forked from Jennifer-Daniel/GAN_N3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
284 lines (240 loc) · 8.08 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# -*- coding: utf-8 -*-
"""evaluation.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1OGttsubco0yLGS2_fj_WEtnwku09XZn7
# **Inception Score**
"""
# calculate inception score for cifar-10 in Keras
import random
from math import floor
from numpy import expand_dims
from numpy import log
from numpy import mean
from numpy import std
from numpy import exp
from numpy.random import shuffle
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_v3 import preprocess_input
from keras.datasets import cifar10
from skimage.transform import resize
from numpy import asarray
# scale an array of images to a new size
def scale_images(images, new_shape):
images_list = list()
for image in images:
# resize with nearest neighbor interpolation
new_image = resize(image, new_shape, 0)
# store
images_list.append(new_image)
return asarray(images_list)
# assumes images have any shape and pixels in [0,255]
def calculate_inception_score(images, n_split=10, eps=1E-16):
# load inception v3 model
model = InceptionV3()
# enumerate splits of images/predictions
scores = list()
n_part = floor(images.shape[0] / n_split)
for i in range(n_split):
# retrieve images
ix_start, ix_end = i * n_part, (i+1) * n_part
subset = images[ix_start:ix_end]
# convert from uint8 to float32
subset = subset.astype('float32')
# scale images to the required size
subset = scale_images(subset, (299,299,3))
# pre-process images, scale to [-1,1]
subset = preprocess_input(subset)
# predict p(y|x)
p_yx = model.predict(subset)
# calculate p(y)
p_y = expand_dims(p_yx.mean(axis=0), 0)
# calculate KL divergence using log probabilities
kl_d = p_yx * (log(p_yx + eps) - log(p_y + eps))
# sum over classes
sum_kl_d = kl_d.sum(axis=1)
# average over images
avg_kl_d = mean(sum_kl_d)
# undo the log
is_score = exp(avg_kl_d)
# store
scores.append(is_score)
# average across images
is_avg, is_std = mean(scores), std(scores)
return is_avg, is_std
# create a list of all generated images converted into np array
all = []
for pic in glob.glob('/content/drive/My Drive/randomly_generated/generated/*.png'):
print(pic)
img = cv2.imread(pic)
all.append(img)
all_generated = numpy.array(all)
# check data type and shape
print(all_generated.shape)
print(all_generated.dtype)
# shuffle images
random.shuffle(all_generated)
# convert int to float
all_generated = all_generated.astype('float32')
# resize ancd check
all_generated = scale_images(all_generated, (299,299,3))
print(all_generated.shape)
print(all_generated.dtype)
# calculate inception score
is_avg, is_std = calculate_inception_score(all_generated)
print('score', is_avg, is_std)
"""# **Fréchet Inception Distance**
Import modules, write functions to compute the FID and load the inception v3 model
We computed FID for each class separately
"""
import imageio as io
import cv2
import glob
import numpy
import random
from numpy import cov
from numpy import trace
from numpy import iscomplexobj
from numpy import asarray
from numpy.random import randint
from scipy.linalg import sqrtm
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_v3 import preprocess_input
from skimage.transform import resize
# scale an array of images to a new size
def scale_images(images, new_shape):
images_list = list()
for image in images:
# resize with nearest neighbor interpolation
new_image = resize(image, new_shape, 0)
# store
images_list.append(new_image)
return asarray(images_list)
# calculate frechet inception distance
def calculate_fid(model, images1, images2):
# calculate activations
act1 = model.predict(images1)
act2 = model.predict(images2)
# calculate mean and covariance statistics
mu1, sigma1 = act1.mean(axis=0), cov(act1, rowvar=False)
mu2, sigma2 = act2.mean(axis=0), cov(act2, rowvar=False)
# calculate sum squared difference between means
ssdiff = numpy.sum((mu1 - mu2)**2.0)
