-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataDownloader.py
105 lines (77 loc) · 4.33 KB
/
DataDownloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 10 01:00:17 2021
@author: wasil
"""
import os
import zipfile
# directories:
DATA = "Data/"
COCO = "coco/"
DATA_INTERMEDIATE = "Data Files"
def Download_Data_extract():
print("Downloading training and validation data")
if(os.path.isfile(os.path.join('Annotations_Train_mscoco.zip')) == False):
os.system("wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Annotations_Train_mscoco.zip")
if(os.path.isfile(os.path.join('Questions_Val_mscoco.zip')) == False):
os.system("wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Questions_Val_mscoco.zip")
if(os.path.isfile(os.path.join('Annotations_Val_mscoco.zip')) == False):
os.system("wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Annotations_Val_mscoco.zip")
if(os.path.isfile(os.path.join('Questions_Train_mscoco.zip')) == False):
os.system("wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/Questions_Train_mscoco.zip")
print("Unzipping files...")
if(os.path.isfile(os.path.join(DATA, 'mscoco_val2014_annotations.json')) == False):
with zipfile.ZipFile("Annotations_Val_mscoco.zip", 'r') as zip_ref:
zip_ref.extractall(DATA)
if(os.path.isfile(os.path.join(DATA, 'OpenEnded_mscoco_val2014_questions.json')) == False) or (os.path.isfile(os.path.join(DATA, 'MultipleChoice_mscoco_val2014_questions.json')) == False):
with zipfile.ZipFile("Questions_Val_mscoco.zip", 'r') as zip_ref:
zip_ref.extractall(DATA)
if(os.path.isfile(os.path.join(DATA, 'mscoco_train2014_annotations.json')) == False):
with zipfile.ZipFile("Annotations_Train_mscoco.zip", 'r') as zip_ref:
zip_ref.extractall(DATA)
if(os.path.isfile(os.path.join(DATA, 'OpenEnded_mscoco_train2014_questions.json')) == False) or (os.path.isfile(os.path.join(DATA, 'MultipleChoice_mscoco_train2014_questions.json')) == False):
with zipfile.ZipFile("Questions_Train_mscoco.zip", 'r') as zip_ref:
zip_ref.extractall(DATA)
def Download_VGG16_Weights():
print("Downloading VGG16 weights on COCO dataset")
if (os.path.isfile(os.path.join('coco.zip')) == False):
os.system('wget http://cs.stanford.edu/people/karpathy/deepimagesent/coco.zip')
print("Downloaded!")
else:
print("Already downloaded!")
# The files we need.
if (os.path.isfile(os.path.join(DATA, COCO, "dataset.json")) == False) or (os.path.isfile(os.path.join(DATA, COCO, "vgg_feats.mat")) == False):
print("Unzipping...")
with zipfile.ZipFile("coco.zip", 'r') as zip_ref:
zip_ref.extractall(DATA)
print("Unzipping done!")
else:
print("Already unzipped")
def Download_COCO_Image():
#if (os.path.isfile(os.path.join('train2014.zip')) == False):
# os.system('wget http://images.cocodataset.org/zips/train2014.zip') # 13Gigs file.
if (os.path.isfile(os.path.join('val2014.zip')) == False):
os.system('wget http://images.cocodataset.org/zips/val2014.zip') # 6 Gigs file.
else:
print("COCO Validation data already downloaded!")
# Since training is very large, and will take long time to unzip, we are going to unzip validation data.
# Although we dont need the image dataset, but still we are going to look at it.
# some if statements.
print("Unzipping validation data, since training data is quite huge...")
if (os.path.isdir(os.path.join(DATA, "val2014")) == False):
with zipfile.ZipFile("val2014.zip", 'r') as zip_ref:
zip_ref.extractall(DATA)
else:
print("COCO Validation data already unzipped!")
def Download_extract_word_embedding():
if (os.path.isfile(os.path.join('glove.840B.300d.zip')) == False):
print("Downloading Glove word embdding")
print("This might be slow")
os.system("http://nlp.stanford.edu/data/glove.840B.300d.zip")
else:
print("Already downloaded GloVe Embedding")
if (os.path.isfile(os.path.join(DATA_INTERMEDIATE, "glove.840B.300d", "glove.840B.300d.txt")) == False):
with zipfile.ZipFile("glove.840B.300d.zip", 'r') as zip_ref:
zip_ref.extractall(DATA_INTERMEDIATE)
else:
print("GloVe Word EMbedding already unzipped!")