-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpassive3.py
325 lines (285 loc) · 11.7 KB
/
passive3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#!/usr/bin/env python
# This is a modified version of example7.py of LFPy
import LFPy
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import rc
import neuron
import math
import io
import sys
plt.rcParams.update({'font.size' : 12,
'figure.facecolor' : '1',
'figure.subplot.wspace' : 0.5,
'figure.subplot.hspace' : 0.5})
np.random.seed(12345)
dryrun = False
L = 300
centerpos = (0, 0, 0)
themode = sys.argv[1]
if themode not in ['msn', 'msn-beta', 'pyramidal', 'pyramidal-beta']:
sys.exit("Please specify the mode (msn, msn-beta, pyramidal, or pyramidal-beta).")
radius = 150
synapticweight = 0.001
if themode in ['msn', 'msn-beta']: # MSN
cortex = False
Ncells = 2700*8
gabaradius = 200
gabafactor = 1.5
synapsePerCell = 80
elif themode in ['pyramidal', 'pyramidal-beta']: # Cortex
cortex = True
Ncells = 2700*60/100*8
gabaradius = 1e5
gabafactor = 0.1
synapsePerCell = 200
if themode in ['msn', 'pyramidal']:
tstopms = 100
elif themode in ['msn-beta', 'pyramidal-beta']:
tstopms = 200
optionstr = themode+'_newmodel'
def insert_synapses(centerpos, radius, dryrun, synparams, section, n, spTimesFun, args):
if section is None:
idx = cell.get_rand_idx_area_norm(nidx=n)
else:
idx = cell.get_rand_idx_area_norm(nidx=n, section=section)
inserted = 0
for i in idx:
if (cell.xmid[i]-centerpos[0])**2+(cell.ymid[i]-centerpos[1])**2+(cell.zmid[i]-centerpos[2])**2<=radius**2:
inserted += 1
if not dryrun:
synparams.update({'idx' : int(i)})
spiketimes = spTimesFun(args[0], args[1], args[2], args[3], args[4])
s = LFPy.Synapse(cell, **synparams)
s.set_spike_times(spiketimes)
return inserted
def nonstationary_poisson(tstart, tstop, maxlambda, frequency, tmin=-1000.0, tmax=1000000.0):
X = []
x = tmin
while True:
x += -np.log(np.random.random())*maxlambda
if x>tstop:
break
if np.random.random()<(1+np.sin(-np.pi/2+2*np.pi*frequency*(x-tstart)/1000.0))/2:
X.append(x)
return np.array(X)
if cortex:
cellParameters = {
'morphology' : 'morphologies/L5_Mainen96_wAxon_LFPy.hoc',
'rm' : 30000, # membrane resistance
'cm' : 1.0, # membrane capacitance
'Ra' : 150, # axial resistance
'v_init' : -65, # initial crossmembrane potential
'e_pas' : -65, # reversal potential passive mechs
'passive' : True, # switch on passive mechs
'nsegs_method' : 'lambda_f',# method for setting number of segments,
'lambda_f' : 100, # segments are isopotential at this frequency
'timeres_NEURON' : 2**-4, # dt of LFP and NEURON simulation.
'timeres_python' : 2**-4,
'tstartms' : -50, #start time, recorders start at t=0
'tstopms' : tstopms, #stop time of simulation
}
else:
cellParameters = {
'morphology' : 'morphologies/msp_template_modified2.hoc',
'rm' : 1/(1.7e-5*1.3), # membrane resistance
'cm' : 1.0, # membrane capacitance
'Ra' : 100, # axial resistance
'v_init' : -70, # initial crossmembrane potential
'e_pas' : -70, # reversal potential passive mechs
'passive' : True, # switch on passive mechs
'nsegs_method' : 'lambda_f',# method for setting number of segments,
'lambda_f' : 100, # segments are isopotential at this frequency
'timeres_NEURON' : 2**-4, # dt of LFP and NEURON simulation.