# calculate sqrt of product between cov
covmean = sqrtm(sigma1.dot(sigma2))
# check and correct imaginary numbers from sqrt
if iscomplexobj(covmean):
covmean = covmean.real
# calculate score
fid = ssdiff + trace(sigma1 + sigma2 - 2.0 * covmean)
return fid
# prepare the inception v3 model
model = InceptionV3(include_top=False, pooling='avg', input_shape=(299,299,3))
"""# Class Eyeglasses"""
# create a list of images converted into np array
glasses = []
for pic in glob.glob('/content/drive/My Drive/randomly_generated/glasses/*.png'):
print(pic)
img = cv2.imread(pic)
glasses.append(img)
glasses_fake = numpy.array(glasses) # nested array (96,128,128,3) of 96 elements
# check data shape and type
print(glasses_fake.shape)
print(glasses_fake.dtype)
# create a list of images converted into np array
glasses_1 = []
i = 0
for pic in glob.glob('/content/drive/My Drive/categorical_pictures.zip (Unzipped Files)/Eyeglasses/*.jpg'):
if i < 96:
img = cv2.imread(pic)
glasses_1.append(img)
else:
break
i+=1
glasses_real = numpy.array(glasses_1) # nested array
# convert integer to floating point values
glasses_fake = glasses_fake.astype('float32')
glasses_real = glasses_real.astype('float32')
# resize images
glasses_fake = scale_images(glasses_fake, (299,299,3))
print('Scaled', glasses_fake.shape)
glasses_real = scale_images(glasses_real, (299,299,3))
print('Scaled', glasses_real.shape)
# pre-process images
glasses_fake = preprocess_input(glasses_fake)
glasses_real = preprocess_input(glasses_real)
# fid between glasses_fake and glasses_real
fid = calculate_fid(model, glasses_fake, glasses_real)
print('FID (different): %.3f' % fid)
"""# Class Rosy_cheeks"""
# create a list of images converted into np array
rosy = []
for pic in glob.glob('/content/drive/My Drive/randomly_generated/rosy/*.png'):
print(pic)
img = cv2.imread(pic)
rosy.append(img)
rosy_cheeks_fake = numpy.array(rosy)
# check shape and datatype
print(rosy_cheeks_fake.shape)
print(rosy_cheeks_fake.dtype)
# create a list of real images converted into np array
rosy_1 = []
i = 0
for pic in glob.glob('/content/drive/My Drive/categorical_pictures.zip (Unzipped Files)/Rosy_Cheeks/*.jpg'):
if i < 100:
img = cv2.imread(pic)
rosy_1.append(img)
else:
break
i+=1
rosy_cheeks_real = numpy.array(rosy_1) # nested array
# convert to float
rosy_cheeks_fake = rosy_cheeks_fake.astype('float32')
rosy_cheeks_real = rosy_cheeks_real.astype('float32')
# resize
rosy_cheeks_fake = scale_images(rosy_cheeks_fake, (299,299,3))
print('Scaled', rosy_cheeks_fake.shape)
rosy_cheeks_real = scale_images(rosy_cheeks_real, (299,299,3))
print('Scaled', rosy_cheeks_real.shape)
# preprocess
rosy_cheeks_fake = preprocess_input(rosy_cheeks_fake)
rosy_cheeks_real = preprocess_input(rosy_cheeks_real)
# fid between rosy_cheeks_fake and rosy_cheeks_real
fid = calculate_fid(model, rosy_cheeks_fake, rosy_cheeks_real)
print('FID (different): %.3f' % fid)
"""# Class Goatee"""
# create a list of images converted into np array
got = []
for pic in glob.glob('/content/drive/My Drive/randomly_generated/goatee/*.png'):
print(pic)
img = cv2.imread(pic)
got.append(img)
goatee_fake = numpy.array(got)
# check shape and datatype
print(goatee_fake.shape)
print(goatee_fake.dtype)
# create a list of real images converted into np array
got_1 = []
i = 0
for pic in glob.glob('/content/drive/My Drive/categorical_pictures.zip (Unzipped Files)/Goatee/*.jpg'):
if i < 104:
img = cv2.imread(pic)
got_1.append(img)
else:
break
i+=1
goatee_real = numpy.array(got_1) # nested array
# convert to float
goatee_fake = goatee_fake.astype('float32')
goatee_real = goatee_real.astype('float32')
# resize
goatee_fake = scale_images(goatee_fake, (299,299,3))
print('Scaled', goatee_fake.shape)
goatee_real = scale_images(goatee_real, (299,299,3))
print('Scaled', goatee_real.shape)
# preprocess
goatee_fake = preprocess_input(goatee_fake)
goatee_real = preprocess_input(goatee_real)
# fid between goatee_fake and goatee_real
fid = calculate_fid(model, goatee_fake, goatee_real)
print('FID (different): %.3f' % fid)