigned short const * input = (unsigned short const *)inputp; + + #ifdef STBIR_SIMD + unsigned short const * end_input_m8 = input + width_times_channels - 8; + if ( width_times_channels >= 8 ) + { + decode_end -= 8; + STBIR_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + #ifdef STBIR_SIMD8 + stbir__simdi i; stbir__simdi8 o; + stbir__simdf8 of; + STBIR_NO_UNROLL(decode); + stbir__simdi_load( i, input ); + stbir__simdi8_expand_u16_to_u32( o, i ); + stbir__simdi8_convert_i32_to_float( of, o ); + stbir__decode_simdf8_flip( of ); + stbir__simdf8_store( decode + 0, of ); + #else + stbir__simdi i, o0, o1; + stbir__simdf of0, of1; + STBIR_NO_UNROLL(decode); + stbir__simdi_load( i, input ); + stbir__simdi_expand_u16_to_u32( o0, o1, i ); + stbir__simdi_convert_i32_to_float( of0, o0 ); + stbir__simdi_convert_i32_to_float( of1, o1 ); + stbir__decode_simdf4_flip( of0 ); + stbir__decode_simdf4_flip( of1 ); + stbir__simdf_store( decode + 0, of0 ); + stbir__simdf_store( decode + 4, of1 ); + #endif + decode += 8; + input += 8; + if ( decode <= decode_end ) + continue; + if ( decode == ( decode_end + 8 ) ) + break; + decode = decode_end; // backup and do last couple + input = end_input_m8; + } + return; + } + #endif + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + decode += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( decode <= decode_end ) + { + STBIR_SIMD_NO_UNROLL(decode); + decode[0-4] = ((float)(input[stbir__decode_order0])); + decode[1-4] = ((float)(input[stbir__decode_order1])); + decode[2-4] = ((float)(input[stbir__decode_order2])); + decode[3-4] = ((float)(input[stbir__decode_order3])); + decode += 4; + input += 4; + } + decode -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( decode < decode_end ) + { + STBIR_NO_UNROLL(decode); + decode[0] = ((float)(input[stbir__decode_order0])); + #if stbir__coder_min_num >= 2 + decode[1] = ((float)(input[stbir__decode_order1])); + #endif + #if stbir__coder_min_num >= 3 + decode[2] = ((float)(input[stbir__decode_order2])); + #endif + decode += stbir__coder_min_num; + input += stbir__coder_min_num; + } + #endif +} + +static void STBIR__CODER_NAME(stbir__encode_uint16_linear)( void * outputp, int width_times_channels, float const * encode ) +{ + unsigned short STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned short*) outputp; + unsigned short * end_output = ( (unsigned short*) output ) + width_times_channels; + + #ifdef STBIR_SIMD + { + if ( width_times_channels >= stbir__simdfX_float_count*2 ) + { + float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2; + end_output -= stbir__simdfX_float_count*2; + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + stbir__simdfX e0, e1; + stbir__simdiX i; + STBIR_SIMD_NO_UNROLL(encode); + stbir__simdfX_add_mem( e0, STBIR_simd_point5X, encode ); + stbir__simdfX_add_mem( e1, STBIR_simd_point5X, encode+stbir__simdfX_float_count ); + stbir__encode_simdfX_unflip( e0 ); + stbir__encode_simdfX_unflip( e1 ); + stbir__simdfX_pack_to_words( i, e0, e1 ); + stbir__simdiX_store( output, i ); + encode += stbir__simdfX_float_count*2; + output += stbir__simdfX_float_count*2; + if ( output <= end_output ) + continue; + if ( output == ( end_output + stbir__simdfX_float_count*2 ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m8; + } + return; + } + } + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + stbir__simdf e; + stbir__simdi i; + STBIR_NO_UNROLL(encode); + stbir__simdf_load( e, encode ); + stbir__simdf_add( e, STBIR__CONSTF(STBIR_simd_point5), e ); + stbir__encode_simdf4_unflip( e ); + stbir__simdf_pack_to_8words( i, e, e ); // only use first 4 + stbir__simdi_store2( output-4, i ); + output += 4; + encode += 4; + } + output -= 4; + #endif + + #else + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + float f; + STBIR_SIMD_NO_UNROLL(encode); + f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0-4] = (unsigned short)f; + f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1-4] = (unsigned short)f; + f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2-4] = (unsigned short)f; + f = encode[stbir__encode_order3] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[3-4] = (unsigned short)f; + output += 4; + encode += 4; + } + output -= 4; + #endif + + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + float f; + STBIR_NO_UNROLL(encode); + f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0] = (unsigned short)f; + #if stbir__coder_min_num >= 2 + f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1] = (unsigned short)f; + #endif + #if stbir__coder_min_num >= 3 + f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2] = (unsigned short)f; + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif +} + +static void STBIR__CODER_NAME(stbir__decode_half_float_linear)( float * decodep, int width_times_channels, void const * inputp ) +{ + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float * decode_end = (float*) decode + width_times_channels; + stbir__FP16 const * input = (stbir__FP16 const *)inputp; + + #ifdef STBIR_SIMD + if ( width_times_channels >= 8 ) + { + stbir__FP16 const * end_input_m8 = input + width_times_channels - 8; + decode_end -= 8; + STBIR_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + STBIR_NO_UNROLL(decode); + + stbir__half_to_float_SIMD( decode, input ); + #ifdef stbir__decode_swizzle + #ifdef STBIR_SIMD8 + { + stbir__simdf8 of; + stbir__simdf8_load( of, decode ); + stbir__decode_simdf8_flip( of ); + stbir__simdf8_store( decode, of ); + } + #else + { + stbir__simdf of0,of1; + stbir__simdf_load( of0, decode ); + stbir__simdf_load( of1, decode+4 ); + stbir__decode_simdf4_flip( of0 ); + stbir__decode_simdf4_flip( of1 ); + stbir__simdf_store( decode, of0 ); + stbir__simdf_store( decode+4, of1 ); + } + #endif + #endif + decode += 8; + input += 8; + if ( decode <= decode_end ) + continue; + if ( decode == ( decode_end + 8 ) ) + break; + decode = decode_end; // backup and do last couple + input = end_input_m8; + } + return; + } + #endif + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + decode += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( decode <= decode_end ) + { + STBIR_SIMD_NO_UNROLL(decode); + decode[0-4] = stbir__half_to_float(input[stbir__decode_order0]); + decode[1-4] = stbir__half_to_float(input[stbir__decode_order1]); + decode[2-4] = stbir__half_to_float(input[stbir__decode_order2]); + decode[3-4] = stbir__half_to_float(input[stbir__decode_order3]); + decode += 4; + input += 4; + } + decode -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( decode < decode_end ) + { + STBIR_NO_UNROLL(decode); + decode[0] = stbir__half_to_float(input[stbir__decode_order0]); + #if stbir__coder_min_num >= 2 + decode[1] = stbir__half_to_float(input[stbir__decode_order1]); + #endif + #if stbir__coder_min_num >= 3 + decode[2] = stbir__half_to_float(input[stbir__decode_order2]); + #endif + decode += stbir__coder_min_num; + input += stbir__coder_min_num; + } + #endif +} + +static void STBIR__CODER_NAME( stbir__encode_half_float_linear )( void * outputp, int width_times_channels, float const * encode ) +{ + stbir__FP16 STBIR_SIMD_STREAMOUT_PTR( * ) output = (stbir__FP16*) outputp; + stbir__FP16 * end_output = ( (stbir__FP16*) output ) + width_times_channels; + + #ifdef STBIR_SIMD + if ( width_times_channels >= 8 ) + { + float const * end_encode_m8 = encode + width_times_channels - 8; + end_output -= 8; + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + STBIR_SIMD_NO_UNROLL(encode); + #ifdef stbir__decode_swizzle + #ifdef STBIR_SIMD8 + { + stbir__simdf8 of; + stbir__simdf8_load( of, encode ); + stbir__encode_simdf8_unflip( of ); + stbir__float_to_half_SIMD( output, (float*)&of ); + } + #else + { + stbir__simdf of[2]; + stbir__simdf_load( of[0], encode ); + stbir__simdf_load( of[1], encode+4 ); + stbir__encode_simdf4_unflip( of[0] ); + stbir__encode_simdf4_unflip( of[1] ); + stbir__float_to_half_SIMD( output, (float*)of ); + } + #endif + #else + stbir__float_to_half_SIMD( output, encode ); + #endif + encode += 8; + output += 8; + if ( output <= end_output ) + continue; + if ( output == ( end_output + 8 ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m8; + } + return; + } + #endif + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + STBIR_SIMD_NO_UNROLL(output); + output[0-4] = stbir__float_to_half(encode[stbir__encode_order0]); + output[1-4] = stbir__float_to_half(encode[stbir__encode_order1]); + output[2-4] = stbir__float_to_half(encode[stbir__encode_order2]); + output[3-4] = stbir__float_to_half(encode[stbir__encode_order3]); + output += 4; + encode += 4; + } + output -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + STBIR_NO_UNROLL(output); + output[0] = stbir__float_to_half(encode[stbir__encode_order0]); + #if stbir__coder_min_num >= 2 + output[1] = stbir__float_to_half(encode[stbir__encode_order1]); + #endif + #if stbir__coder_min_num >= 3 + output[2] = stbir__float_to_half(encode[stbir__encode_order2]); + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif +} + +static void STBIR__CODER_NAME(stbir__decode_float_linear)( float * decodep, int width_times_channels, void const * inputp ) +{ + #ifdef stbir__decode_swizzle + float STBIR_STREAMOUT_PTR( * ) decode = decodep; + float * decode_end = (float*) decode + width_times_channels; + float const * input = (float const *)inputp; + + #ifdef STBIR_SIMD + if ( width_times_channels >= 16 ) + { + float const * end_input_m16 = input + width_times_channels - 16; + decode_end -= 16; + STBIR_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + STBIR_NO_UNROLL(decode); + #ifdef stbir__decode_swizzle + #ifdef STBIR_SIMD8 + { + stbir__simdf8 of0,of1; + stbir__simdf8_load( of0, input ); + stbir__simdf8_load( of1, input+8 ); + stbir__decode_simdf8_flip( of0 ); + stbir__decode_simdf8_flip( of1 ); + stbir__simdf8_store( decode, of0 ); + stbir__simdf8_store( decode+8, of1 ); + } + #else + { + stbir__simdf of0,of1,of2,of3; + stbir__simdf_load( of0, input ); + stbir__simdf_load( of1, input+4 ); + stbir__simdf_load( of2, input+8 ); + stbir__simdf_load( of3, input+12 ); + stbir__decode_simdf4_flip( of0 ); + stbir__decode_simdf4_flip( of1 ); + stbir__decode_simdf4_flip( of2 ); + stbir__decode_simdf4_flip( of3 ); + stbir__simdf_store( decode, of0 ); + stbir__simdf_store( decode+4, of1 ); + stbir__simdf_store( decode+8, of2 ); + stbir__simdf_store( decode+12, of3 ); + } + #endif + #endif + decode += 16; + input += 16; + if ( decode <= decode_end ) + continue; + if ( decode == ( decode_end + 16 ) ) + break; + decode = decode_end; // backup and do last couple + input = end_input_m16; + } + return; + } + #endif + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + decode += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( decode <= decode_end ) + { + STBIR_SIMD_NO_UNROLL(decode); + decode[0-4] = input[stbir__decode_order0]; + decode[1-4] = input[stbir__decode_order1]; + decode[2-4] = input[stbir__decode_order2]; + decode[3-4] = input[stbir__decode_order3]; + decode += 4; + input += 4; + } + decode -= 4; + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( decode < decode_end ) + { + STBIR_NO_UNROLL(decode); + decode[0] = input[stbir__decode_order0]; + #if stbir__coder_min_num >= 2 + decode[1] = input[stbir__decode_order1]; + #endif + #if stbir__coder_min_num >= 3 + decode[2] = input[stbir__decode_order2]; + #endif + decode += stbir__coder_min_num; + input += stbir__coder_min_num; + } + #endif + + #else + + if ( (void*)decodep != inputp ) + STBIR_MEMCPY( decodep, inputp, width_times_channels * sizeof( float ) ); + + #endif +} + +static void STBIR__CODER_NAME( stbir__encode_float_linear )( void * outputp, int width_times_channels, float const * encode ) +{ + #if !defined( STBIR_FLOAT_HIGH_CLAMP ) && !defined(STBIR_FLOAT_LO_CLAMP) && !defined(stbir__decode_swizzle) + + if ( (void*)outputp != (void*) encode ) + STBIR_MEMCPY( outputp, encode, width_times_channels * sizeof( float ) ); + + #else + + float STBIR_SIMD_STREAMOUT_PTR( * ) output = (float*) outputp; + float * end_output = ( (float*) output ) + width_times_channels; + + #ifdef STBIR_FLOAT_HIGH_CLAMP + #define stbir_scalar_hi_clamp( v ) if ( v > STBIR_FLOAT_HIGH_CLAMP ) v = STBIR_FLOAT_HIGH_CLAMP; + #else + #define stbir_scalar_hi_clamp( v ) + #endif + #ifdef STBIR_FLOAT_LOW_CLAMP + #define stbir_scalar_lo_clamp( v ) if ( v < STBIR_FLOAT_LOW_CLAMP ) v = STBIR_FLOAT_LOW_CLAMP; + #else + #define stbir_scalar_lo_clamp( v ) + #endif + + #ifdef STBIR_SIMD + + #ifdef STBIR_FLOAT_HIGH_CLAMP + const stbir__simdfX high_clamp = stbir__simdf_frepX(STBIR_FLOAT_HIGH_CLAMP); + #endif + #ifdef STBIR_FLOAT_LOW_CLAMP + const stbir__simdfX low_clamp = stbir__simdf_frepX(STBIR_FLOAT_LOW_CLAMP); + #endif + + if ( width_times_channels >= ( stbir__simdfX_float_count * 2 ) ) + { + float const * end_encode_m8 = encode + width_times_channels - ( stbir__simdfX_float_count * 2 ); + end_output -= ( stbir__simdfX_float_count * 2 ); + STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR + for(;;) + { + stbir__simdfX e0, e1; + STBIR_SIMD_NO_UNROLL(encode); + stbir__simdfX_load( e0, encode ); + stbir__simdfX_load( e1, encode+stbir__simdfX_float_count ); +#ifdef