-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathformat_predictions_to_json_forwebsite.py
52 lines (40 loc) · 1.76 KB
/
format_predictions_to_json_forwebsite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import epl
import pagerank
import predictions_tensorflow
import probs_of_finishing_each_place as probs
import json
import numpy as np
def main(csv_file_name='epl.csv', output_file_name='epl-predictions-stats.json'):
model = epl.getData(csv_file_name)
data, indexToTeam, teamToIndex, indexToGamesPlayed = model
predictor = predictions_tensorflow.createPredictGameFunction(csv_file_name)
indexToPlaceFinishedToTimesFinished, indexToMeanPoints, indexToTeam = probs.calculateProbs(10**5, csv_file_name, predictor)
week = 40
A = np.array(epl.getMatrixForSeason(week, model, None))
R = pagerank.rank(A)
rankings = [(indexToMeanPoints[i], i) for i in range(len(indexToMeanPoints))]
rankings.sort(reverse=True)
jsonData = []
for value in rankings:
probabilties = indexToPlaceFinishedToTimesFinished[value[1]]
jsonData.append({
"name": indexToTeam[value[1]],
"probability": list(probabilties),
"expected": value[0],
"championslegue": probabilties[0] + probabilties[1] + probabilties[2] + probabilties[3],
"relegated": probabilties[-1] + probabilties[-2] + probabilties[-3],
"pagerank": R[value[1]][0],
})
games_data = probs.calculateProbsOfEachGameInASeason(csv_file_name, predictor)
with open(output_file_name, 'w') as out:
out.write(json.dumps({'teams': list(jsonData), 'games': games_data}))
if __name__ == '__main__':
import os
csv_file_name = 'epl.csv'
output_file_name = 'epl-predictions-stats.json'
if len(os.sys.argv) > 1:
csv_file_name = os.sys.argv[1]
if len(os.sys.argv) > 2:
output_file_name = os.sys.argv[2]
print(csv_file_name, output_file_name)
main(csv_file_name, output_file_name)