'timeres_python' : 2**-4,
'tstartms' : -50, #start time, recorders start at t=0
'tstopms' : tstopms, #stop time of simulation
}
# Synaptic parameters taken from Hendrickson et al 2011
# Excitatory synapse parameters:
synapseParameters_AMPA = {
'e' : 0, #reversal potential
'syntype' : 'Exp2Syn', #conductance based exponential synapse
'tau1' : 1., #Time constant, rise
'tau2' : 3., #Time constant, decay
'weight' : synapticweight, #Synaptic weight
'color' : 'r', #for plt.plot
'marker' : '.', #for plt.plot
'record_current' : True, #record synaptic currents
}
# Inhibitory synapse parameters
synapseParameters_GABA_A = {
'e' : -70,
'syntype' : 'Exp2Syn',
'tau1' : 1.,
'tau2' : 12.,
'weight' : synapticweight,
'color' : 'b',
'marker' : '.',
'record_current' : True
}
# where to insert, how many, and which input statistics
if themode in ['msn', 'pyramidal']:
insert_synapses_AMPA_args = {
'spTimesFun' : LFPy.inputgenerators.stationary_gamma,
'args' : [25, 75, 0.5, 40,
cellParameters['tstartms']]
}
insert_synapses_GABA_A_args = {
'spTimesFun' : LFPy.inputgenerators.stationary_gamma,
'args' : [25, 75, 0.5, 40,
cellParameters['tstartms']]
}
else:
insert_synapses_AMPA_args = {
'spTimesFun' : nonstationary_poisson,
'args' : [0, tstopms, 20, 15,
cellParameters['tstartms']]
}
insert_synapses_GABA_A_args = {
'spTimesFun' : nonstationary_poisson,
'args' : [0, tstopms, 20, 15,
cellParameters['tstartms']]
}
# Define electrode geometry corresponding to a laminar electrode, where contact
# points have a radius r, surface normal vectors N, and LFP calculated as the
# average LFP in n random points on each contact:
n_elec = 64
N = np.empty((n_elec, 3))
for i in range(N.shape[0]):
N[i,] = [1, 0, 0] #normal unit vec. to contacts
if cortex:
electrodeParameters = {
'sigma' : 0.3, # Extracellular potential
'x' : np.zeros(n_elec) + 25*0, # x,y,z-coordinates of electrode contacts
'y' : np.zeros(n_elec),
'z' : np.linspace(-1500, 500, n_elec),
'n' : 20,
'r' : 10,
'N' : N,
}
else:
electrodeParameters = {
'sigma' : 0.3, # Extracellular potential
'x' : np.zeros(n_elec) + 25*0, # x,y,z-coordinates of electrode contacts
'y' : np.zeros(n_elec),
'z' : np.linspace(-500, 500, n_elec),
'n' : 20,
'r' : 10,
'N' : N,
}
# Parameters for the cell.simulate() call, recording membrane- and syn.-currents
simulationParameters = {
'rec_imem' : True, # Record Membrane currents during simulation
'rec_isyn' : True, # Record synaptic currents
'rec_vmem' : False
}
################################################################################
# Main simulation procedure
################################################################################
total_ampa = 0
total_gaba = 0
totalneurons = 0
LFPsum = np.array([])
spos = []
print str(Ncells/float((2*L)**3)*100**3)+" neurons in 100 * 100 * 100 micro m^3"
fig = plt.figure(figsize=[12, 8])
rc('text', usetex=True)
rc('text.latex', preamble=r'\usepackage{arev}')
#plot the somatic trace
ax1 = fig.add_axes([0.4, 0.7, 0.5, 0.2])
ax1.set_xlabel('Time/ms')
ax1.set_ylabel('Soma potential/mV')
ax2 = fig.add_axes([0.4, 0.4, 0.5, 0.2])
ax2.set_xlabel('Time/ms')
ax2.set_ylabel('Synaptic input/nA')
#plot the morphology, electrode contacts and synapses
ax4 = fig.add_axes([0.05, 0, 0.25, 1], frameon=False)
ax4.axis('equal')
for nc in range(Ncells):
#Initialize cell instance, using the LFPy.Cell class
cell = LFPy.Cell(**cellParameters)
if cortex:
cell.set_rotation(0, 0, 2*math.pi*np.random.rand())