STBIR_FLOAT_HIGH_CLAMP + stbir__simdfX_min( e0, e0, high_clamp ); + stbir__simdfX_min( e1, e1, high_clamp ); +#endif +#ifdef STBIR_FLOAT_LOW_CLAMP + stbir__simdfX_max( e0, e0, low_clamp ); + stbir__simdfX_max( e1, e1, low_clamp ); +#endif + stbir__encode_simdfX_unflip( e0 ); + stbir__encode_simdfX_unflip( e1 ); + stbir__simdfX_store( output, e0 ); + stbir__simdfX_store( output+stbir__simdfX_float_count, e1 ); + encode += stbir__simdfX_float_count * 2; + output += stbir__simdfX_float_count * 2; + if ( output < end_output ) + continue; + if ( output == ( end_output + ( stbir__simdfX_float_count * 2 ) ) ) + break; + output = end_output; // backup and do last couple + encode = end_encode_m8; + } + return; + } + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + stbir__simdf e0; + STBIR_NO_UNROLL(encode); + stbir__simdf_load( e0, encode ); +#ifdef STBIR_FLOAT_HIGH_CLAMP + stbir__simdf_min( e0, e0, high_clamp ); +#endif +#ifdef STBIR_FLOAT_LOW_CLAMP + stbir__simdf_max( e0, e0, low_clamp ); +#endif + stbir__encode_simdf4_unflip( e0 ); + stbir__simdf_store( output-4, e0 ); + output += 4; + encode += 4; + } + output -= 4; + #endif + + #else + + // try to do blocks of 4 when you can + #if stbir__coder_min_num != 3 // doesn't divide cleanly by four + output += 4; + STBIR_SIMD_NO_UNROLL_LOOP_START + while( output <= end_output ) + { + float e; + STBIR_SIMD_NO_UNROLL(encode); + e = encode[ stbir__encode_order0 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[0-4] = e; + e = encode[ stbir__encode_order1 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[1-4] = e; + e = encode[ stbir__encode_order2 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[2-4] = e; + e = encode[ stbir__encode_order3 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[3-4] = e; + output += 4; + encode += 4; + } + output -= 4; + + #endif + + #endif + + // do the remnants + #if stbir__coder_min_num < 4 + STBIR_NO_UNROLL_LOOP_START + while( output < end_output ) + { + float e; + STBIR_NO_UNROLL(encode); + e = encode[ stbir__encode_order0 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[0] = e; + #if stbir__coder_min_num >= 2 + e = encode[ stbir__encode_order1 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[1] = e; + #endif + #if stbir__coder_min_num >= 3 + e = encode[ stbir__encode_order2 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[2] = e; + #endif + output += stbir__coder_min_num; + encode += stbir__coder_min_num; + } + #endif + + #endif +} + +#undef stbir__decode_suffix +#undef stbir__decode_simdf8_flip +#undef stbir__decode_simdf4_flip +#undef stbir__decode_order0 +#undef stbir__decode_order1 +#undef stbir__decode_order2 +#undef stbir__decode_order3 +#undef stbir__encode_order0 +#undef stbir__encode_order1 +#undef stbir__encode_order2 +#undef stbir__encode_order3 +#undef stbir__encode_simdf8_unflip +#undef stbir__encode_simdf4_unflip +#undef stbir__encode_simdfX_unflip +#undef STBIR__CODER_NAME +#undef stbir__coder_min_num +#undef stbir__decode_swizzle +#undef stbir_scalar_hi_clamp +#undef stbir_scalar_lo_clamp +#undef STB_IMAGE_RESIZE_DO_CODERS + +#elif defined( STB_IMAGE_RESIZE_DO_VERTICALS) + +#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#define STBIR_chans( start, end ) STBIR_strs_join14(start,STBIR__vertical_channels,end,_cont) +#else +#define STBIR_chans( start, end ) STBIR_strs_join1(start,STBIR__vertical_channels,end) +#endif + +#if STBIR__vertical_channels >= 1 +#define stbIF0( code ) code +#else +#define stbIF0( code ) +#endif +#if STBIR__vertical_channels >= 2 +#define stbIF1( code ) code +#else +#define stbIF1( code ) +#endif +#if STBIR__vertical_channels >= 3 +#define stbIF2( code ) code +#else +#define stbIF2( code ) +#endif +#if STBIR__vertical_channels >= 4 +#define stbIF3( code ) code +#else +#define stbIF3( code ) +#endif +#if STBIR__vertical_channels >= 5 +#define stbIF4( code ) code +#else +#define stbIF4( code ) +#endif +#if STBIR__vertical_channels >= 6 +#define stbIF5( code ) code +#else +#define stbIF5( code ) +#endif +#if STBIR__vertical_channels >= 7 +#define stbIF6( code ) code +#else +#define stbIF6( code ) +#endif +#if STBIR__vertical_channels >= 8 +#define stbIF7( code ) code +#else +#define stbIF7( code ) +#endif + +static void STBIR_chans( stbir__vertical_scatter_with_,_coeffs)( float ** outputs, float const * vertical_coefficients, float const * input, float const * input_end ) +{ + stbIF0( float STBIR_SIMD_STREAMOUT_PTR( * ) output0 = outputs[0]; float c0s = vertical_coefficients[0]; ) + stbIF1( float STBIR_SIMD_STREAMOUT_PTR( * ) output1 = outputs[1]; float c1s = vertical_coefficients[1]; ) + stbIF2( float STBIR_SIMD_STREAMOUT_PTR( * ) output2 = outputs[2]; float c2s = vertical_coefficients[2]; ) + stbIF3( float STBIR_SIMD_STREAMOUT_PTR( * ) output3 = outputs[3]; float c3s = vertical_coefficients[3]; ) + stbIF4( float STBIR_SIMD_STREAMOUT_PTR( * ) output4 = outputs[4]; float c4s = vertical_coefficients[4]; ) + stbIF5( float STBIR_SIMD_STREAMOUT_PTR( * ) output5 = outputs[5]; float c5s = vertical_coefficients[5]; ) + stbIF6( float STBIR_SIMD_STREAMOUT_PTR( * ) output6 = outputs[6]; float c6s = vertical_coefficients[6]; ) + stbIF7( float STBIR_SIMD_STREAMOUT_PTR( * ) output7 = outputs[7]; float c7s = vertical_coefficients[7]; ) + + #ifdef STBIR_SIMD + { + stbIF0(stbir__simdfX c0 = stbir__simdf_frepX( c0s ); ) + stbIF1(stbir__simdfX c1 = stbir__simdf_frepX( c1s ); ) + stbIF2(stbir__simdfX c2 = stbir__simdf_frepX( c2s ); ) + stbIF3(stbir__simdfX c3 = stbir__simdf_frepX( c3s ); ) + stbIF4(stbir__simdfX c4 = stbir__simdf_frepX( c4s ); ) + stbIF5(stbir__simdfX c5 = stbir__simdf_frepX( c5s ); ) + stbIF6(stbir__simdfX c6 = stbir__simdf_frepX( c6s ); ) + stbIF7(stbir__simdfX c7 = stbir__simdf_frepX( c7s ); ) + STBIR_SIMD_NO_UNROLL_LOOP_START + while ( ( (char*)input_end - (char*) input ) >= (16*stbir__simdfX_float_count) ) + { + stbir__simdfX o0, o1, o2, o3, r0, r1, r2, r3; + STBIR_SIMD_NO_UNROLL(output0); + + stbir__simdfX_load( r0, input ); stbir__simdfX_load( r1, input+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input+(3*stbir__simdfX_float_count) ); + + #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE + stbIF0( stbir__simdfX_load( o0, output0 ); stbir__simdfX_load( o1, output0+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output0+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c0 ); stbir__simdfX_madd( o1, o1, r1, c0 ); stbir__simdfX_madd( o2, o2, r2, c0 ); stbir__simdfX_madd( o3, o3, r3, c0 ); + stbir__simdfX_store( output0, o0 ); stbir__simdfX_store( output0+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output0+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output0+(3*stbir__simdfX_float_count), o3 ); ) + stbIF1( stbir__simdfX_load( o0, output1 ); stbir__simdfX_load( o1, output1+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output1+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output1+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c1 ); stbir__simdfX_madd( o1, o1, r1, c1 ); stbir__simdfX_madd( o2, o2, r2, c1 ); stbir__simdfX_madd( o3, o3, r3, c1 ); + stbir__simdfX_store( output1, o0 ); stbir__simdfX_store( output1+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output1+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output1+(3*stbir__simdfX_float_count), o3 ); ) + stbIF2( stbir__simdfX_load( o0, output2 ); stbir__simdfX_load( o1, output2+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output2+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output2+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c2 ); stbir__simdfX_madd( o1, o1, r1, c2 ); stbir__simdfX_madd( o2, o2, r2, c2 ); stbir__simdfX_madd( o3, o3, r3, c2 ); + stbir__simdfX_store( output2, o0 ); stbir__simdfX_store( output2+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output2+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output2+(3*stbir__simdfX_float_count), o3 ); ) + stbIF3( stbir__simdfX_load( o0, output3 ); stbir__simdfX_load( o1, output3+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output3+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output3+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c3 ); stbir__simdfX_madd( o1, o1, r1, c3 ); stbir__simdfX_madd( o2, o2, r2, c3 ); stbir__simdfX_madd( o3, o3, r3, c3 ); + stbir__simdfX_store( output3, o0 ); stbir__simdfX_store( output3+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output3+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output3+(3*stbir__simdfX_float_count), o3 ); ) + stbIF4( stbir__simdfX_load( o0, output4 ); stbir__simdfX_load( o1, output4+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output4+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output4+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c4 ); stbir__simdfX_madd( o1, o1, r1, c4 ); stbir__simdfX_madd( o2, o2, r2, c4 ); stbir__simdfX_madd( o3, o3, r3, c4 ); + stbir__simdfX_store( output4, o0 ); stbir__simdfX_store( output4+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output4+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output4+(3*stbir__simdfX_float_count), o3 ); ) + stbIF5( stbir__simdfX_load( o0, output5 ); stbir__simdfX_load( o1, output5+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output5+(2*stbir__simdfX_float_count)); stbir__simdfX_load( o3, output5+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c5 ); stbir__simdfX_madd( o1, o1, r1, c5 ); stbir__simdfX_madd( o2, o2, r2, c5 ); stbir__simdfX_madd( o3, o3, r3, c5 ); + stbir__simdfX_store( output5, o0 ); stbir__simdfX_store( output5+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output5+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output5+(3*stbir__simdfX_float_count), o3 ); ) + stbIF6( stbir__simdfX_load( o0, output6 ); stbir__simdfX_load( o1, output6+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output6+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output6+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c6 ); stbir__simdfX_madd( o1, o1, r1, c6 ); stbir__simdfX_madd( o2, o2, r2, c6 ); stbir__simdfX_madd( o3, o3, r3, c6 ); + stbir__simdfX_store( output6, o0 ); stbir__simdfX_store( output6+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output6+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output6+(3*stbir__simdfX_float_count), o3 ); ) + stbIF7( stbir__simdfX_load( o0, output7 ); stbir__simdfX_load( o1, output7+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output7+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output7+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c7 ); stbir__simdfX_madd( o1, o1, r1, c7 ); stbir__simdfX_madd( o2, o2, r2, c7 ); stbir__simdfX_madd( o3, o3, r3, c7 ); + stbir__simdfX_store( output7, o0 ); stbir__simdfX_store( output7+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output7+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output7+(3*stbir__simdfX_float_count), o3 ); ) + #else + stbIF0( stbir__simdfX_mult( o0, r0, c0 ); stbir__simdfX_mult( o1, r1, c0 ); stbir__simdfX_mult( o2, r2, c0 ); stbir__simdfX_mult( o3, r3, c0 ); + stbir__simdfX_store( output0, o0 ); stbir__simdfX_store( output0+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output0+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output0+(3*stbir__simdfX_float_count), o3 ); ) + stbIF1( stbir__simdfX_mult( o0, r0, c1 ); stbir__simdfX_mult( o1, r1, c1 ); stbir__simdfX_mult( o2, r2, c1 ); stbir__simdfX_mult( o3, r3, c1 ); + stbir__simdfX_store( output1, o0 ); stbir__simdfX_store( output1+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output1+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output1+(3*stbir__simdfX_float_count), o3 ); ) + stbIF2( stbir__simdfX_mult( o0, r0, c2 ); stbir__simdfX_mult( o1, r1, c2 ); stbir__simdfX_mult( o2, r2, c2 ); stbir__simdfX_mult( o3, r3, c2 ); + stbir__simdfX_store( output2, o0 ); stbir__simdfX_store( output2+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output2+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output2+(3*stbir__simdfX_float_count), o3 ); ) + stbIF3( stbir__simdfX_mult( o0, r0, c3 ); stbir__simdfX_mult( o1, r1, c3 ); stbir__simdfX_mult( o2, r2, c3 ); stbir__simdfX_mult( o3, r3, c3 ); + stbir__simdfX_store( output3, o0 ); stbir__simdfX_store( output3+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output3+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output3+(3*stbir__simdfX_float_count), o3 ); ) + stbIF4( stbir__simdfX_mult( o0, r0, c4 ); stbir__simdfX_mult( o1, r1, c4 ); stbir__simdfX_mult( o2, r2, c4 ); stbir__simdfX_mult( o3, r3, c4 ); + stbir__simdfX_store( output4, o0 ); stbir__simdfX_store( output4+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output4+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output4+(3*stbir__simdfX_float_count), o3 ); ) + stbIF5( stbir__simdfX_mult( o0, r0, c5 ); stbir__simdfX_mult( o1, r1, c5 ); stbir__simdfX_mult( o2, r2, c5 ); stbir__simdfX_mult( o3, r3, c5 ); + stbir__simdfX_store( output5, o0 ); stbir__simdfX_store( output5+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output5+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output5+(3*stbir__simdfX_float_count), o3 ); ) + stbIF6( stbir__simdfX_mult( o0, r0, c6 ); stbir__simdfX_mult( o1, r1, c6 ); stbir__simdfX_mult( o2, r2, c6 ); stbir__simdfX_mult( o3, r3, c6 ); + stbir__simdfX_store( output6, o0 ); stbir__simdfX_store( output6+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output6+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output6+(3*stbir__simdfX_float_count), o3 ); ) + stbIF7( stbir__simdfX_mult( o0, r0, c7 ); stbir__simdfX_mult( o1, r1, c7 ); stbir__simdfX_mult( o2, r2, c7 ); stbir__simdfX_mult( o3, r3, c7 ); + stbir__simdfX_store( output7, o0 ); stbir__simdfX_store( output7+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output7+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output7+(3*stbir__simdfX_float_count), o3 ); ) + #endif + + input += (4*stbir__simdfX_float_count); + stbIF0( output0 += (4*stbir__simdfX_float_count); ) stbIF1( output1 += (4*stbir__simdfX_float_count); ) stbIF2( output2 += (4*stbir__simdfX_float_count); ) stbIF3( output3 += (4*stbir__simdfX_float_count); ) stbIF4( output4 += (4*stbir__simdfX_float_count); ) stbIF5( output5 += (4*stbir__simdfX_float_count); ) stbIF6( output6 += (4*stbir__simdfX_float_count); ) stbIF7( output7 += (4*stbir__simdfX_float_count); ) + } + STBIR_SIMD_NO_UNROLL_LOOP_START + while ( ( (char*)input_end - (char*) input ) >= 16 ) + { + stbir__simdf o0, r0; + STBIR_SIMD_NO_UNROLL(output0); + + stbir__simdf_load( r0, input ); + + #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE + stbIF0( stbir__simdf_load( o0, output0 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); stbir__simdf_store( output0, o0 ); ) + stbIF1( stbir__simdf_load( o0, output1 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); stbir__simdf_store( output1, o0 ); ) + stbIF2( stbir__simdf_load( o0, output2 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); stbir__simdf_store( output2, o0 ); ) + stbIF3( stbir__simdf_load( o0, output3 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); stbir__simdf_store( output3, o0 ); ) + stbIF4( stbir__simdf_load( o0, output4 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); stbir__simdf_store( output4, o0 ); ) + stbIF5( stbir__simdf_load( o0, output5 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); stbir__simdf_store( output5, o0 ); ) + stbIF6( stbir__simdf_load( o0, output6 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); stbir__simdf_store( output6, o0 ); ) + stbIF7( stbir__simdf_load( o0, output7 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); stbir__simdf_store( output7, o0 ); ) + #else + stbIF0( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); stbir__simdf_store( output0, o0 ); ) + stbIF1( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); stbir__simdf_store( output1, o0 ); ) + stbIF2( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); stbir__simdf_store( output2, o0 ); ) + stbIF3( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); stbir__simdf_store( output3, o0 ); ) + stbIF4( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); stbir__simdf_store( output4, o0 ); ) + stbIF5( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); stbir__simdf_store( output5, o0 ); ) + stbIF6( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); stbir__simdf_store( output6, o0 ); ) + stbIF7( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); stbir__simdf_store( output7, o0 ); ) + #endif + + input += 4; + stbIF0( output0 += 4; ) stbIF1( output1 += 4; ) stbIF2( output2 += 4; ) stbIF3( output3 += 4; ) stbIF4( output4 += 4; ) stbIF5( output5 += 4; ) stbIF6( output6 += 4; ) stbIF7( output7 += 4; ) + } + } + #else + STBIR_NO_UNROLL_LOOP_START + while ( ( (char*)input_end - (char*) input ) >= 16 ) + { + float r0, r1, r2, r3; + STBIR_NO_UNROLL(input); + + r0 = input[0], r1 = input[1], r2 = input[2], r3 = input[3]; + + #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE + stbIF0( output0[0] += ( r0 * c0s ); output0[1] += ( r1 * c0s ); output0[2] += ( r2 * c0s ); output0[3] += ( r3 * c0s ); ) + stbIF1( output1[0] += ( r0 * c1s ); output1[1] += ( r1 * c1s ); output1[2] += ( r2 * c1s ); output1[3] += ( r3 * c1s ); ) + stbIF2( output2[0] += ( r0 * c2s ); output2[1] += ( r1 * c2s ); output2[2] += ( r2 * c2s ); output2[3] += ( r3 * c2s ); ) + stbIF3( output3[0] += ( r0 * c3s ); output3[1] += ( r1 * c3s ); output3[2] += ( r2 * c3s ); output3[3] += ( r3 * c3s ); ) + stbIF4( output4[0] += ( r0 * c4s ); output4[1] += ( r1 * c4s ); output4[2] += ( r2 * c4s ); output4[3] += ( r3 * c4s ); ) + stbIF5( output5[0] += ( r0 * c5s ); output5[1] += ( r1 * c5s ); output5[2] += ( r2 * c5s ); output5[3] += ( r3 * c5s ); ) + stbIF6( output6[0] += ( r0 * c6s ); output6[1] += ( r1 * c6s ); output6[2] += ( r2 * c6s ); output6[3] += ( r3 * c6s ); ) + stbIF7( output7[0] += ( r0 * c7s ); output7[1] += ( r1 * c7s ); output7[2] += ( r2 * c7s ); output7[3] += ( r3 * c7s ); ) + #else + stbIF0( output0[0] = ( r0 * c0s ); output0[1] = ( r1 * c0s ); output0[2] = ( r2 * c0s ); output0[3] = ( r3 * c0s ); ) + stbIF1( output1[0] = ( r0 * c1s ); output1[1] = ( r1 * c1s ); output1[2] = ( r2 * c1s ); output1[3] = ( r3 * c1s ); ) + stbIF2( output2[0] = ( r0 * c2s ); output2[1] = ( r1 * c2s ); output2[2] = ( r2 * c2s ); output2[3] = ( r3 * c2s ); ) + stbIF3( output3[0] = ( r0 * c3s ); output3[1] = ( r1 * c3s ); output3[2] = ( r2 * c3s ); output3[3] = ( r3 * c3s ); ) + stbIF4( output4[0] = ( r0 * c4s ); output4[1] = ( r1 * c4s ); output4[2] = ( r2 * c4s ); output4[3] = ( r3 * c4s ); ) + stbIF5( output5[0] = ( r0 * c5s ); output5[1] = ( r1 * c5s ); output5[2] = ( r2 * c5s ); output5[3] = ( r3 * c5s ); ) + stbIF6( output6[0] = ( r0 * c6s ); output6[1] = ( r1 * c6s ); output6[2] = ( r2 * c6s ); output6[3] = ( r3 * c6s ); ) + stbIF7( output7[0] = ( r0 * c7s ); output7[1] = ( r1 * c7s ); output7[2] = ( r2 * c7s ); output7[3] = ( r3 * c7s ); ) + #endif + + input += 4; + stbIF0( output0 += 4; ) stbIF1( output1 += 4; ) stbIF2( output2 += 4; ) stbIF3( output3 += 4; ) stbIF4( output4 += 4; ) stbIF5( output5 += 4; ) stbIF6( output6 += 4; ) stbIF7( output7 += 4; ) + } + #endif + STBIR_NO_UNROLL_LOOP_START + while ( input < input_end ) + { + float r = input[0]; + STBIR_NO_UNROLL(output0); + + #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE + stbIF0( output0[0] += ( r * c0s ); ) + stbIF1( output1[0] += ( r * c1s ); ) + stbIF2( output2[0] += ( r * c2s ); ) + stbIF3( output3[0] += ( r * c3s ); ) + stbIF4( output4[0] += ( r * c4s ); ) + stbIF5( output5[0] += ( r * c5s ); ) + stbIF6( output6[0] += ( r * c6s ); ) + stbIF7( output7[0] += ( r * c7s ); ) + #else + stbIF0( output0[0] = ( r * c0s ); ) + stbIF1( output1[0] = ( r * c1s ); ) + stbIF2( output2[0] = ( r * c2s ); ) + stbIF3( output3[0] = ( r * c3s ); ) + stbIF4( output4[0] = ( r * c4s ); ) + stbIF5( output5[0] = ( r * c5s ); ) + stbIF6( output6[0] = ( r * c6s ); ) + stbIF7( output7[0] = ( r * c7s ); ) + #endif + + ++input; + stbIF0( ++output0; ) stbIF1( ++output1; ) stbIF2( ++output2; ) stbIF3( ++output3; ) stbIF4( ++output4; ) stbIF5( ++output5; ) stbIF6( ++output6; ) stbIF7( ++output7; ) + } +} + +static void STBIR_chans( stbir__vertical_gather_with_,_coeffs)( float * outputp, float const * vertical_coefficients, float const ** inputs, float const * input0_end ) +{ + float STBIR_SIMD_STREAMOUT_PTR( * ) output = outputp; + + stbIF0( float const * input0 = inputs[0]; float c0s = vertical_coefficients[0]; ) + stbIF1( float const * input1 = inputs[1]; float c1s = vertical_coefficients[1]; ) + stbIF2( float const * input2 = inputs[2]; float c2s = vertical_coefficients[2]; ) + stbIF3( float const * input3 = inputs[3]; float c3s = vertical_coefficients[3]; ) + stbIF4( float const * input4 = inputs[4]; float c4s = vertical_coefficients[4]; ) + stbIF5( float const * input5 = inputs[5]; float c5s = vertical_coefficients[5]; ) + stbIF6( float const * input6 = inputs[6]; float c6s = vertical_coefficients[6]; ) + stbIF7( float const * input7 = inputs[7]; float c7s = vertical_coefficients[7]; ) + +#if ( STBIR__vertical_channels == 1 ) && !defined(STB_IMAGE_RESIZE_VERTICAL_CONTINUE) + // check single channel one weight + if ( ( c0s >= (1.0f-0.000001f) ) && ( c0s <= (1.0f+0.000001f) ) ) + { + STBIR_MEMCPY( output, input0, (char*)input0_end - (char*)input0 ); + return; + } +#endif + + #ifdef STBIR_SIMD + { + stbIF0(stbir__simdfX c0 = stbir__simdf_frepX( c0s ); ) + stbIF1(stbir__simdfX c1 = stbir__simdf_frepX( c1s ); ) + stbIF2(stbir__simdfX c2 = stbir__simdf_frepX( c2s ); ) + stbIF3(stbir__simdfX c3 = stbir__simdf_frepX( c3s ); ) + stbIF4(stbir__simdfX c4 = stbir__simdf_frepX( c4s ); ) + stbIF5(stbir__simdfX c5 = stbir__simdf_frepX( c5s ); ) + stbIF6(stbir__simdfX c6 = stbir__simdf_frepX( c6s ); ) + stbIF7(stbir__simdfX c7 = stbir__simdf_frepX( c7s ); ) + + STBIR_SIMD_NO_UNROLL_LOOP_START + while ( ( (char*)input0_end - (char*) input0 ) >= (16*stbir__simdfX_float_count) ) + { + stbir__simdfX o0, o1, o2, o3, r0, r1, r2, r3; + STBIR_SIMD_NO_UNROLL(output); + + // prefetch four loop iterations ahead (doesn't affect much for small resizes, but helps with big ones) + stbIF0( stbir__prefetch( input0 + (16*stbir__simdfX_float_count) ); ) + stbIF1( stbir__prefetch( input1 + (16*stbir__simdfX_float_count) ); ) + stbIF2( stbir__prefetch( input2 + (16*stbir__simdfX_float_count) ); ) + stbIF3( stbir__prefetch( input3 + (16*stbir__simdfX_float_count) ); ) + stbIF4( stbir__prefetch( input4 + (16*stbir__simdfX_float_count) ); ) + stbIF5( stbir__prefetch( input5 + (16*stbir__simdfX_float_count) ); ) + stbIF6( stbir__prefetch( input6 + (16*stbir__simdfX_float_count) ); ) + stbIF7( stbir__prefetch( input7 + (16*stbir__simdfX_float_count) ); ) + + #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE + stbIF0( stbir__simdfX_load( o0, output ); stbir__simdfX_load( o1, output+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output+(3*stbir__simdfX_float_count) ); + stbir__simdfX_load( r0, input0 ); stbir__simdfX_load( r1, input0+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input0+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c0 ); stbir__simdfX_madd( o1, o1, r1, c0 ); stbir__simdfX_madd( o2, o2, r2, c0 ); stbir__simdfX_madd( o3, o3, r3, c0 ); ) + #else + stbIF0( stbir__simdfX_load( r0, input0 ); stbir__simdfX_load( r1, input0+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input0+(3*stbir__simdfX_float_count) ); + stbir__simdfX_mult( o0, r0, c0 ); stbir__simdfX_mult( o1, r1, c0 ); stbir__simdfX_mult( o2, r2, c0 ); stbir__simdfX_mult( o3, r3, c0 ); ) + #endif + + stbIF1( stbir__simdfX_load( r0, input1 ); stbir__simdfX_load( r1, input1+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input1+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input1+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c1 ); stbir__simdfX_madd( o1, o1, r1, c1 ); stbir__simdfX_madd( o2, o2, r2, c1 ); stbir__simdfX_madd( o3, o3, r3, c1 ); ) + stbIF2( stbir__simdfX_load( r0, input2 ); stbir__simdfX_load( r1, input2+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input2+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input2+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c2 ); stbir__simdfX_madd( o1, o1, r1, c2 ); stbir__simdfX_madd( o2, o2, r2, c2 ); stbir__simdfX_madd( o3, o3, r3, c2 ); ) + stbIF3( stbir__simdfX_load( r0, input3 ); stbir__simdfX_load( r1, input3+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input3+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input3+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c3 ); stbir__simdfX_madd( o1, o1, r1, c3 ); stbir__simdfX_madd( o2, o2, r2, c3 ); stbir__simdfX_madd( o3, o3, r3, c3 ); ) + stbIF4( stbir__simdfX_load( r0, input4 ); stbir__simdfX_load( r1, input4+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input4+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input4+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c4 ); stbir__simdfX_madd( o1, o1, r1, c4 ); stbir__simdfX_madd( o2, o2, r2, c4 ); stbir__simdfX_madd( o3, o3, r3, c4 ); ) + stbIF5( stbir__simdfX_load( r0, input5 ); stbir__simdfX_load( r1, input5+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input5+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input5+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c5 ); stbir__simdfX_madd( o1, o1, r1, c5 ); stbir__simdfX_madd( o2, o2, r2, c5 ); stbir__simdfX_madd( o3, o3, r3, c5 ); ) + stbIF6( stbir__simdfX_load( r0, input6 ); stbir__simdfX_load( r1, input6+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input6+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input6+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c6 ); stbir__simdfX_madd( o1, o1, r1, c6 ); stbir__simdfX_madd( o2, o2, r2, c6 ); stbir__simdfX_madd( o3, o3, r3, c6 ); ) + stbIF7( stbir__simdfX_load( r0, input7 ); stbir__simdfX_load( r1, input7+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input7+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input7+(3*stbir__simdfX_float_count) ); + stbir__simdfX_madd( o0, o0, r0, c7 ); stbir__simdfX_madd( o1, o1, r1, c7 ); stbir__simdfX_madd( o2, o2, r2, c7 ); stbir__simdfX_madd( o3, o3, r3, c7 ); ) + + stbir__simdfX_store( output, o0 ); stbir__simdfX_store( output+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output+(3*stbir__simdfX_float_count), o3 ); + output += (4*stbir__simdfX_float_count); + stbIF0( input0 += (4*stbir__simdfX_float_count); ) stbIF1( input1 += (4*stbir__simdfX_float_count); ) stbIF2( input2 += (4*stbir__simdfX_float_count); ) stbIF3( input3 += (4*stbir__simdfX_float_count); ) stbIF4( input4 += (4*stbir__simdfX_float_count); ) stbIF5( input5 += (4*stbir__simdfX_float_count); ) stbIF6( input6 += (4*stbir__simdfX_float_count); ) stbIF7( input7 += (4*stbir__simdfX_float_count); ) + } + + STBIR_SIMD_NO_UNROLL_LOOP_START + while ( ( (char*)input0_end - (char*) input0 ) >= 16 ) + { + stbir__simdf o0, r0; + STBIR_SIMD_NO_UNROLL(output); + + #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE + stbIF0( stbir__simdf_load( o0, output ); stbir__simdf_load( r0, input0 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); ) + #else + stbIF0( stbir__simdf_load( r0, input0 ); stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); ) + #endif + stbIF1( stbir__simdf_load( r0, input1 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); ) + stbIF2( stbir__simdf_load( r0, input2 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); ) + stbIF3( stbir__simdf_load( r0, input3 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); ) + stbIF4( stbir__simdf_load( r0, input4 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); ) + stbIF5( stbir__simdf_load( r0, input5 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); ) + stbIF6( stbir__simdf_load( r0, input6 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); ) + stbIF7( stbir__simdf_load( r0, input7 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); ) + + stbir__simdf_store( output, o0 ); + output += 4; + stbIF0( input0 += 4; ) stbIF1( input1 += 4; ) stbIF2( input2 += 4; ) stbIF3( input3 += 4; ) stbIF4( input4 += 4; ) stbIF5( input5 += 4; ) stbIF6( input6 += 4; ) stbIF7( input7 += 4; ) + } + } + #else + STBIR_NO_UNROLL_LOOP_START + while ( ( (char*)input0_end - (char*) input0 ) >= 16 ) + { + float o0, o1, o2, o3; + STBIR_NO_UNROLL(output); + #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE + stbIF0( o0 = output[0] + input0[0] * c0s; o1 = output[1] + input0[1] * c0s; o2 = output[2] + input0[2] * c0s; o3 = output[3] + input0[3] * c0s; ) + #else + stbIF0( o0 = input0[0] * c0s; o1 = input0[1] * c0s; o2 = input0[2] * c0s; o3 = input0[3] * c0s; ) + #endif + stbIF1( o0 += input1[0] * c1s; o1 += input1[1] * c1s; o2 += input1[2] * c1s; o3 += input1[3] * c1s; ) + stbIF2( o0 += input2[0] * c2s; o1 += input2[1] * c2s; o2 += input2[2] * c2s; o3 += input2[3] * c2s; ) + stbIF3( o0 += input3[0] * c3s; o1 += input3[1] * c3s; o2 += input3[2] * c3s; o3 += input3[3] * c3s; ) + stbIF4( o0 += input4[0] * c4s; o1 += input4[1] * c4s; o2 += input4[2] * c4s; o3 += input4[3] * c4s; ) + stbIF5( o0 += input5[0] * c5s; o1 += input5[1] * c5s; o2 += input5[2] * c5s; o3 += input5[3] * c5s; ) + stbIF6( o0 += input6[0] * c6s; o1 += input6[1] * c6s; o2 += input6[2] * c6s; o3 += input6[3] * c6s; ) + stbIF7( o0 += input7[0] * c7s; o1 += input7[1] * c7s; o2 += input7[2] * c7s; o3 += input7[3] * c7s; ) + output[0] = o0; output[1] = o1; output[2] = o2; output[3] = o3; + output += 4; + stbIF0( input0 += 4; ) stbIF1( input1 += 4; ) stbIF2( input2 += 4; ) stbIF3( input3 += 4; ) stbIF4( input4 += 4; ) stbIF5( input5 += 4; ) stbIF6( input6 += 4; ) stbIF7( input7 += 4; ) + } + #endif + STBIR_NO_UNROLL_LOOP_START + while ( input0 < input0_end ) + { + float o0; + STBIR_NO_UNROLL(output); + #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE + stbIF0( o0 = output[0] + input0[0] * c0s; ) + #else + stbIF0( o0 = input0[0] * c0s; ) + #endif + stbIF1( o0 += input1[0] * c1s; ) + stbIF2( o0 += input2[0] * c2s; ) + stbIF3( o0 += input3[0] * c3s; ) + stbIF4( o0 += input4[0] * c4s; ) + stbIF5( o0 += input5[0] * c5s; ) + stbIF6( o0 += input6[0] * c6s; ) + stbIF7( o0 += input7[0] * c7s; ) + output[0] = o0; + ++output; + stbIF0( ++input0; ) stbIF1( ++input1; ) stbIF2( ++input2; ) stbIF3( ++input3; ) stbIF4( ++input4; ) stbIF5( ++input5; ) stbIF6( ++input6; ) stbIF7( ++input7; ) + } +} + +#undef stbIF0 +#undef stbIF1 +#undef stbIF2 +#undef stbIF3 +#undef stbIF4 +#undef stbIF5 +#undef stbIF6 +#undef stbIF7 +#undef STB_IMAGE_RESIZE_DO_VERTICALS +#undef STBIR__vertical_channels +#undef STB_IMAGE_RESIZE_DO_HORIZONTALS +#undef STBIR_strs_join24 +#undef STBIR_strs_join14 +#undef STBIR_chans +#ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#undef STB_IMAGE_RESIZE_VERTICAL_CONTINUE +#endif + +#else // !STB_IMAGE_RESIZE_DO_VERTICALS + +#define STBIR_chans( start, end ) STBIR_strs_join1(start,STBIR__horizontal_channels,end) + +#ifndef stbir__2_coeff_only +#define stbir__2_coeff_only() \ + stbir__1_coeff_only(); \ + stbir__1_coeff_remnant(1); +#endif + +#ifndef stbir__2_coeff_remnant +#define stbir__2_coeff_remnant( ofs ) \ + stbir__1_coeff_remnant(ofs); \ + stbir__1_coeff_remnant((ofs)+1); +#endif + +#ifndef stbir__3_coeff_only +#define stbir__3_coeff_only() \ + stbir__2_coeff_only(); \ + stbir__1_coeff_remnant(2); +#endif + +#ifndef stbir__3_coeff_remnant +#define stbir__3_coeff_remnant( ofs ) \ + stbir__2_coeff_remnant(ofs); \ + stbir__1_coeff_remnant((ofs)+2); +#endif + +#ifndef stbir__3_coeff_setup +#define stbir__3_coeff_setup() +#endif + +#ifndef stbir__4_coeff_start +#define stbir__4_coeff_start() \ + stbir__2_coeff_only(); \ + stbir__2_coeff_remnant(2); +#endif + +#ifndef stbir__4_coeff_continue_from_4 +#define stbir__4_coeff_continue_from_4( ofs ) \ + stbir__2_coeff_remnant(ofs); \ + stbir__2_coeff_remnant((ofs)+2); +#endif + +#ifndef stbir__store_output_tiny +#define stbir__store_output_tiny stbir__store_output +#endif + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_1_coeff)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__1_coeff_only(); + stbir__store_output_tiny(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_2_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__2_coeff_only(); + stbir__store_output_tiny(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_3_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__3_coeff_only(); + stbir__store_output_tiny(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_4_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__4_coeff_start(); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_5_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__4_coeff_start(); + stbir__1_coeff_remnant(4); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_6_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__4_coeff_start(); + stbir__2_coeff_remnant(4); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_7_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + