forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHingeEmbeddingCriterion.lua
43 lines (34 loc) · 1.26 KB
/
HingeEmbeddingCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
local HingeEmbeddingCriterion, parent = torch.class('nn.HingeEmbeddingCriterion', 'nn.Criterion')
function HingeEmbeddingCriterion:__init(margin)
parent.__init(self)
self.margin = margin or 1
self.sizeAverage = true
end
function HingeEmbeddingCriterion:updateOutput(input,y)
self.buffer = self.buffer or input.new()
if not torch.isTensor(y) then
self.ty = self.ty or input.new():resize(1)
self.ty[1]=y
y=self.ty
end
self.buffer:resizeAs(input):copy(input)
self.buffer[torch.eq(y, -1)] = 0
self.output = self.buffer:sum()
self.buffer:fill(self.margin):add(-1, input)
self.buffer:cmax(0)
self.buffer[torch.eq(y, 1)] = 0
self.output = self.output + self.buffer:sum()
if (self.sizeAverage == nil or self.sizeAverage == true) then
self.output = self.output / input:nElement()
end
return self.output
end
function HingeEmbeddingCriterion:updateGradInput(input, y)
if not torch.isTensor(y) then self.ty[1]=y; y=self.ty end
self.gradInput:resizeAs(input):copy(y)
self.gradInput[torch.cmul(torch.eq(y, -1), torch.gt(input, self.margin))] = 0
if (self.sizeAverage == nil or self.sizeAverage == true) then
self.gradInput:mul(1 / input:nElement())
end
return self.gradInput
end