-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_pipeline.py
47 lines (41 loc) · 1.47 KB
/
tf_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from adr.pipeline.phase_001_tf_data_ingestion import DataTFIngestionPipeline
from adr.pipeline.phase_002_tf_model_training import ModelTrainingPipeline
from adr.pipeline.phase_003_model_evaluation import ModelEvaluationPipeline
from adr.pipeline.phase_004_model_inference import ModelInferencePipeline
from adr import logger
PHASE_ID = "Data Ingestion"
try:
logger.info(f">>>>>> phase {PHASE_ID} started <<<<<<")
obj = DataTFIngestionPipeline()
obj.main()
logger.info(f">>>>>> phase {PHASE_ID} done successfully <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
PHASE_ID = "Model Training"
try:
logger.info(f">>>>>> phase {PHASE_ID} started <<<<<<")
obj = ModelTrainingPipeline()
obj.main()
logger.info(f">>>>>> phase {PHASE_ID} done successfully <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
PHASE_ID = "Model Evaluation"
try:
logger.info(f">>>>>> phase {PHASE_ID} started <<<<<<")
obj = ModelEvaluationPipeline()
obj.main()
logger.info(f">>>>>> phase {PHASE_ID} done successfully <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
PHASE_ID = "Model Inference"
try:
logger.info(f">>>>>> phase {PHASE_ID} started <<<<<<")
obj = ModelInferencePipeline()
obj.main()
logger.info(f">>>>>> phase {PHASE_ID} done successfully <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e