cell.set_pos(-L+2*L*np.random.rand(), -L+2*L*np.random.rand(), -800-L+2*L*np.random.rand())
ampa = insert_synapses(centerpos, radius, dryrun, synapseParameters_AMPA, 'apic', synapsePerCell, **insert_synapses_AMPA_args)
gaba = insert_synapses(centerpos, gabaradius, dryrun, synapseParameters_GABA_A, 'dend', synapsePerCell*gabafactor, **insert_synapses_GABA_A_args)
else:
for i in range(10):
cell.set_rotation(2*math.pi*np.random.rand(), 2*math.pi*np.random.rand(), 2*math.pi*np.random.rand())
cell.set_pos(-L+2*L*np.random.rand(), -L+2*L*np.random.rand(), -L+2*L*np.random.rand())
ampa = insert_synapses(centerpos, radius, dryrun, synapseParameters_AMPA, None, synapsePerCell, **insert_synapses_AMPA_args)
gaba = insert_synapses(centerpos, gabaradius, dryrun, synapseParameters_GABA_A, None, synapsePerCell*gabafactor, **insert_synapses_GABA_A_args)
#Insert synapses using the function defined earlier
if ampa+gaba==0:
continue
total_ampa += ampa
total_gaba += gaba
totalneurons += 1
if dryrun:
print('processing neurons.... '+str(nc+1)+'/'+str(Ncells))
else:
print('simulating LFPs.... '+str(nc+1)+'/'+str(Ncells))
#perform NEURON simulation, results saved as attributes in the cell instance
cell.simulate(**simulationParameters)
# Initialize electrode geometry, then calculate the LFP, using the
# LFPy.RecExtElectrode class. Note that now cell is given as input to electrode
# and created after the NEURON simulations are finished
electrode = LFPy.RecExtElectrode(cell, **electrodeParameters)
electrode.calc_lfp()
thetvec = cell.tvec
if LFPsum.shape==(0,):
LFPsum = electrode.LFP
else:
LFPsum += electrode.LFP
if totalneurons%100==0:
thecolor = (np.random.rand(), np.random.rand(), np.random.rand())
if not dryrun:
ax1.plot(cell.tvec, cell.somav)
for i in range(len(cell.synapses)):
if i%10==0:
ax2.plot(cell.tvec, cell.synapses[i].i, color=thecolor)
for sec in neuron.h.allsec():
idx = cell.get_idx(sec.name())
ax4.plot(np.r_[cell.xstart[idx], cell.xend[idx][-1]], # xstart and xend are lists of segments
np.r_[cell.zstart[idx], cell.zend[idx][-1]],
color=thecolor)
for i in range(len(cell.synapses)):
spos.append([cell.synapses[i].x, cell.synapses[i].z, cell.synapses[i].color, cell.synapses[i].marker])
print totalneurons, "neurons,", total_ampa, "AMPA synapses,", total_gaba, "GABA synapses, "
for x,z,c,m in spos:
ax4.plot(x, z, color=c, marker=m)
if not dryrun:
for i in range(electrode.x.size):
ax4.plot(electrode.x[i], electrode.z[i], color='g', marker='o')
#plot the LFP as image plot
ax3 = fig.add_axes([0.4, 0.1, 0.5, 0.2])
absmaxLFP = abs(np.array([LFPsum.max(), LFPsum.min()])).max()
im = ax3.pcolormesh(thetvec, electrode.z, LFPsum,
vmax=absmaxLFP, vmin=-absmaxLFP,
#cmap='spectral_r')
cmap='RdBu')
#cb = plt.colorbar(im)
#ticklabs = cb.ax.get_yticklabels()
#cb.ax.set_yticklabels(ticklabs, ha='right')
#cb.ax.yaxis.set_tick_params(pad=1000)
ax3.axis(ax3.axis('tight'))
ax3.set_xlabel('Time/ms')
ax3.set_ylabel('z/$\mu$m')
rect = np.array(ax3.get_position().bounds)
rect[0] += rect[2] + 0.01
rect[2] = 0.02
cax = fig.add_axes(rect)
cbar = plt.colorbar(im, cax=cax)
cbar.set_label('LFP/mV')
#plt.axis('equal')
#plt.axis(np.array(plt.axis())*0.8)
ax4.set_xticks([])
ax4.set_yticks([])
params = '_'.join(list(map(str, [totalneurons, total_ampa, total_gaba, Ncells, synapticweight, gabaradius, gabafactor, synapsePerCell])))
fig.savefig(optionstr+'_'+params+'.pdf', dpi=1200)
fp = open(optionstr+'_'+params+'_voltage.txt', 'w')
for l in LFPsum:
fp.write(" ".join(map(str, l))+"\n")
fp.close()