-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
59 lines (51 loc) · 2.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from textSummarizer.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from textSummarizer.pipeline.stage_02_data_validation import DataValidationTrainingPipeline
from textSummarizer.pipeline.stage_03_data_transformation import DataTransformationTrainingPipeline
from textSummarizer.pipeline.stage_04_model_trainer import ModelTrainerTrainingPipeline
from textSummarizer.pipeline.stage_04_model_evaluation import ModelEvaluationTrainingPipeline
from textSummarizer.logging import logger
STAGE_NAME = 'Data Ingestion Stage'
try:
logger.info(f'>>>>> stage {STAGE_NAME} started <<<<<')
data_ingestion = DataIngestionTrainingPipeline()
data_ingestion.main()
logger.info(f'>>>>> stage {STAGE_NAME} completed <<<<<\n\nX===========X')
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = 'Data Validation Stage'
try:
logger.info(f'>>>>> stage {STAGE_NAME} started <<<<<')
data_validation = DataValidationTrainingPipeline()
data_validation.main()
logger.info(f'>>>>> stage {STAGE_NAME} completed <<<<<\n\nX===========X')
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = 'Data Transformation Stage'
try:
logger.info(f'>>>>> stage {STAGE_NAME} started <<<<<')
data_validation = DataTransformationTrainingPipeline()
data_validation.main()
logger.info(f'>>>>> stage {STAGE_NAME} completed <<<<<\n\nX===========X')
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = 'Model Training Stage'
try:
logger.info(f'>>>>> stage {STAGE_NAME} started <<<<<')
model_trainer = ModelTrainerTrainingPipeline()
model_trainer.main()
logger.info(f'>>>>> stage {STAGE_NAME} completed <<<<<\n\nX===========X')
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = 'Model Evaluation Stage'
try:
logger.info(f'>>>>> stage {STAGE_NAME} started <<<<<')
model_trainer = ModelEvaluationTrainingPipeline()
model_trainer.main()
logger.info(f'>>>>> stage {STAGE_NAME} completed <<<<<\n\nX===========X')
except Exception as e:
logger.exception(e)
raise e