-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_gen_recog.py
115 lines (94 loc) · 3.88 KB
/
data_gen_recog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import math
import pandas as pd
import numpy as np
import os
import torch
import ast
####### LOAD THE 3D POSES FOR UPFALL ACTION SAMPLES #######
path='/home/mo926312/Documents/falldet/PreProcess_poses/' #path to 3d poses for actions
SUBJECTS=['Subject1','Subject2','Subject3','Subject4','Subject5','Subject6']
ACTIVITIES=['Activity1','Activity2','Activity3','Activity4','Activity5','Activity6','Activity7','Activity8','Activity9','Activity10','Activity11']
TRIALS=['Trial1','Trial2','Trial3']
CAMERAS='Camera1' #Using camera1 to compare results with other works
############ Label generator for fall classification ############
#Function for getting label given activity name
#Activity 1-5: fall (1) Activity 6-11: not fall(0)
def get_actlabel_fall(sample):
if ('Activity1T' in sample) or ('Activity2T' in sample) or ('Activity3T' in sample) or ('Activity4T' in sample) or ('Activity5T' in sample):
return 1
else:
return 0
############ Label generator for activity recognition ############
def get_actlabel_recog(sample):
labels={'Activity1T':1,'Activity2T':2,'Activity3T':3,
'Activity4T':4,'Activity5T':5,'Activity6T':6,'Activity7T':7,
'Activity8T':8,'Activity9T':9,'Activity10T':10,'Activity11T':11}
for key in labels:
if key in sample:
return labels[key]-1
return 11
#Function to map pose seq for one act to an id and label
#input: path to dir containing poses
#output: 2 dictionaries one for pose2id= {'id-1':'S1A1T1C1.csv','id-2':'....}, id2label={'id-1':0,'id-2':1...}
def pose2idlabel(poses_path):
pose2id=dict()
id2label=dict()
i=0
subjects=os.listdir(poses_path)
for sub in subjects:
sub_path=poses_path+sub+'/'
if os.path.isdir(sub_path):
samples=os.listdir(sub_path)
for sample in samples:
pose2id['id-'+str(i)]=sub_path+sample #pose2id['id-1']='S1A1T1C1.csv',...
id2label['id-'+str(i)]=get_actlabel_recog(sample) #Get activity label
i+=1
return pose2id,id2label
#Get pose dir to id dict, and id to label dict
pose2id,label=pose2idlabel(path)
#Perform train test split
train_split=70
test_split=30
ids=list(label.keys())
idx=int(np.floor(len(label)*0.7))
partition=dict()
partition['train']=ids[:idx]
partition['test']=ids[idx:]
#print("Partition dict:",partition)
#Create pytorch dataset
class Poses2d_Dataset(torch.utils.data.Dataset):
def __init__(self, list_IDs, labels, pose2id,num_frames):
'Initialization'
self.labels = labels
self.list_IDs = list_IDs
self.pose2id = pose2id
self.num_frames=num_frames
#Function to get poses for F frames/ one sample, given sample id
def get_pose_data(self,id):
pose=self.pose2id[id] #get path to one action/sample's pose
data_sample=[]
if pose.endswith('.csv'):
df=pd.read_csv(pose)
for _,row in df.iterrows():
joints2d = (ast.literal_eval(row['keypoints']))
joints2d = np.array(joints2d).reshape(17,2) #2d joints for one frame - 17x2
data_sample.append(joints2d)
if len(data_sample)<self.num_frames:
diff=self.num_frames-len(data_sample)
last_pose=data_sample[-1]
append_list=[last_pose]*diff
data_sample=data_sample+append_list
else:
data_sample=data_sample[:self.num_frames]
return np.array(data_sample)
def __len__(self):
'Denotes the total number of samples'
return len(self.list_IDs)
def __getitem__(self, index):
'Generates one sample of data'
# Select sample
ID = self.list_IDs[index]
# Load data and get label
X = torch.from_numpy(self.get_pose_data(ID))
y = self.labels[ID]
return X, y