stbir__3_coeff_setup(); + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + + stbir__4_coeff_start(); + stbir__3_coeff_remnant(4); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_8_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__4_coeff_start(); + stbir__4_coeff_continue_from_4(4); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_9_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__4_coeff_start(); + stbir__4_coeff_continue_from_4(4); + stbir__1_coeff_remnant(8); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_10_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__4_coeff_start(); + stbir__4_coeff_continue_from_4(4); + stbir__2_coeff_remnant(8); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_11_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + stbir__3_coeff_setup(); + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__4_coeff_start(); + stbir__4_coeff_continue_from_4(4); + stbir__3_coeff_remnant(8); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_12_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + float const * hc = horizontal_coefficients; + stbir__4_coeff_start(); + stbir__4_coeff_continue_from_4(4); + stbir__4_coeff_continue_from_4(8); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod0 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 4 + 3 ) >> 2; + float const * hc = horizontal_coefficients; + + stbir__4_coeff_start(); + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + hc += 4; + decode += STBIR__horizontal_channels * 4; + stbir__4_coeff_continue_from_4( 0 ); + --n; + } while ( n > 0 ); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod1 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 5 + 3 ) >> 2; + float const * hc = horizontal_coefficients; + + stbir__4_coeff_start(); + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + hc += 4; + decode += STBIR__horizontal_channels * 4; + stbir__4_coeff_continue_from_4( 0 ); + --n; + } while ( n > 0 ); + stbir__1_coeff_remnant( 4 ); + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod2 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 6 + 3 ) >> 2; + float const * hc = horizontal_coefficients; + + stbir__4_coeff_start(); + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + hc += 4; + decode += STBIR__horizontal_channels * 4; + stbir__4_coeff_continue_from_4( 0 ); + --n; + } while ( n > 0 ); + stbir__2_coeff_remnant( 4 ); + + stbir__store_output(); + } while ( output < output_end ); +} + +static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod3 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) +{ + float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; + float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; + stbir__3_coeff_setup(); + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; + int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 7 + 3 ) >> 2; + float const * hc = horizontal_coefficients; + + stbir__4_coeff_start(); + STBIR_SIMD_NO_UNROLL_LOOP_START + do { + hc += 4; + decode += STBIR__horizontal_channels * 4; + stbir__4_coeff_continue_from_4( 0 ); + --n; + } while ( n > 0 ); + stbir__3_coeff_remnant( 4 ); + + stbir__store_output(); + } while ( output < output_end ); +} + +static stbir__horizontal_gather_channels_func * STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_funcs)[4]= +{ + STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod0), + STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod1), + STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod2), + STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod3), +}; + +static stbir__horizontal_gather_channels_func * STBIR_chans(stbir__horizontal_gather_,_channels_funcs)[12]= +{ + STBIR_chans(stbir__horizontal_gather_,_channels_with_1_coeff), + STBIR_chans(stbir__horizontal_gather_,_channels_with_2_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_3_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_4_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_5_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_6_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_7_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_8_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_9_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_10_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_11_coeffs), + STBIR_chans(stbir__horizontal_gather_,_channels_with_12_coeffs), +}; + +#undef STBIR__horizontal_channels +#undef STB_IMAGE_RESIZE_DO_HORIZONTALS +#undef stbir__1_coeff_only +#undef stbir__1_coeff_remnant +#undef stbir__2_coeff_only +#undef stbir__2_coeff_remnant +#undef stbir__3_coeff_only +#undef stbir__3_coeff_remnant +#undef stbir__3_coeff_setup +#undef stbir__4_coeff_start +#undef stbir__4_coeff_continue_from_4 +#undef stbir__store_output +#undef stbir__store_output_tiny +#undef STBIR_chans + +#endif // HORIZONALS + +#undef STBIR_strs_join2 +#undef STBIR_strs_join1 + +#endif // STB_IMAGE_RESIZE_DO_HORIZONTALS/VERTICALS/CODERS + +/* +------------------------------------------------------------------------------ +This software is available under 2 licenses -- choose whichever you prefer. +------------------------------------------------------------------------------ +ALTERNATIVE A - MIT License +Copyright (c) 2017 Sean Barrett +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do +so, subject to the following conditions: +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +------------------------------------------------------------------------------ +ALTERNATIVE B - Public Domain (www.unlicense.org) +This is free and unencumbered software released into the public domain. +Anyone is free to copy, modify, publish, use, compile, sell, or distribute this +software, either in source code form or as a compiled binary, for any purpose, +commercial or non-commercial, and by any means. +In jurisdictions that recognize copyright laws, the author or authors of this +software dedicate any and all copyright interest in the software to the public +domain. We make this dedication for the benefit of the public at large and to +the detriment of our heirs and successors. We intend this dedication to be an +overt act of relinquishment in perpetuity of all present and future rights to +this software under copyright law. +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +------------------------------------------------------------------------------ +*/